Academic literature on the topic 'Glassy Carbon Electrode'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Glassy Carbon Electrode.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Glassy Carbon Electrode"
Lee, P. T., D. Lowinsohn, and R. G. Compton. "The selective electrochemical detection of homocysteine in the presence of glutathione, cysteine, and ascorbic acid using carbon electrodes." Analyst 139, no. 15 (2014): 3755–62. http://dx.doi.org/10.1039/c4an00372a.
Full textSun, Dan Zi. "Electrocatalytic Reduction of Nitrite at Carbon-Nanotube-Modified Glassy Carbon Electrodes." Advanced Materials Research 306-307 (August 2011): 1221–24. http://dx.doi.org/10.4028/www.scientific.net/amr.306-307.1221.
Full textGhoseyri, Airin, Afshin Farahbakhsh, Sajad Khakpur, and Nahid Hosseinfakhrabadi. "The Effect of Electrode’s Material on Immobilization of Sulfite Oxidase Enzyme in Construction of Sulfite Biosensors." Advanced Materials Research 605-607 (December 2012): 1387–90. http://dx.doi.org/10.4028/www.scientific.net/amr.605-607.1387.
Full textĐorđević, Jelena, Ana Kalijadis, Ksenija Kumrić, Zoran Jovanović, Zoran Laušević, and Tatjana Trtić-Petrović. "Glassy carbon and boron doped glassy carbon electrodes for voltammetric determination of linuron herbicide in the selected samples." Open Chemistry 10, no. 4 (August 1, 2012): 1271–79. http://dx.doi.org/10.2478/s11532-012-0042-1.
Full textGarcía-Morales, Nancy Gabriela, Luis Alfonso García-Cerda, Bertha Alicia Puente-Urbina, Leonor María Blanco-Jerez, René Antaño-López, and Federico Castañeda-Zaldivar. "Electrochemical Glucose Oxidation Using Glassy Carbon Electrodes Modified with Au-Ag Nanoparticles: Influence of Ag Content." Journal of Nanomaterials 2015 (2015): 1–12. http://dx.doi.org/10.1155/2015/295314.
Full textWójcik, Szymon, and Małgorzata Jakubowska. "Optimization of anethole determination using differential pulse voltammetry on glassy carbon electrode, boron doped diamond electrode and carbon paste electrode." Science, Technology and Innovation 3, no. 2 (December 27, 2018): 21–26. http://dx.doi.org/10.5604/01.3001.0012.8152.
Full textSýs, Milan, Elmorsy Khaled, Radovan Metelka, and Karel Vytřas. "Electrochemical characterisation of novel screen-printed carbon paste electrodes for voltammetric measurements." Journal of the Serbian Chemical Society 82, no. 7-8 (2017): 865–77. http://dx.doi.org/10.2298/jsc170207048s.
Full textJuan, Wang, Tang Ping, Zhao Fa-qiong, and Zeng Bai-zhao. "Voltammetric response of epinephrine at carbon nanotube modified glassy carbon electrode and activated glassy carbon electrode." Wuhan University Journal of Natural Sciences 10, no. 5 (September 2005): 913–18. http://dx.doi.org/10.1007/bf02832438.
Full textL. de Souza, L., and C. A. L. G. de O. Forbicini. "USO DA VOLTAMETRIA CÍCLICA E DA ESPECTROSCOPIA DE IMPEDÂNCIA ELETROQUÍMICA NA DETERMINAÇÃO DA ÁREA SUPERFICIAL ATIVA DE ELETRODOS MODIFICADOS À BASE DE CARBONO." Eclética Química Journal 39, no. 1 (July 9, 2014): 49. http://dx.doi.org/10.26850/1678-4618eqj.v39.1.2014.p49-67.
Full textPazalja, Mirha. "Electrochemical Oxidation of 2,5-Dimercapto-1,3,4-thiadiazole on Carbon Electrodes Modified with Ru(III) Schiff Base Complex." Kemija u industriji 70, no. 7-8 (2021): 401–10. http://dx.doi.org/10.15255/kui.2020.068.
Full textDissertations / Theses on the topic "Glassy Carbon Electrode"
Perera, D. M. H. Kaushalya. "The study of DNA dynamics on glassy carbon electrode surfaces." Thesis, Kansas State University, 2014. http://hdl.handle.net/2097/18191.
