Academic literature on the topic 'Glass furnace'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Glass furnace.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Glass furnace"

1

Shustrov, N. N., V. G. Puzach, and S. A. Bezenkov. "The effect of the conductive walls of the cooking furnace of an electric furnace on the distribution of energy flows." NOVYE OGNEUPORY (NEW REFRACTORIES), no. 4 (September 16, 2020): 13–18. http://dx.doi.org/10.17073/1683-4518-2020-4-13-18.

Full text
Abstract:
A method for modeling the electric glass melting process, which allows obtaining information about the unity of electric and thermal processes in the glass mass in an electric glass melting furnace has been developed. The furnace’s cooking pool is made of conductive chromoxide. The work was carried out using modeling on the EGDA integrator, as a result of which two versions of experimental electric furnaces with different directions of power lines and a pilot industrial furnace with a capacity of 7 tons per day for melting E glass, widely used in the manufacture of fiberglass, were built.
APA, Harvard, Vancouver, ISO, and other styles
2

Muijsenberg, H. P. H., Marketa Muijsenberg, and J. Chmelar. "What is the Ideal Glass Bath Depth of a Glass Furnace?" Advanced Materials Research 39-40 (April 2008): 447–52. http://dx.doi.org/10.4028/www.scientific.net/amr.39-40.447.

Full text
Abstract:
Mathematical modelling is reaching a high acceptance level within the glass industry. Today most new furnaces are being modelled before the final design is decided. It is clear that the modelling helps to optimise the furnace in respect to glass quality, energy efficiency and furnace life-time. The extra effort of the modelling is leading for sure to a quick pay-back of this extra investment and an increased profit over the furnace life-time. Even the furnace life-time can be extended with better insight on temperature distribution and glass speeds that corrode the refractory. Many glass produces are always asking us: “what is the optimal glass depth”? There is not just one answer to this, but the paper demonstrates how mathematical modelling can help to find the optimal furnace depth for a certain furnace design.
APA, Harvard, Vancouver, ISO, and other styles
3

Tapasa, Kanit, Ekarat Meechoowas, Usuma Naknikham, and Tepiwan Jitwatcharakomol. "Evaluation of Furnaces Performance of Glass Factories in Thailand." Key Engineering Materials 702 (July 2016): 135–38. http://dx.doi.org/10.4028/www.scientific.net/kem.702.135.

Full text
Abstract:
The objective of this project is to evaluate the energy consumption and the efficiency of glass melting furnaces using a thermodynamic principle and heat (energy) balance analysis. The approach can carry out more accurate result of wall losses than the direct temperature measurement at the furnace walls. Six furnaces from different factories in Thailand were studied. To construct the heat balance of glass furnace, the amount of heat for melting raw materials batch to glass melt (Hex), input energy (Hin) and the heat of content of offgas had to be known. The heat (energy) balance indicated the performance of glass furnaces in term of energy consumption.Glass furnace, Efficiency, Heat balance
APA, Harvard, Vancouver, ISO, and other styles
4

Busby, T. S. "Refractories for Glass Making." MRS Bulletin 14, no. 11 (November 1989): 45–53. http://dx.doi.org/10.1557/s0883769400061200.

Full text
Abstract:
Glass melting has changed very little in general principles since the earliest times, still being produced in fireclay pots or crucibles—even up to the present day. In Europe, experiments to melt glasses in tank furnaces began about 1700 A.D., but this became an important form of glass manufacture after Siemens introduced the regenerative furnace in 1870. This design was the basis for the development of modern furnaces and there is still a considerable similarity to the original.Until the late 1920s the glass contact refractories used in tank furnaces were based on fireclay or sandstone blocks. About this time important changes began when sillimanite and fusion-cast mullite refractories became available. However, because of the higher cost of fusion-cast refractories the introduction of these materials was delayed and they did not come into general use for lining the glass melting tank until the late 1940s.The high performance of tank furnaces today is related to a number of factors such as improved furnace design and regeneration, but the most significant has been an improved melting rate brought about by the use of higher temperatures. This has only been achievable as a result of the improved quality of fusion-cast and other refractory materials, such as those used in the furnace superstructure and regenerators. Garstang showed that there has been a steady increase in melting temperatures in the container glass industry. In data going back to 1920, there has been an increase from about 1300°C to some 1590°C. Bondarev showed that the increase in production achieved by using higher temperatures reduces the specific consumption of fuel.
APA, Harvard, Vancouver, ISO, and other styles
5

Kasa, Stanislav. "Distribution of Power Density in the Glass Melt at Different Electrode Configurations in All-Electric Furnace." Advanced Materials Research 39-40 (April 2008): 431–36. http://dx.doi.org/10.4028/www.scientific.net/amr.39-40.431.

