Contents
Academic literature on the topic 'Glättungsverfahren'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Glättungsverfahren.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Glättungsverfahren"
Klinker, Frank, and Günter Skoruppa. "Ein optimiertes Glättungsverfahren motiviert durch eine technische Fragestellung." Mathematische Semesterberichte 59, no. 1 (February 28, 2012): 29–55. http://dx.doi.org/10.1007/s00591-012-0098-1.
Full textKoller, Daniela, Doris Wohlrab, Georg Sedlmeir, and Jobst Augustin. "Geografische Ansätze in der Gesundheitsberichterstattung." Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz 63, no. 9 (August 28, 2020): 1108–17. http://dx.doi.org/10.1007/s00103-020-03208-6.
Full textDissertations / Theses on the topic "Glättungsverfahren"
Heinrich, André. "Fenchel duality-based algorithms for convex optimization problems with applications in machine learning and image restoration." Doctoral thesis, Universitätsbibliothek Chemnitz, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-108923.
Full textNagel, Christian. "Glättungsverfahren für semidefinite Programme." Doctoral thesis, 2003. https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-8099.
Full textIn this thesis we consider algorithms to compute a solution of linear semidefinite programs. Under a suitable regularity condition a semidefinite program is equivalent to its optimality conditions. These optimality conditions, or central-path-conditions, are reformulated as a nonlinear system of equations via matrix-valued NCP-functions. This nonlinear and partly nonsmooth system of equations is solved with a Newton-type method. Because of the reformulation as a nonlinear system of equations, we do not need the iterates to be positive (semi-)definite. Moreover, this reformulation automatically computes symmetric search directions, in contrast to interior point methods. To obtain global convergence, different globalizations (line search, trust-region) are considered. For the predictor-corrector method and the trust-region-method global and local superlinear convergence is shown under strikt complementarity and nondegeneracy. The theoretical investigation of a nonsmooth version of Newton's methods yields locally quadratic convergence without strict complementarity if the nondegeneracy conditon is modified in a suitable way
Nagel, Christian [Verfasser]. "Glättungsverfahren für semidefinite Programme / vorgelegt von Christian Nagel." 2004. http://d-nb.info/970919204/34.
Full textHeinrich, André. "Fenchel duality-based algorithms for convex optimization problems with applications in machine learning and image restoration." Doctoral thesis, 2012. https://monarch.qucosa.de/id/qucosa%3A19869.
Full text