Full textDepartment of Chemistry
Daniel A. Higgins
The potential-dependent reorientation dynamics of double stranded DNA (ds-DNA) covalently attached to planar glassy carbon electrode (GCE) surfaces were studied in this thesis. The orientation of ds-DNA was investigated via the distance-dependent quenching of fluorescence from a 6–carboxyfluorescein (FAM6) flurophore to the electrode surface. The fluorophore was covalently bound to the distal end of the DNA. Fluorescence microscopy was employed for optical detection of FAM6 fluorescence and hence the DNA dynamics. The variation of the fluorescence from the dye with electrode potential is attributed to distance-dependent dipole-electrode energy transfer. Application of positive potentials (i.e., +0.2 V vs. open circuit potential, OCP) to the GCE caused the ds-DNA to align approximately parallel to the surface, yielding strong FAM6-electrode energy transfer and low fluorescence intensity. With the switching of the potential towards negative values (i.e., -0.4 V vs. OCP) the ds-DNA realigned perpendicular to the GCE surface leading to a reduction in energy transfer and high fluorescence intensity. Initial DNA reorientation upon a change in electrode potential is very fast. These fast dynamics have been observed and characterized in a number of previous publications. We have observed subsequent slow dynamics that we attribute to slow orientational relaxation of the DNA. Our observations were first reported by Q. Li, et al., J. Am. Chem. Soc. 2012, 134, 14467. In this thesis, this prior work is extended to verify the reproducibility of these new dynamics and to eliminate the possibility of certain artifacts as their source. Specifically, the experiments are repeated using a new cell design and a different buffer. In the primary experiments performed in this thesis, the dependence of the DNA reorientation dynamics on surface coverage was investigated by observing the fluorescence modulation as a function of probe concentration in the functionalization bath. Concentrations of 0.25, 1.0 and 1.5 µM 35-mer ds-DNA were employed. Electrodes functionalized at these concentrations have ds-DNA surface coverages of 1.18 x 10[superscript]12, 3.24 x 10[superscript]12 and 4.26 x 10[superscript]12 cm[superscript]-2, respectively. With increasing concentration of the DNA probe, the reorientation time constant at positive applied bias (vs. OCP) increased, indicting reorientation was slowed. In contrast, the time constant decreased with the negative applied bias (vs. OCP) indicating faster orientational relaxation. The possible origins for the observed trends in the reorientation time constant are discussed.
Araminaitė, Rūta. "Study of electrocatalytic processes at Prussian blue modified glassy carbon electrode." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2010. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2010~D_20100213_101926-62386.
Full textDarbo tikslas yra elektrocheminių vandenilio peroksido ir askorbato reakcijų tyrimas ant Berlyno mėlynuoju (BM) modifikuotų elektrodų, siekiant pritaikyti šiuos elektrodus jutiklių ir biojutiklių kūrimui. Ištirta vandenilio peroksido redukciją ir askorbato oksidaciją naudojant sukamojo disko elektrodą. Gauti rezultatai galimai įrodo stadijinį vandenilio peroksido katodinės redukcijos mechanizmą vykstantį ant BM modifikuoto elektrodo. Detaliai ištirta BM sluoksnio irimo kinetika vandenilio peroksido elektroredukcijos metu, ir nustatyti faktoriai, įtakojantys irimo proceso greitį. Sukurti jutiklių ir biojutiklių prototipai, kurie galėtų būti panaudoti biologiškai aktyvių medžiagų (vandenilio peroksido, askorbato, gliukozės) nustatymui.
Mazloum-Ardakani, M., B. B. F. Mirjalili, M. Yavari, and M. A. Sheikh-Mohseni. "Electrocatalytic Behavior of Levodopa at MultiWall Carbon Nanotubes and 4-((E)-(2-Methyl-4-Nitrophenylimino) Methyl) Benzene-1,2-Diol Modified Glassy Carbon Electrode." Thesis, Sumy State University, 2012. http://essuir.sumdu.edu.ua/handle/123456789/34938.
Full textDai, Yiqing. "Amperometric biosensors utilizing carbon nanotubes and metal deposits on glassy carbon electrode with poly(phenylenediamine) coatings." HKBU Institutional Repository, 2004. http://repository.hkbu.edu.hk/etd_ra/583.
Full textPablo, Fleurdelis, of Western Sydney Nepean University, and Faculty of Science and Technology. "Adsorptive stripping voltammetry of trace elements on a glassy carbon mercury film electrode." THESIS_FST_XXX_Pablo_F.xml, 1994. http://handle.uws.edu.au:8081/1959.7/207.