Full text
Abstract:
The power density in glass melts has been studied at different arrangements of electrodes in all-electric melting furnace. Bottom, top and plate electrodes have been arranged into the model furnace in form of hexahedron about the edge 1m. The results of mathematical modelling showed that there has been very narrow relationship between the distribution of power density in glass melt and the temperature field and therefore by means of suitable arrangement of electrodes it is possible to influence the intensity of convective currents of the glass melt. From evaluated dependencies of power density distribution near the tips of electrodes follows that in case of rod electrodes, the power density decreases with increasing length of the electrodes. Opposite behaviour happens at plate electrodes because the power density distribution in the centre of the basin between electrodes increases with increasing distance of the electrodes from the bottom of the furnace. By means of mathematical modelling also have been evaluated the volumes of glass melt in surroundings of electrodes where are the power densities superior to pmean (60000 W.m-3). The volumes are very small with regard on the total volume of furnace and do not exceed the value 22%. From mentioned follows that mathematical modelling of glass melting furnaces by means of CFD programme Fluent gives to acceptable computational subservience to study of power density distribution in all-electric melting furnaces.
APA, Harvard, Vancouver, ISO, and other styles
6

Ling, Shao Hua, Chang Yong Jing, and Xiao Liang Li. "Analysis Flue Gas DeNOx Technology for Float Glass Furnace." Applied Mechanics and Materials 525 (February 2014): 158–61. http://dx.doi.org/10.4028/www.scientific.net/amm.525.158.

Full text
Abstract:
This paper analyzes and discusses the application for flue gas DeNOx technology in the float glass furnace, combining float glass furnace technology and flue gas characteristics. To 500T/D float glass furnace, study float glass furnace flue gas SCR DeNOx technology solutions, and analyzes economic and environmental benefits for float glass furnace flue gas SCR DeNOx technology.
APA, Harvard, Vancouver, ISO, and other styles
7

van Limpt, Hans, Ruud Beerkens, and Marco van Kersbergen. "Effect of Small Glass Composition Changes on Flue Gas Emissions of Glass Furnaces." Advanced Materials Research 39-40 (April 2008): 653–58. http://dx.doi.org/10.4028/www.scientific.net/amr.39-40.653.

Full text
Abstract:
Relatively small changes in glass composition might have drastic consequences on the evaporation rates of volatile glass components in glass melting furnaces. Transpiration evaporation tests have been applied to measure the impact of minor glass composition changes on the evaporation rates of volatile glass components in simulated furnace atmospheres. The results of these laboratory evaporation tests were used to develop and optimize an universally applicable evaporation model to estimate evaporation rates and dust emissions for industrial glass melt furnaces. Mass transfer relations for the transport of volatile glass melt species into the turbulent gas phase were used to upscale the evaporation models valid for the lab tests to applications for industrial glass furnaces. In this paper, the impact of sulfur and chlorides on the evaporation rates of sodium and potassium from multi-component silicate melts for industrial glass production will be demonstrated.
APA, Harvard, Vancouver, ISO, and other styles
8

Kornilov, B. V., O. L. Chaika, V. V. Lebid, Ye I. Shumelchyk, and A. O. Moskalina. "THE THERMAL WORK ANALYSIS OF THE FIREPLACES OF BLAST FURNACES OF UKRAINE OF VARIOUS DESIGNS." Fundamental and applied problems of ferrous metallurgy, no. 35 (2021): 55–68. http://dx.doi.org/10.52150/2522-9117-2021-35-55-68.

Full text
Abstract:
The aim of the work is to study modern ways to increase the operational reliability of the furnace and hearth of blast furnaces, which largely determine the duration of the blast furnace campaign. The article analyzes the ways to increase the stability of the furnace and hearth, presents the results of the analysis of thermal work and ignition of the lining of metal receivers of blast furnaces of different designs. The modern directions of construction of the metal receiver of blast furnaces are determined. It is shown that the modern methodology of construction of blast furnace furnaces develops two main directions: the use of a coordinated combination of refractory materials with a cooling system; use of a combination of wear-resistant materials based on carbon and ceramics. However, even the improvement of the design and cooling system of the metal receiver does not allow to fully increase the duration of the campaign. To assess the service life of the furnace, it is necessary to provide regular automated control of the ignition of the furnace lining and hearth. In Ukraine, during the renovation of blast furnaces, the design of metal receivers with the use of "ceramic glass" was preferred. To date, the system of monitoring the thermal work and ignition of the furnace has been implemented in 10 blast furnaces using the automatic control system "Horn" developed by the HMI NASU. The implementation of continuous control over the ignition of the furnace in blast furnaces allowed us to assess the effect of the use of ceramic cups. The value of heat losses of the furnace and the cost of coke for their compensation are estimated. Methods and models for determining the thermal state and wear of the metal receiver lining based on a combination of calorimetric and thermometric control methods have been developed. Comparison of heat losses of the metal receiver in the cooling system of blast furnaces allows to quantify the thermal performance of controlled areas and the furnace as a whole. It is shown that the specific value of heat loss of the metal receiver per unit volume of the blast furnace can serve as an integral parameter. It is established that the value of specific heat losses per unit volume of the blast furnace with a ceramic cup is ~ 0.4-0.7 kW/m3, which is much less than blast furnaces without it (~ 0.9-1.1 kW/m3). Ceramic glass saves coke about 1 kg/t of cast iron.
APA, Harvard, Vancouver, ISO, and other styles
9

Bayram, Jülide, Levent Kaya, and Barış Orhan. "Developments in Glass Melting Furnace Design, Energy and Environmental Management." Advanced Materials Research 39-40 (April 2008): 405–12. http://dx.doi.org/10.4028/www.scientific.net/amr.39-40.405.

