Journal articles on the topic 'Glass furnace'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Glass furnace.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Shustrov, N. N., V. G. Puzach, and S. A. Bezenkov. "The effect of the conductive walls of the cooking furnace of an electric furnace on the distribution of energy flows." NOVYE OGNEUPORY (NEW REFRACTORIES), no. 4 (September 16, 2020): 13–18. http://dx.doi.org/10.17073/1683-4518-2020-4-13-18.
Full textMuijsenberg, H. P. H., Marketa Muijsenberg, and J. Chmelar. "What is the Ideal Glass Bath Depth of a Glass Furnace?" Advanced Materials Research 39-40 (April 2008): 447–52. http://dx.doi.org/10.4028/www.scientific.net/amr.39-40.447.
Full textTapasa, Kanit, Ekarat Meechoowas, Usuma Naknikham, and Tepiwan Jitwatcharakomol. "Evaluation of Furnaces Performance of Glass Factories in Thailand." Key Engineering Materials 702 (July 2016): 135–38. http://dx.doi.org/10.4028/www.scientific.net/kem.702.135.
Full textBusby, T. S. "Refractories for Glass Making." MRS Bulletin 14, no. 11 (November 1989): 45–53. http://dx.doi.org/10.1557/s0883769400061200.
Full textKasa, Stanislav. "Distribution of Power Density in the Glass Melt at Different Electrode Configurations in All-Electric Furnace." Advanced Materials Research 39-40 (April 2008): 431–36. http://dx.doi.org/10.4028/www.scientific.net/amr.39-40.431.
Full textLing, Shao Hua, Chang Yong Jing, and Xiao Liang Li. "Analysis Flue Gas DeNOx Technology for Float Glass Furnace." Applied Mechanics and Materials 525 (February 2014): 158–61. http://dx.doi.org/10.4028/www.scientific.net/amm.525.158.
Full textvan Limpt, Hans, Ruud Beerkens, and Marco van Kersbergen. "Effect of Small Glass Composition Changes on Flue Gas Emissions of Glass Furnaces." Advanced Materials Research 39-40 (April 2008): 653–58. http://dx.doi.org/10.4028/www.scientific.net/amr.39-40.653.
Full textKornilov, B. V., O. L. Chaika, V. V. Lebid, Ye I. Shumelchyk, and A. O. Moskalina. "THE THERMAL WORK ANALYSIS OF THE FIREPLACES OF BLAST FURNACES OF UKRAINE OF VARIOUS DESIGNS." Fundamental and applied problems of ferrous metallurgy, no. 35 (2021): 55–68. http://dx.doi.org/10.52150/2522-9117-2021-35-55-68.
Full textBayram, Jülide, Levent Kaya, and Barış Orhan. "Developments in Glass Melting Furnace Design, Energy and Environmental Management." Advanced Materials Research 39-40 (April 2008): 405–12. http://dx.doi.org/10.4028/www.scientific.net/amr.39-40.405.
Full textMastropasqua, Luca, Francesca Drago, Paolo Chiesa, and Antonio Giuffrida. "Oxygen Transport Membranes for Efficient Glass Melting." Membranes 10, no. 12 (December 19, 2020): 442. http://dx.doi.org/10.3390/membranes10120442.
Full textTapasa, Kanit, Ekarat Meechoowas, Suwannee Thepbutdee, and Amorntep Montreeuppathumb. "Study of Melting Ability of Granulated Glass Batch." Key Engineering Materials 690 (May 2016): 272–75. http://dx.doi.org/10.4028/www.scientific.net/kem.690.272.
Full textShenets, Ya L. "Evaluation of the Energy Efficiency of Industrial Furnaces Based on the Modeling of Fuel Consumption Modes." ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations 65, no. 2 (April 5, 2022): 169–80. http://dx.doi.org/10.21122/1029-7448-2022-65-2-169-180.
Full textYuan, Jianjun, Weijun Zhang, and Qiang Li. "The Reliable Design and Implementation of an Automatic Glass Furnace Feeding Robot for the SME Glass Industry." International Journal of Automation Technology 6, no. 1 (January 5, 2012): 53–59. http://dx.doi.org/10.20965/ijat.2012.p0053.