Full textDoctor of Philosophy (PhD)
Pablo, Fleurdelis. "Adsorptive stripping voltammetry of trace elements on a glassy carbon mercury film electrode /." View thesis, 1994. http://library.uws.edu.au/adt-NUWS/public/adt-NUWS20030826.113026/index.html.
Full textAbdullahi, Mohamed Farah. "Modification of glassy carbon electrode (GCE) with prussian blue as a mediator on carbon nanotube materials through sequential deposition." Thesis, Vaal University of Technology, 2012. http://hdl.handle.net/10352/387.
Full textAragÃo, Janmille da Silva. "Electrochemical Determination of diethylstilbestrol at glassy carbon electrode modified with gold nanoparticles and a film of multi-wall carbon nanotubes and cobalt phthalocyanine." Universidade Federal do CearÃ, 2016. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=16652.
Full textO presente trabalho descreve o desenvolvimento de um sensor eletroquÃmico de carbono vÃtreo modificado com nanopartÃculas de ouro, nanotubos de carbono de paredes mÃltiplas funcionalizados e ftalocianina de cobalto (CV/NpAu/NTCPMf-FcCo) para a determinaÃÃo do hormÃnio dietilestilbestrol (DES) em amostras de Ãgua e carne, utilizando a tÃcnica de voltametria de onda quadrada (VOQ). O eletrÃlito empregado foi tampÃo BrittonâRobinson (BR) 0,04 mol Lâ1 pH 10,0. Inicialmente estudou-se a configuraÃÃo do eletrodo a ser utilizado para o desenvolvimento do trabalho, depois a otimizaÃÃo do pH do meio, estudo da velocidade de varredura para avaliar a cinÃtica de transferÃncia de carga no processo redox do DES, otimizaÃÃo dos parÃmetros da VOQ, construÃÃo da curva analÃtica e por fim, a aplicaÃÃo da metodologia desenvolvida. Os parÃmetros otimizados para a VOQ foram: f = 5 sâ1, a = 50 mV e ΔEs = 1 mV. De posse de todas as condiÃÃes otimizadas para aplicaÃÃo do CV/NpAu/NTCPMf-FcCo, curvas analÃticas foram obtidas no intervalo de concentraÃÃo de 7,9365 à 10−7 â 5,6604 à 10−6 mol Lâ1 (R = 0,9996) e os limites de detecÃÃo (LD) e de quantificaÃÃo (LQ) calculados foram 1,9910 x 10â7 mol Lâ1 e 6,6367 x 10â7 mol Lâ1, respectivamente, sendo comparÃveis aos citados na literatura. A repetibilidade e a reprodutibilidade do procedimento proposto foram avaliadas. Os valores de desvio padrÃo relativo (DPR) obtidos foram 4,33% e 3,49%, respectivamente, evidenciando a precisÃo da metodologia. O percentual de recuperaÃÃo foi de 98,56% para amostra de Ãgua e 94,05% para amostra de carne bovina (DPR de 0,40 e 1,55% respectivamente). O eletrodo modificado desenvolvido apresentou sensibilidade, reprodutibilidade e repetibilidade adequados, bem como valores de LD e LQ concordantes com os relatados na literatura. Os resultados obtidos pelo emprego do CV/NpAu/NTCPMf-FcCo se mostraram muito eficientes quanto à detecÃÃo e recuperaÃÃo de DES, mostrando-se, desse modo, um dispositivo promissor na detecÃÃo e na quantificaÃÃo de DES em amostras de Ãgua e alimentos.
Arotiba, Omotayo Ademola. "Electrochemical impedance modelling of the reactivities of dendrimeric poly(propylene imine) DNA nanobiosensors." Thesis, University of the Western Cape, 2008. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_7669_1266190932.
Full textIn this thesis, I present the electrochemical studies of three dendrimeric polypropylene imine (PPI) nanomaterials and their applications as a platform in the development of a novel label free DNA nanobiosensor based on electrochemical impedance spectroscopy. Cyclic voltammetry (CV), differentia pulse voltammetry (DPV), square wave voltammetry (SWV) and electrochemical impedance spectroscopy (EIS) techniques were used to study and model the electrochemical reactivities of the nanomaterials on glassy carbon electrode (GCE) as the working electrode.