Full text
Abstract:
This paper covers the experiences of the authors based on the studies and developments made within the company over the years, where improvements on furnace design have always been a major issue. Developments have been achieved by driving forces like requirements for higher glass quality, different products, and increased number of product changes, energy efficiencies, lower investment cost and environmental challenges. Although in the glass world today there are studies and projects to develop different radical melting techniques, like plasma melting, submerged combustion, segmented melter and vacuum refiners being the most promising among the many, the progress going from pilot to full scale is slow and not all the glass manufacturers are giving enough funds to support these projects. Even though the conventional furnace technology is quite mature and energy performances of the most energy efficient furnaces [1] and pull rates are approaching near to the limits, there are still differences between the energy consumptions, pull rates and life of furnaces in glass industry today. Many small steps can be taken at different areas like optimizing furnace design criteria, refractory selection, use of additional equipments, and development of sensors, better combustion equipment, advanced control systems. These all add to continuous incremental developments for each project and give us opportunity to progress with feedback from onsite applications.
APA, Harvard, Vancouver, ISO, and other styles
10

Mastropasqua, Luca, Francesca Drago, Paolo Chiesa, and Antonio Giuffrida. "Oxygen Transport Membranes for Efficient Glass Melting." Membranes 10, no. 12 (December 19, 2020): 442. http://dx.doi.org/10.3390/membranes10120442.

Full text
Abstract:
Glass manufacturing is an energy-intensive process in which oxy-fuel combustion can offer advantages over the traditional air-blown approach. Examples include the reduction of NOx and particulate emissions, improved furnace operations and enhanced heat transfer. This paper presents a one-dimensional mathematical model solving mass, momentum and energy balances for a planar oxygen transport membrane module. The main modelling parameters describing the surface oxygen kinetics and the microstructure morphology of the support are calibrated on experimental data obtained for a 30 μm thick dense La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) membrane layer, supported on a 0.7 mm porous LSCF structure. The model is then used to design and evaluate the performance of an oxygen transport membrane module integrated in a glass melting furnace. Three different oxy-fuel glass furnaces based on oxygen transport membrane and vacuum swing adsorption systems are compared to a reference air-blown unit. The analysis shows that the most efficient membrane-based oxyfuel furnace cuts the energy demand by ~22% as compared to the benchmark air-blown case. A preliminary economic assessment shows that membranes can reduce the overall glass production costs compared to oxyfuel plants based on vacuum swing adsorption technology.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Glass furnace"

1

Holladay, Andrea R. "Modeling and control of a small glass furnace." Morgantown, W. Va. : [West Virginia University Libraries], 2005. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=4324.

Full text
Abstract:
Thesis (M.S.)--West Virginia University, 2005.
Title from document title page. Document formatted into pages; contains vii, 96 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 77-79).
APA, Harvard, Vancouver, ISO, and other styles
2

Hall, David M. "Improvements in melting control of a glass-melting tank furnace." Thesis, Loughborough University, 1989. https://dspace.lboro.ac.uk/2134/31956.

Full text
Abstract:
This thesis describes research into the behaviour of process loops in a glass-melting furnace at Redfearn National Glass, Barnsley. The objectives were to ascertain methods of determining improved control strategies and to study in detail the furnace parameters affecting fuel consumption. An initial survey of the literature showed a lack of consensus over the best methods to adopt, but from certain sources a basic methodology was taken. An improved methodology was derived and this was employed to identify the characteristics of the major loops.
APA, Harvard, Vancouver, ISO, and other styles
3

Hixson, Scott. "Rapid industrial furnace thermal modeling for improved fuel efficiency." Diss., Columbia, Mo. : University of Missouri-Columbia, 2007. http://hdl.handle.net/10355/5091.

Full text
Abstract:
Thesis (M.S.)--University of Missouri-Columbia, 2007.
The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on April 9, 2009) Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
4

Kuntamalla, Praveen Kumar. "Finite element simulation of creep behavior in enhanced refractory material for glass furnace." Morgantown, W. Va. : [West Virginia University Libraries], 2004. https://etd.wvu.edu/etd/controller.jsp?moduleName=documentdata&jsp%5FetdId=3629.

Full text
Abstract:
Thesis (M.S.)--West Virginia University, 2004.
Title from document title page. Document formatted into pages; contains xiv, 78 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 64-66).
APA, Harvard, Vancouver, ISO, and other styles
5

Farn, Sharon. "Thermochemical corrosion of alumina-zirconia-silica refractories for glass furnace regenerators." Thesis, Keele University, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.522676.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tan, Yee Mei. "Electromagnetic inspection techniques for glass production." Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/electromagnetic-inspection-techniques-for-glass-production(7e0fc64d-0995-4db2-a563-abd4f198b156).html.