Full textHu, Chang Sheng, Yun Bo Wang, Ping Wang, and Jian Quan Bi. "Prediction of the Flow, Reaction and Heat Transfer for Glass Furnace Firing Petroleum Coke." Advanced Materials Research 690-693 (May 2013): 3090–96. http://dx.doi.org/10.4028/www.scientific.net/amr.690-693.3090.
Full textFialko, N. М., V. G. Prokopov, R. O. Navrodska, S. I. Shevchuk, and A. I. Stepanova. "RESULTS OF EXPERIMENTAL STUDIES OF THE HEAT ENGINEERING CHARACTERISTICS OF INDUSTRIAL FURNACE WATER-HEATING HEAT RECOVERY UNITS." Thermophysics and Thermal Power Engineering 44, no. 1 (May 12, 2022): 84–91. http://dx.doi.org/10.31472/ttpe.1.2022.10.
Full textYaitskiy, Serhiy, Liudmyla Bragina, and Yuliya Sobol. "Analysis of the Bacor Refractories after their Service in Glass Furnace." Chemistry & Chemical Technology 10, no. 3 (September 15, 2016): 373–77. http://dx.doi.org/10.23939/chcht10.03.373.
Full textKoshelnik, O., and S. Hoisan. "ADVANCED TYPES OF CHECKERWORK OF REGENERATIVE HEAT EXCHANGERS FOR GLASS FURNACES." Integrated Technologies and Energy Saving, no. 1 (July 6, 2021): 3–10. http://dx.doi.org/10.20998/2078-5364.2021.1.01.
Full textDzuzer, V. Ya. "The refractory materials' service in the melting tank of the highly-efficient glass-melting furnace." NOVYE OGNEUPORY (NEW REFRACTORIES), no. 9 (December 29, 2018): 3–9. http://dx.doi.org/10.17073/1683-4518-2018-9-3-9.
Full textBalandis, A., and D. Nizeviciene. "Silica crown refractory corrosion in glass melting furnaces." Science of Sintering 43, no. 3 (2011): 295–303. http://dx.doi.org/10.2298/sos1103295b.
Full textMeechoowas, Ekarat, Parida Jampeerung, Kanit Tapasa, Usuma Naknikham, and Tepiwan Jitwatcharakomol. "Low Melting Glass Billets for Pot Furnace Glass Processing." Key Engineering Materials 608 (April 2014): 295–300. http://dx.doi.org/10.4028/www.scientific.net/kem.608.295.
Full textQi, Zhao Hui, Bao Hong Sun, and Ling Yan Xu. "Numerical Simulation of Heat Transfer and Fluid Flow in Glass Tank Furnace after Bubbling." Advanced Materials Research 328-330 (September 2011): 426–30. http://dx.doi.org/10.4028/www.scientific.net/amr.328-330.426.
Full textWang, Hui, Su Ping Cui, and Xiao Long Shang. "Optimization Chemical Composition of the Blast Furnace Slag with Uniform Design." Materials Science Forum 743-744 (January 2013): 210–15. http://dx.doi.org/10.4028/www.scientific.net/msf.743-744.210.
Full textCarvalho, M. G., V. S. Semia˜o, and P. J. Coelho. "Modelling and Optimization of the NO Formation in an Industrial Glass Furnace." Journal of Engineering for Industry 114, no. 4 (November 1, 1992): 514–23. http://dx.doi.org/10.1115/1.2900706.
Full textSokolov, V. A., M. D. Gasparyan, M. B. Remizov, and P. V. Kozlov. "Selection of refractory materials for vitrification electric furnaces of radioactive waste." NOVYE OGNEUPORY (NEW REFRACTORIES), no. 11 (December 29, 2018): 53–56. http://dx.doi.org/10.17073/1683-4518-2018-11-53-56.