Naidoo, Fayyaadh. "Graphene modified Salen ligands for the electrochemical determination of heavy metal ions." University of Western Cape, 2020. http://hdl.handle.net/11394/7540.
Full textEnvironmental pollution is a major threat to all life, which needs to be addressed. Heavy metals are well-known environmental pollutants due to their toxicity and, persistence in the environment toxicity for living organisms and having a bioaccumulative nature. Environmentally, the most common hazardous heavy metals are: Cr, Ni, Cu, Zn, Cd, Pb, Hg, and As. Remediation using conventional physical and chemical methods is uneconomical and generates waste chemicals in large quantities. This study focuses on the extraction and determination of heavy metals (Nickel, Copper and Cobalt) by chelating Schiff base ligands of the type [O,N,N,O] with these metal ions. Two Schiff base ligands [N,N’-ethylenebis(salicylimine)] (Salen) and ligand [1,3-bis(salicylideneamino)-2-propanol] (Sal-DAP) were synthesized and characterised using FTIR, 1H and 13C NMR spectrometry and GC-MS techniques. Electrochemical detection of heavy metal ions in this work was achieved via ligand-metal complexation via two approaches. The in-situ method in which the metal and ligands were added to the electrochemical cell and stirred to allow complexation to occur and monitored by square wave voltammetry. While the ex-situ approach involved modifying the electrode surface by depositing a thin film of Schiff base on the electrode surface and immersed into a heavy metal solution to allow the complexation. Three modified GCE were used viz. Salen coated GCE, reduced graphene oxide-Salen coated GCE and a nafion-Salen coated GCE. The two approaches used for the electrochemical detection were successful and effective. The ex-situ approach was selected for the modification of the electrode surface since it demonstrated a higher capacity for heavy metal ion extraction.
2021-11-30
Books on the topic "Glassy Carbon Electrode"
Gattrell, Michael Albert. The aqueous electrooxidation of pphenol at a glassy carbon electrode. 1986.
Find full textBook chapters on the topic "Glassy Carbon Electrode"
Capoferri, Denise, Michele Del Carlo, Nomaphelo Ntshongontshi, Emmanuel I. Iwuoha, and Dario Compagnone. "Electrochemical Preparation of a MIP-Glassy Carbon Electrode for the Determination of Dimethoate." In Lecture Notes in Electrical Engineering, 157–62. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55077-0_21.
Full textSharma, Vivek Vishal, and Domenica Tonelli. "Sensors for Electrochemical Determination of Various Oxidizable Analytes with a Graphene Oxide (GO) and/or Multi Walled Carbon Nanotubes (MWCNTs) Modified Glassy Carbon Electrode." In NATO Science for Peace and Security Series A: Chemistry and Biology, 301–6. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-1113-3_21.
Full textBarbin, N. M., V. N. Necrasov, D. I. Terentiev, and A. P. Pekar. "Influence of a Gaseous Atmosphere on Anodic Processes of Glassy-Carbon and Gold Electrodes in NaCl-KCl-Na2CO3 Melt." In Refractory Metals in Molten Salts, 173–82. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-015-9135-5_17.
Full textZhang, Guangan, Liping Wang, Pengxun Yan, and Junyan Zhang. "Diamond-Like Carbon Thin Films Deposition on Glass Using an Electron Cyclotron Resonance (ECR) Microwave Chemical Vapor Deposition (CVD) System." In Advanced Tribology, 816–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03653-8_270.
Full textNarasaiah, D. "An enzyme electrode for hydrogen peroxide based on peroxidase immobilized on glassy carbon electrode." In Biosensors '92 Proceedings, 211. Elsevier, 1992. http://dx.doi.org/10.1016/b978-1-85617-161-8.50044-6.
Full textPrete, Maiyara Carolyne, Luana Rianne Rocha, and César Ricardo Teixeira Tarley. "Development of new electroanalytical method based on graphene oxide-modified glassy carbon electrode for mephedrone illicit drug determination." In Carbon Nanomaterials-Based Sensors, 43–56. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-323-91174-0.00022-6.
Full textNaik, Keerti M., and Sharanappa T. Nandibewoor. "An Advanced Study on Electrochemical Behavior of Chalcone at a Glassy Carbon Electrode and Its Analytical Applications." In Current Perspectives on Chemical Sciences Vol. 7, 89–102. Book Publisher International (a part of SCIENCEDOMAIN International), 2021. http://dx.doi.org/10.9734/bpi/cpcs/v7/6460d.