Full text
Abstract:
This thesis considers the feasibility of using the electromagnetic techniques to monitor the wear of the refractory base of a glass-making furnace. The research focuses in building a system that is able to provide measurements of the distance to the molten glass in this demanding high temperature application. The main challenge in this project is to eliminate the effect of the refractory supporting steel structure and still be able to detect and exploit a much smaller signal from the molten glass. In order to differentiate between the molten glass and the steel supports, a multi-coil, multi-frequency technique was proposed, studied and implemented in this research.
APA, Harvard, Vancouver, ISO, and other styles
7

Wiltzsch, Sven. "Theoretische Betrachtung des Glasschmelzprozesses in Glasschmelzöfen." Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2014. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-139676.

Full text
Abstract:
Die vorliegende Arbeit beinhaltet die theoretische Betrachtung des Glasschmelzprozesses in Glasschmelzöfen und die Darstellung von fünf Bewertungsprinzipien zur qualitativen Bewertung von Glasschmelztechnologien für die Abschmelz-, Restquarz- und Läuterzone. Es konnte gezeigt werden, dass zum verbesserten Einschmelzen des Gemenges nicht nur der Energieeintrag, sondern auch der Abtransport der neu entstehenden Schmelze intensiviert werden muss. Bei der qualitativen Bewertung und der Auswahl von Schmelztechnologien zur Beschleunigung der Restquarzlösung wurde dargestellt, dass der Einfluss der Schmelztechnologie auf das Verweilzeitverhalten und damit rückwirkend auf die Effizienz der Restquarzlösezone bei der Vorauswahl von Schmelztechnologien berücksichtigt werden muss. Für die Läuterzone wurde nachgewiesen, dass zwei teils in der Literatur diskutierte Bewertungsprinzipien zur Läuterung von Glasschmelzen abzulehnen sind bzw. zu überschätzten Aussagen zur Effizienz von Läutertechnologien führen. Weiterhin konnte gezeigt werden, dass für den theoretischen Fall einer Läuterbank ohne Konvektionsströmungen die Blasenwachstumsgeschwindigkeiten für Konstruktionen mit minimalen Kosten im Bereich von 4-12*10-7 m/s mit möglichen Ausreißern zu 5*10-6 m/s bei Massengläsern liegen sollten.
APA, Harvard, Vancouver, ISO, and other styles
8

Rajarathinam, K. "Advanced PID control optimisation and system identification for multivariable glass furnace processes by genetic algorithms." Thesis, Liverpool John Moores University, 2016. http://researchonline.ljmu.ac.uk/4247/.

Full text
Abstract:
This thesis focuses on the development and analysis of general methods for the design of optimal discrete PID control strategies for multivariable glass furnace processes, where standard genetic algorithms (SGAs) are applied to optimise specially formulated objective functions. Furthermore, a strong emphasis is given on the realistic model parameters identi cation method, which is illustrated to be applicable to a wide range of higher order model parameters identi cation problems. A complete, realistic and continuous excess oxygen model with nonlinearity effect was developed and the model parameters were identified. The developed excess oxygen model consisted of three sub-models to characterise the real plant response. The developed excess oxygen model was evaluated and compared with real plant dynamic response data, which illustrated the high degree of accuracy of the developed model. A new technique named predetermined time constant approximation was proposed to make an assumption on the initial value of a predetermined time constant, whose motive is to facilitate the SGAs to explore and exploit an optimal value for higher order of continuous model's parameters identi cation. Also, the proposed predetermined time constant approximation technique demonstrated that the population diversity is well sustained while exploring the feasible search region and exploiting to an optimal value. In general, the proposed method improves the SGAs convergence rate towards the global optimum and illustrated the effectiveness. An automatic tuning of decentralised discrete PID controllers for multivariable processes, based on SGAs, was proposed. The main improvement of the proposed technique is the ability to enhance the control robustness and to optimise discrete PID parameters by compensating the loop interaction of a multivariable process. This is attained by adding the individually optimised objective function of glass temperature and excess oxygen processes as one objective function, to include the total effect of the loop interaction by applying step inputs on both set points, temperature and excess oxygen, at two different time periods in one simulation. The effectiveness of the proposed tuning technique was supported by a number of simulation results using two other SGAs conventional tuning techniques with 1st and 2nd order control oriented models. It was illustrated that, in all cases, the resulting discrete PID control parameters completely satisfied all performance specifications. A new technique to minimise the fuel consumption for glass furnace processes while sustaining the glass temperature is proposed. This proposed technique is achieved by reducing the excess oxygen within the optimum thermal efficiency region within 1.7% to 3.2%, which is approximately equal to about 10% to 20% of excess air. Therefore, by reducing the excess oxygen set point within the optimum region, 2.45% to 2%, the fuel consumption is minimised from 0:002942kg/sec to 0:002868kg/sec while the thermal efficiency of the glass temperature is sustained at the desired set point (1550K). In addition, a reduction in excess oxygen within methane combustion guidelines will assure that undesirable emissions are in control throughout the combustion process. The efficiencies of the proposed technique were supported by a number of simulation results applying the three SGAs controller tuning techniques. It was illustrated that, in all cases, the fraction of excess oxygen reduction results in a great minimisation of fuel consumption over long plant operating periods.
APA, Harvard, Vancouver, ISO, and other styles
9

Aksoy, Ugur Bulent. "Archaeometric Analysis On The Selected Samples Of Glass Artifacts Recovered In The Excavation Of Alanya Castle." Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/12607781/index.pdf.