Full textBoonin, Kitipun, Suparat Tuscharoen, and Jakrapong Kaewkhao. "Development of Low Cost Glass Melting Furnace for Research Scale." Advanced Materials Research 770 (September 2013): 241–44. http://dx.doi.org/10.4028/www.scientific.net/amr.770.241.
Full textKlemiato, Maciej, Paweł Rotter, and Andrzej Skowiniak. "Analysis of batch asymmetry and batch line position for the decision support in the glass melting process." Production Engineering 15, no. 5 (April 11, 2021): 725–34. http://dx.doi.org/10.1007/s11740-021-01053-3.
Full textHaubner, Roland, Irmgard Schatz, Franz Schatz, Wolfgang Scheiblechner, Wolf Dieter Schubert, and Susanne Strobl. "Archaeometallurgical Simulations of the Processes in Bloomery Furnaces from the Hallstatt and Medieval Period." Materials Science Forum 782 (April 2014): 641–44. http://dx.doi.org/10.4028/www.scientific.net/msf.782.641.
Full textFowkes, Neville Donald, and Andrew Bassom. "Batch processing in a glass furnace." ANZIAM Journal 57 (February 7, 2016): 175. http://dx.doi.org/10.21914/anziamj.v57i0.9635.
Full textFOWKES, NEVILLE D., and ANDREW P. BASSOM. "BATCH PROCESSING IN A GLASS FURNACE." ANZIAM Journal 57, no. 2 (October 2015): 175–88. http://dx.doi.org/10.1017/s1446181115000206.
Full textVladimirov, A. N., M. N. Pavlushkin, V. V. Slesarev, and T. K. Trunova. "Thermal insulation for glass-furnace components." Glass and Ceramics 44, no. 10 (October 1987): 414–15. http://dx.doi.org/10.1007/bf00696676.
Full textSardeshpande, Vishal, Renil Anthony, U. N. Gaitonde, and Rangan Banerjee. "Performance analysis for glass furnace regenerator." Applied Energy 88, no. 12 (December 2011): 4451–58. http://dx.doi.org/10.1016/j.apenergy.2011.05.028.
Full textTatevosyan, K. M., R. B. Koruzhchyan, A. A. Filimanyuk, and P. V. Sviridenko. "Electric furnace for melting borosilicate glass." Glass and Ceramics 45, no. 9 (September 1988): 322–24. http://dx.doi.org/10.1007/bf00677482.
Full textShustrov, N. N., V. G. Puzach, and S. A. Bezenkov. "The experience of the chrome-oxide refractory materials application in the electric glassmelting furnaces." NOVYE OGNEUPORY (NEW REFRACTORIES), no. 10 (December 29, 2018): 54–57. http://dx.doi.org/10.17073/1683-4518-2018-10-54-57.
Full textLi, Chao, Heng Hu Sun, and Long Tu Li. "Glass Phase Structure of Blast Furnace Slag." Advanced Materials Research 168-170 (December 2010): 3–7. http://dx.doi.org/10.4028/www.scientific.net/amr.168-170.3.
Full textArellano, Isaac, Gabriel Plascencia, Elías Carrillo, Miguel A. Barrón, Adolfo Sánchez, and Juliana Gutiérrez. "Design of an Induction Glass Melting Furnace by Means of Mathematical Modelling Using the Finite Element Method." Materials Science Forum 553 (August 2007): 124–29. http://dx.doi.org/10.4028/www.scientific.net/msf.553.124.
Full textBoonin, K., S. Tuscharoen, J. Kaewkhao, and N. Sangwaranatee. "Fabrication of Glass Furnace for Research Scale: Case Study for Soda Lime Silicate Melting Process." Advanced Materials Research 979 (June 2014): 409–12. http://dx.doi.org/10.4028/www.scientific.net/amr.979.409.
Full textWang, Hui, Su Ping Cui, and Ya Li Wang. "Influence of Process Conditions on the Structure and Hydraulic Activity of Air-Cooling Blast Furnace Slag." Materials Science Forum 814 (March 2015): 476–82. http://dx.doi.org/10.4028/www.scientific.net/msf.814.476.