Full textGabry Barbosa, Thiago, Ana Elisa Ferreira Oliveira, and Arnaldo César Pereira. "An Electrochemical Sensor Based on Electroreduction of Graphene Oxide on a Glassy Carbon Electrode Using Multiple Pulse Amperometry for Simultaneous Determination of L-Dopa and Benserazide." In Graphene Production and Application. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.89685.
Full textTiefenauer, L. X., and U. R. Achtnich. "Avidin modified glassy carbon electrodes: Towards a multivalent immunosensor." In Biosensors '92 Proceedings, 274–78. Elsevier, 1992. http://dx.doi.org/10.1016/b978-1-85617-161-8.50083-5.
Full text"Electro-Chemical Doping of Glassy Carbon by Deposition of Graphene Layers." In Catalytic Science Series, 173–95. WORLD SCIENTIFIC (EUROPE), 2017. http://dx.doi.org/10.1142/9781786342447_0010.
Full textConference papers on the topic "Glassy Carbon Electrode"
Dawoud, Abdulilah A. "Fabrication of Fully Integrated Microfluidic Device With Carbon Sensing Electrode for the Detection of Forensic and Biomedical Targets." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-41454.
Full textCompagnone, D., M. Del Carlo, D. Innocenzi, F. Arduini, L. Agui, and V. Serafin. "Carbon Black modified glassy carbon electrode for the detection of antioxidants compounds." In 2015 XVIII AISEM Annual Conference. IEEE, 2015. http://dx.doi.org/10.1109/aisem.2015.7066853.
Full textCebula, Zofia, Paweł Niedziałkowski, and Tadeusz Ossowski. "Electrochemical behavior and determination of ketoprofen at glassy--carbon electrode." In The Second Doctoral Conference of Natural Sciences in University of Gdańsk. Institute of Biotechnology and Molecular Medicine Foundation, 2018. http://dx.doi.org/10.31708/spi3.2018/ceb.cns18.
Full textXu, Laihui, Liping Lu, Zhao Gao, Tianfang Kang, and Shuiyuan Cheng. "DNA Biosensor Based on the CdS Modified Glassy Carbon Electrode." In 2011 5th International Conference on Bioinformatics and Biomedical Engineering (iCBBE). IEEE, 2011. http://dx.doi.org/10.1109/icbbe.2011.5781421.
Full textCheng, Hao, and Shaotong Jiang. "Preparation and Application of Graphene Modified Heated Glassy Carbon Electrode." In 2nd International Conference on Civil, Materials and Environmental Sciences. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/cmes-15.2015.109.
Full textChuekachang, Sopis, Viruntachar Kruefu, Suwan Chaiyasit, and Sukon Phanichphant. "Single-wall carbon nanotube modified glassy carbon electrode for electroanalytical determination of dopamine." In 2010 5th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS 2010). IEEE, 2010. http://dx.doi.org/10.1109/nems.2010.5592167.
Full textYe, Zhou, Junbo Hou, Michael W. Ellis, and Bahareh Behkam. "Effect of Anode Surface Roughness on Power Generation in Microbial Fuel Cells." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-88643.
Full textChihava, Ruvimbo, Mambo Moyo, and Munyaradzi Shumba. "Impedimetric Determination of Antiretroviral Drugs on a Modified Glassy Carbon Electrode." In 2018 IEEE Sensors. IEEE, 2018. http://dx.doi.org/10.1109/icsens.2018.8589692.
Full textMaikap, A., K. Mukherjee, N. Mandal, and B. Mondal. "Electrochemical detection of phenolic compounds using tyrosinase modified glassy carbon electrode." In Proceedings of the International Conference on Nanotechnology for Better Living. Singapore: Research Publishing Services, 2016. http://dx.doi.org/10.3850/978-981-09-7519-7nbl16-rps-33.
Full textNegrea, Sorina Claudia, Lidia Ani Diaconu, Valeria Nicorescu, Daniel Gabriel Neidoni, Adina Pacala, Sorina Motoc, and Florica Manea. "ELECTROCHEMICAL DETECTION OF CAPECITABINE USING AN AG/ GRAPHENE / GLASSY CARBON ELECTRODE." In International Symposium "The Environment and the Industry". National Research and Development institute for Industrial Ecology, 2021. http://dx.doi.org/10.21698/simi.2021.ab41.
Full text