Full text
Abstract:
The archaeological and technical questions about ancient glass have lead to various research activities such as identification and sourcing raw materials used in the glass production, investigation of the ways in which colors can be modified according to furnace atmosphere and times of firing. Considering research areas and publications it can be suggested that compositional studies of well-dated samples of ancient glass have disclosed useful information concerning raw materials characteristics and production technology. Within this context, aim of this study was to determine the composition and technology of some 13th century Seljuk period window glasses from Alanya Castle archaeological site. During the excavations at the area called Vaulted Galleria in Alanya Castle many glass pieces in different sizes and colors had been found. In this study 10 samples were examined. Elemental analysis of the samples have been made using two different methods
X-Ray Fluorescence Spectroscopy (XRF) and Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) to determine major, minor and some trace elements. The XRF and ICP-OES data reflect the typical composition of a soda-lime-silica glass with the average values of
12.9% (Na2O): 7.7% (CaO): and 65.5% (SiO2). Samples were grouped by color as green, blue and purple. Color producing elements are Fe, Mn, Cu and Co. Most of the samples had shown casting character as production technique.
APA, Harvard, Vancouver, ISO, and other styles
10

Гой, Микола Андрійович, Mykola Hoi, Ярослав Володимирович Рильник, and Yaroslav Rylnyk. "Розробка та дослідження автоматизованої системи контролю параметрів технологічного процесу плавлення скла." Master's thesis, Тернопільський національний технічний університет ім. І. Пулюя, Факультет прикладних інформаційних технологій та електроінженерії, Кафедра автоматизації технологічних процесів і виробництв, 2020. http://elartu.tntu.edu.ua/handle/lib/33247.

Full text
Abstract:
Робота виконана на кафедрі автоматизації технологічних процесів і виробництв факультету прикладних інформаційних технологій та електроінженерії Тернопільського національного технічного університету імені Івана Пулюя Міністерства освіти і науки України. Захист відбудеться «21» грудня 2020 р. о 14.00год. на засіданні екзаменаційної комісії №22 у Тернопільському національному технічному університеті імені Івана Пулюя
Метою даної роботи є розроблення та моделювання системи автоматизованого контролю технологічних параметрів скловарної печі. Тема роботи достатньо актуальна так як від надійності системи контролю залежить якість склопродукції. Автоматизоване управління роботою скловарної печі дозволяє підвищити якість скловиробів, підвищити продуктивність технологічного процесу, зменшити викиди парникових газів та ін. Об’єктом автоматизації у даній роботі є скловарна піч періодичної дії ванного типу, що використовується для варіння спеціального, тугоплавкого скла. Так як технологічний процес виготовлення скломаси відбувається неперервно, тому необхідно підтримувати сталий рівень скломаси в межах граничних допустимих значень заданого рівня, це призводить до оптимізації процесу отримання скломаси з певними показниками якості, а також забезпечує високу ефективність роботи обладнання.
The purpose of this work is to develop and model a system of automated control of technological parameters of the glass furnace. The topic of the work is quite relevant because the reliability of the control system depends on the quality of glass products. Automated control of the glass furnace allows to improve the quality of glassware, increase the productivity of the technological process, reduce greenhouse gas emissions, etc. The object of automation in this work is a glass furnace of periodic action of the bathroom type, which is used for cooking special, refractory glass. Since the technological process of glass mass production is continuous, it is necessary to maintain a constant level of glass mass within the maximum allowable values of a given level, it optimizes the process of obtaining glass mass with certain quality indicators, and provides high efficiency.
Зміст Анотація 4 Зміст 5 Вступ 8 1. Аналітична частина 10 1.1. Аналіз відомих технічних рішень з питань автоматизації процесу, що лежить в основі розробки. 10 1.2. Обгрунтування актуальності автоматизації вибраного напрямку розробки. 16 2. Технологічна частина. 21 2.1. Загальна характеристика виробництва 21 2.2. Технологічні основи процесу скловаріння в ванних печах. Фактори, що впливають на процес скловаріння. 24 2.3. Технологічні особливості варіння скла 25 2.4. Теплообмін в робочій камері печі 27 2.5. Траєкторії руху потоків скломаси в ванній печі 33 2.6. Склад газового середовища і режим тисків 35 2.7. Температурний режим газового середовища в печі 37 2.8. Розподіл тиску та температури в скловарильній пічній установці 38 3. Конструкторська частина 41 3.1. Ванні печі періодичної дії 41 3.2.Характеристика системи автоматизованого контролю рівня, її призначення та умови роботи 51 3.3. Аналіз технологічного процесу автоматизованого контролю рівня з точки зору управління 52 3.4. Вибір варіанту компоновки і розробка алгоритмів роботи проектованої автоматизованої виробничої системи 53 3.5. Узагальнений опис роботи системи керування 56 3.6. Розробка алгоритму роботи системи автоматизованого керування 58 3.7. Розробка алгоритму роботи системи автоматизованого контролю 60 3.8. Опис завантажувача печі як об’єкта керування 62 3.9. Розрахунок елементів силової схеми електроприводу 62 3.10. Розрахунок схеми керування 74 4. Науково-дослідна частина 81 4.1 Синтез системи автоматичного регулювання температури в скловарній печі 81 4.2. Аналіз системи автоматичного регулювання температури в скловарній печі 93 4.3. Проектування електричної схеми регулятора 102 5. Спеціальна частина. Розробка програмного забезпечення. 107 5.1. Використання середовища Асемблер для програмування системи керування 107 Резюме 111 5.2. Розробка алгоритмів роботи мікропроцесорної системи для виконання основних процедур. 112 5.3. Розробка програмного забезпечення для вибраного алгоритму. 115 6. Охорона праці та безпека в надзвичайних ситуаціях 118 6. 1. Оцінка системи автоматизованого контролю рівня щодо умов безпеки праці. 118 6.2. Захисне занулення, як захист від появи на корпусах обладнання небезпечних напруг 119 6.3. Заходи щодо підвищення стійкості об'єкта в умовах надзвичайного стану 125 6.4. Практична оцінка стійкості роботи склоплавильного цеху до впливу ударної хвилі при аваріях на вибухонебезпечному об’єкті. 132 Висновки 138 Перелік посилань 139
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Glass furnace"