Full textChen, Jian, and Xue Han. "The Research of Furnace Temperature Control Technology Based on Model Free Adaptive Control System." Applied Mechanics and Materials 596 (July 2014): 580–83. http://dx.doi.org/10.4028/www.scientific.net/amm.596.580.
Full textNing, Wei, Li Da Luo, Xing Yang Xu, Qing Wei Wang, and Jian Chen. "Analyses and Determination of Current Density and Energy Density in Electric Melting Glass Furnace." Advanced Materials Research 287-290 (July 2011): 2945–51. http://dx.doi.org/10.4028/www.scientific.net/amr.287-290.2945.
Full textTaylor, D. J., D. Z. Dent, D. N. Braski, and B. D. Fabes. "Boron loss in furnace- and laser-fired, sol-gel derived borosilicate glass films." Journal of Materials Research 11, no. 8 (August 1996): 1870–73. http://dx.doi.org/10.1557/jmr.1996.0237.
Full textWang, Yici, Qi Jiang, Guoping Luo, Wenwu Yu, and Yan Ban. "Mutual Influence of Special Components in Baotou Steel Blast Furnace Slag on the Crystallization Behavior of Glass." Journal of Metallurgy 2012 (October 17, 2012): 1–6. http://dx.doi.org/10.1155/2012/954021.
Full textYang, Yang, Min Liu, and Jing Hua Hao. "Application of Numerical Simulation and New Fining Index in Operating Parameters Optimization of Float Glass-Melting Furnace." Advanced Materials Research 950 (June 2014): 165–72. http://dx.doi.org/10.4028/www.scientific.net/amr.950.165.
Full textLisý, Antonín, and Josef Smrček. "Identification of Rayleigh-Bénard Convection on Physical Model of Electric Furnace." Advanced Materials Research 39-40 (April 2008): 481–84. http://dx.doi.org/10.4028/www.scientific.net/amr.39-40.481.
Full textWang, Yi-Ci, Pei-Jun Liu, Guo-Ping Luo, Zhe Liu, and Peng-Fei Cao. "Optimization of heat treatment of glass-ceramics made from blast furnace slag." High Temperature Materials and Processes 39, no. 1 (October 8, 2020): 539–44. http://dx.doi.org/10.1515/htmp-2020-0059.
Full textXia, Jia Qun, Guang Hui Liu, Yu Si Wang, and Hu Ping Li. "Study on the Basic Characteristics of Low Oxygen Air Combustion with Natural Gas in Glass Tempering Furnace." Applied Mechanics and Materials 672-674 (October 2014): 1510–13. http://dx.doi.org/10.4028/www.scientific.net/amm.672-674.1510.
Full textKlimenda, Frantisek, Blanka Skocilasova, Petr Skuthan, and Martin Močilan. "Glass Furnace Controlling from Saving Energy Aspect." Manufacturing Technology 15, no. 5 (November 1, 2015): 857–60. http://dx.doi.org/10.21062/ujep/x.2015/a/1213-2489/mt/15/5/857.
Full textSardeshpande, Vishal, U. N. Gaitonde, and Rangan Banerjee. "Model based energy benchmarking for glass furnace." Energy Conversion and Management 48, no. 10 (October 2007): 2718–38. http://dx.doi.org/10.1016/j.enconman.2007.04.013.
Full textLisovskaya, G. P., and V. A. Senatova. "Model for melting in a glass furnace." Glass and Ceramics 47, no. 6 (June 1990): 205–9. http://dx.doi.org/10.1007/bf00685461.
Full textKucheryavyi, M. N., O. N. Popov, and A. S. Astakhov. "New channel design for a glass furnace." Glass and Ceramics 45, no. 7 (July 1988): 251–53. http://dx.doi.org/10.1007/bf00684090.
Full textRuslov, V. N., V. A. Kostyrya, A. K. Esina, E. F. Kashirina, V. T. Aidarov, and T. I. Tolochko. "Inspecting refractories in an insulated glass furnace." Glass and Ceramics 44, no. 7 (July 1987): 275–77. http://dx.doi.org/10.1007/bf00703416.
Full text