1

Canada Centre for Mineral and Energy Technology. Determination of Glass Content in Fly Ashes and Blast-Furnace Slags. S.l: s.n, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Glass furnaces: Design, construction and operation. Sheffield: Society of Glass Technology, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Laptev, V. I. Ėlektrotermicheskie agregaty dli͡a︡ varki stekla. Moskva: Legprombytizdat, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Die Spiegelglasmanufaktur im technologischen Schrifttum des 18. Jahrhunderts: Eine Studie zur Technologie des Manufakturwesens in Deutschland unter besonderer Berücksichtigung des Themenkomplexes Glasschmelzofenkonstruktionen. Düsseldorf: VDI-Verlag, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Horat, Heinz. Der Glasschmelzofen des Priesters Theophilus: Interpretiert aufgrund einer Glasofen-Typologie. Bern: Haupt, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kiln forming glass. Ramsbury: Crowood, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Miller, R. E. Batch pretreatment process technology for abatement of emissions and conservation of energy in glass melting furnaces: Phase IIA, process design manual. Cincinnati, OH: U.S. Environmental Protection Agency, Water Engineering Research Laboratory, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kocabağ, Duran. Cam fırınları: Malzemeler, teknolojiler, prosesler. Eskişehir [Turkey]: ETAM, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

International Conference on Advances in Fusion and Processing of Glass (6th 2000 Ulm, Germany). Advances in fusion and processing of glass: Proceedings of the 6th International Conference, May 29-31, 2000, Ulm (Germany). Frankfurt am Main, Germany: Verlag der Deutschen Glastechnischen Gesellschaft, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Schaeffer, Helmut A., and Ruud G. C. Beerkens. Melting processes in glass furnaces: Proceedings of the HVG/NCNG colloquium : March 4-5, 1998, Aachen (Germany). Frankfurt/M: Deutsche Glastechnische Gesellschaft, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Glass furnace"

1

Jatzauk, Christoph. "Furnace Design and Equipment for Extended Furnace Life." In 78th Conference on Glass Problems, 39–45. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119519713.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lindig-Nikolaus, Matthias. "Energy Savings and Furnace Design." In 73rd Conference on Glass Problems, 177–81. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118710838.ch13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Simpson, Neil, Dick Marshall, and Tom Barrow. "Glass Furnace Life Extension Using Convective Glass Melting." In 64th Conference on Glass Problems: Ceramic Engineering and Science Proceedings, Volume 25, Issue 1, 129–40. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008. http://dx.doi.org/10.1002/9780470294857.ch9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Walton, Eric K., Yakup Bayram, Alexander C. Ruege, Jonathan Young, Robert Burkholder, Gokhan Mumcu, Elmer Sperry, Dan Cetnar, and Thomas Dankert. "Structural Health Monitoring of Furnace Walls." In 73rd Conference on Glass Problems, 201–6. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118710838.ch15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bayram, Yakup, Jon Wechsel, and Elmer Sperry. "New Industry Standard in Furnace Inspection." In 78th Conference on Glass Problems, 75–86. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119519713.ch7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Xu, Jinlong, Joyce Zhang, and Ken Kuang. "An Introduction to Glass-to-Metal Seals." In Conveyor Belt Furnace Thermal Processing, 103–12. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69730-7_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lowe, Laura A., John Wosinski, and Gene Davis. "Stabilizing Distressed Glass Furnace Melter Crowns." In A Collection of Papers Presented at the 57th Conference on Glass Problems: Ceramic Engineering and Science Proceedings, Volume 18, Issue 1, 164–79. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008. http://dx.doi.org/10.1002/9780470294406.ch14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Evans, Geoff. "Developments in Float Glass Furnace Regenerators." In A Collection of Papers Presented at the 53nd Conference on Glass Problems: Ceramic Engineering and Science Proceedings, Volume 14, Issue 3/4, 80–86. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008. http://dx.doi.org/10.1002/9780470314098.ch8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Olabin, Vladimir M., Leonard S. Pioro, Alexander B. Maximuk, Mark J. Khinkis, and Hamid A. Abbasi. "Submersed Combustion Furnace for Glass Melts." In A Collection of Papers Presented at the 56th Conference on Glass Problems: Ceramic Engineering and Science Proceedings, Volume 17, Issue 2, 84–92. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008. http://dx.doi.org/10.1002/9780470314814.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Essenhigh, Robert H. "Furnace Analysis Applied to Glass Tanks." In 45th Conference on Glass Problems: Ceramic Engineering and Science Proceedings, Volume 6, Issue 3/4, 121–32. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008. http://dx.doi.org/10.1002/9780470320266.ch1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Glass furnace"

1

Golchert, Brian M., Shen-Lin Chang, and Ed Olson. "Modeling and Preliminary Validation of a Regenerative Furnace Using the ANL Glass Furnace Model." In ASME 2003 Heat Transfer Summer Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/ht2003-47441.

Full text
Abstract:
The ANL Glass Furnace Model (GFM) was developed for steady state simulation of industrial glass furnaces. Unfortunately, a large fraction of the operating glass furnaces do not operate in a steady state mode and computational costs make it prohibitive to run the simulations in a transient mode. A solution methodology was developed to model these transient furnaces in steady state mode. This solution methodology was used to model a small, industrial furnace on which a relatively comprehensive set of data was taken. This paper presents the solution methodology in detail along with some of the qualitative validation results indicating the validity of the modeling approximation.
APA, Harvard, Vancouver, ISO, and other styles
2

Golchert, B., S. L. Chang, C. Q. Zhou, and J. Wang. "Modeling of Regenerative Furnace Ports." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-42321.

Full text
Abstract:
In order to increase overall efficiency, many industrial glass furnaces are regenerative; that is, the heat from the exhaust gases is used to preheat in the in-coming combustion air. The ports on these furnaces inject stream(s) of fuel into the preheated air stream and then combustion occurs inside the combustion chamber. Modeling of the exact detail of these furnace ports in addition to modeling the combustion space proper becomes computationally burdensome since many of these furnaces are extremely large. This paper presents an engineering approach using computational fluid dynamics to model both the major effects of the furnace ports in addition to calculating the detailed flow field in the combustion space. This approximation has been incorporated into a complete (combustion space/glass melt) furnace simulation. This engineering approach significantly reduces run time while still maintaining results that represent the conditions seen in the furnace. This paper will present this approach as well as some preliminary comparisons with actual furnace data/observations.
APA, Harvard, Vancouver, ISO, and other styles
3

Chang, S. L., C. Q. Zhou, and B. Golchert. "A Simulation Approach for Bubble Flow in a Glass Melter." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-33494.

Full text
Abstract:
Combustion heat is used in glass furnaces to melt sand and cullet (scrap glass) into liquid glass to make products. The glass flow in a melter consists of solid particles of sand/cullet, liquid glass, and bubbles. Bubbles formed in the melting processes due to the glass reactions have strong impacts on glass quality and furnace efficiency. Smaller bubbles entrained in the liquid flow degrade the glass quality. Larger bubbles rise to the top of the melter and form a foam layer that impedes the radiation heat transfer from the combustion space and lowers the furnace efficiency. An Eulerian approach was developed to simulate the bubble flow in a glass melter. The approach divides bubbles into various groups and treats each group of bubbles as a continuum. The mass, momentum, and energy conservation equations of the bubble flow are derived to solve for local bubble properties. The approach was incorporated into a multiphase reacting flow computational fluid dynamics code that simulates overall furnace flows to evaluate the impacts of bubbles on glass quality and furnace efficiency.
APA, Harvard, Vancouver, ISO, and other styles
4

Remy, B., O. Auchet, and M. Girault. "FAST MODEL OF A GLASS MELTING FURNACE." In Annals of the Assembly for International Heat Transfer Conference 13. Begell House Inc., 2006. http://dx.doi.org/10.1615/ihtc13.p11.80.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jian, Christopher Q. "CFD Modeling of a Fiberglass Furnace." In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1664.

Full text
Abstract:
Abstract In the fiberglass production process, glass is produced from various batch ingredients in a glass furnace. The molten glass is then delivered, through a delivery system that is often called the front-end system, to the various downstream forming operations. Multiple complex processes take place in the glass furnace, which include the turbulent reacting flow in the combustion space; laminar flow dominated by natural convection in the molten glass; fusion of raw batch materials to form molten glass; radiation and convective heat transfer between the combustion space and the molten glass; bubbling flows in the glass; and Joule heating within the molten glass, etc. The main task of the glass furnace is to convert raw batch materials into glass and thermally and chemically condition the glass before being delivered to the front-end system. One of the major tasks of a front-end system is to insure that the glass is conditioned to the specifications required by the forming operations while maintaining the highest glass quality. Improperly designed and/or operated furnace and front end delivery system can cause a number of problems to the forming operations, ranging from poor glass quality with defects to shortened furnace service life. CFD has become an increasingly important tool for glass manufacturers to guide and optimize such system designs and operations. The current work is part of an effort to leverage CFD resources in the decision-making processes in engineering, operations, and businesses. The furnace modeling was performed using the recently implemented batch melting model jointly developed by Owens Corning and Fluent, Inc., which features three-dimensional simulation of an entire glass furnace including combustion, bubbling, and electrical boosting. The thermal coupling procedure between the combustion space, batch, and the melting tank along with the associated convergence issues are discussed. The modeling results are presented along with comparison with field measurements.
APA, Harvard, Vancouver, ISO, and other styles
6

Swanson, L. W., and R. R. Koppang. "A Thermal Model for Reburning Fuel Injectors in Glass Furnaces." In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1555.

Full text
Abstract:
Abstract A quasi-steady multi-mode heat-transfer model for retraining fuel injectors in glass furnaces has been developed that predicts the effect of geometry, furnace heat source and heat sink temperatures, radial and axial injector wall conduction, and coolant flow rate on the injector wall temperature distribution. The model imposes a radiation boundary condition at the outlet tip of the injector, which acts as a heat source. A parametric study has been conducted to investigate effects that the furnace gas temperature, reburning methane fuel and purge-air flow rates, and furnace wall temperature have on the injector wall temperature distribution. For nominal operating conditions, highly nonlinear temperature distributions were observed throughout the injector. Operation with methane as the coolant produced an extremely large temperature gradient near the injector tip that could cause excessive thermal stresses in the injector wall. The results also showed that nominal injector operating conditions should prevent alkali deposition at the injector tip and produce injector/metallic disconnect temperatures well below the initial deformation temperature for stainless steel.
APA, Harvard, Vancouver, ISO, and other styles
7

Golchert, Brian, and Chenn Zhou. "The Effect of Glass Foam on Heat Transfer in a Glass Furnace." In 2nd International Energy Conversion Engineering Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-5744.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

ZhiHua Wei and Jinshuang Li. "Numerical simulation on the structure of glass furnace." In 2011 2nd International Conference on Control, Instrumentation, and Automation (ICCIA). IEEE, 2011. http://dx.doi.org/10.1109/icciautom.2011.6183961.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wei, ZhiHua, and Jinshuang Li. "Numerical Simulation on the Structure of Glass Furnace." In 2013 2nd International Conference on Intelligent System and Applied Material. Ottawa: EDUGAIT Press, 2013. http://dx.doi.org/10.12696/gsam.2013.0906.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pina, Joao, and Pedro Lima. "A multiobjective optimisation system for a glass furnace." In 1999 European Control Conference (ECC). IEEE, 1999. http://dx.doi.org/10.23919/ecc.1999.7099952.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Glass furnace"

1

Golchert, B., J. Shell, S. Jones, and Shell Glass Consulting. Application of Argonne's Glass Furnace Model to longhorn glass corporation oxy-fuel furnace for the production of amber glass. Office of Scientific and Technical Information (OSTI), September 2006. http://dx.doi.org/10.2172/925324.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Connors, John J., John F. McConnell, Vincent I. Henry, Blake A. MacDonald, Robert J. Gallagher, William B. Field, Peter M. Walsh, et al. Glass Furnace Combustion and Melting Research Facility. Office of Scientific and Technical Information (OSTI), August 2004. http://dx.doi.org/10.2172/919106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Energy & Environmental Resources, Inc. Batch Preheat for glass and related furnace processing operations. Office of Scientific and Technical Information (OSTI), August 2002. http://dx.doi.org/10.2172/816025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Douglas, E., P. Mainwaring, M. Can Roode, and R. T. Hemmings. Determination of glass content in fly ashes and blast-furnace slags. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1985. http://dx.doi.org/10.4095/307262.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lottes, S. A., and M. Petrick. Glass Furnace Model (GFM) development and technology transfer program final report. Office of Scientific and Technical Information (OSTI), December 2007. http://dx.doi.org/10.2172/925380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Klinger, L. M., and P. L. Abellera. Joule-heated glass furnace processing of a highly aqueous hazardous waste stream. Office of Scientific and Technical Information (OSTI), March 1989. http://dx.doi.org/10.2172/6425267.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Castillo, Victor, and Brian Kornish. Development of Reduced Glass Furnace Model to Optimize Process Operation, Final Report CRADA No. TC02241. Office of Scientific and Technical Information (OSTI), July 2017. http://dx.doi.org/10.2172/1490986.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Castillo, V., and B. Kornish. Development of Reduced Glass Furnace Model to Optimize Process Operation, Final Report CRADA No. TC02241. Office of Scientific and Technical Information (OSTI), March 2021. http://dx.doi.org/10.2172/1773578.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cozzi, A. D. Slurry Fed Melt Rate Furnace Runs to Support Glass Formulation Development for INEEL Sodium-Bearing Waste. Office of Scientific and Technical Information (OSTI), July 2002. http://dx.doi.org/10.2172/799418.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Webb, Brent W., and Mardson Q. McQuay. Development, experimental validation, and application of advanced combustion space models for glass melting furnaces. Final report. Office of Scientific and Technical Information (OSTI), January 2002. http://dx.doi.org/10.2172/804098.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography