Journal articles on the topic 'Glaucoma Optic nerve Machine learning'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Glaucoma Optic nerve Machine learning.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Barella, Kleyton Arlindo, Vital Paulino Costa, Vanessa Gonçalves Vidotti, Fabrício Reis Silva, Marcelo Dias, and Edson Satoshi Gomi. "Glaucoma Diagnostic Accuracy of Machine Learning Classifiers Using Retinal Nerve Fiber Layer and Optic Nerve Data from SD-OCT." Journal of Ophthalmology 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/789129.
Full textSułot, Dominika, David Alonso-Caneiro, Paweł Ksieniewicz, Patrycja Krzyzanowska-Berkowska, and D. Robert Iskander. "Glaucoma classification based on scanning laser ophthalmoscopic images using a deep learning ensemble method." PLOS ONE 16, no. 6 (June 4, 2021): e0252339. http://dx.doi.org/10.1371/journal.pone.0252339.
Full textAn, Guangzhou, Kazuko Omodaka, Kazuki Hashimoto, Satoru Tsuda, Yukihiro Shiga, Naoko Takada, Tsutomu Kikawa, Hideo Yokota, Masahiro Akiba, and Toru Nakazawa. "Glaucoma Diagnosis with Machine Learning Based on Optical Coherence Tomography and Color Fundus Images." Journal of Healthcare Engineering 2019 (February 18, 2019): 1–9. http://dx.doi.org/10.1155/2019/4061313.
Full textAbidi, Syed S. R., Patrice C. Roy, Muhammad S. Shah, Jin Yu, and Sanjun Yan. "A Data Mining Framework for Glaucoma Decision Support Based on Optic Nerve Image Analysis Using Machine Learning Methods." Journal of Healthcare Informatics Research 2, no. 4 (June 20, 2018): 370–401. http://dx.doi.org/10.1007/s41666-018-0028-7.
Full textOmar, Yasser, Mohamed Abd-ElSalam ElSheikh, and Rania Hodhod. "GLAUDIA: A predicative system for glaucoma diagnosis in mass scanning." Health Informatics Journal 27, no. 2 (April 2021): 146045822110092. http://dx.doi.org/10.1177/14604582211009276.
Full textAn, Guangzhou, Kazuko Omodaka, Satoru Tsuda, Yukihiro Shiga, Naoko Takada, Tsutomu Kikawa, Toru Nakazawa, Hideo Yokota, and Masahiro Akiba. "Comparison of Machine-Learning Classification Models for Glaucoma Management." Journal of Healthcare Engineering 2018 (June 19, 2018): 1–8. http://dx.doi.org/10.1155/2018/6874765.
Full textDiwakaran and S. Sheeba Jeya Sophia. "Survey on Automatic Detection of Glaucoma through Deep Learning Using Retinal Fundus Images." Journal of Biomedical Engineering and Medical Imaging 7, no. 4 (August 1, 2020): 11–15. http://dx.doi.org/10.14738/jbemi.74.8055.
Full textSreng, Syna, Noppadol Maneerat, Kazuhiko Hamamoto, and Khin Yadanar Win. "Deep Learning for Optic Disc Segmentation and Glaucoma Diagnosis on Retinal Images." Applied Sciences 10, no. 14 (July 17, 2020): 4916. http://dx.doi.org/10.3390/app10144916.
Full textSHARMA, RAHUL, PRADIP SIRCAR, R. B. PACHORI, SULATHA V. BHANDARY, and U. RAJENDRA ACHARYA. "AUTOMATED GLAUCOMA DETECTION USING CENTER SLICE OF HIGHER ORDER STATISTICS." Journal of Mechanics in Medicine and Biology 19, no. 01 (February 2019): 1940011. http://dx.doi.org/10.1142/s0219519419400116.
Full textXiao, Zhang, Geng, Zhang, Wu, and Liu. "Research on the Method of Color Fundus Image Optic Cup Segmentation Based on Deep Learning." Symmetry 11, no. 7 (July 17, 2019): 933. http://dx.doi.org/10.3390/sym11070933.
Full textEscamez, Carlos Salvador Fernandez, Susana Perucho Martinez, and Nicolas Toledano Fernandez. "High interpretable machine learning classifier for early glaucoma diagnosis." International Journal of Ophthalmology 14, no. 3 (March 18, 2021): 393–98. http://dx.doi.org/10.18240/ijo.2021.03.10.
Full textWang, Peiyu, Jian Shen, Ryuna Chang, Maemae Moloney, Mina Torres, Bruce Burkemper, Xuejuan Jiang, Damien Rodger, Rohit Varma, and Grace M. Richter. "Machine Learning Models for Diagnosing Glaucoma from Retinal Nerve Fiber Layer Thickness Maps." Ophthalmology Glaucoma 2, no. 6 (November 2019): 422–28. http://dx.doi.org/10.1016/j.ogla.2019.08.004.
Full textOh, Sejong, Yuli Park, Kyong Jin Cho, and Seong Jae Kim. "Explainable Machine Learning Model for Glaucoma Diagnosis and Its Interpretation." Diagnostics 11, no. 3 (March 13, 2021): 510. http://dx.doi.org/10.3390/diagnostics11030510.
Full textRomeni, Simone, Davide Zoccolan, and Silvestro Micera. "A machine learning framework to optimize optic nerve electrical stimulation for vision restoration." Patterns 2, no. 7 (July 2021): 100286. http://dx.doi.org/10.1016/j.patter.2021.100286.
Full textWu, Chao-Wei, Hsiang-Li Shen, Chi-Jie Lu, Ssu-Han Chen, and Hsin-Yi Chen. "Comparison of Different Machine Learning Classifiers for Glaucoma Diagnosis Based on Spectralis OCT." Diagnostics 11, no. 9 (September 19, 2021): 1718. http://dx.doi.org/10.3390/diagnostics11091718.
Full textOmodaka, Kazuko, Guangzhou An, Satoru Tsuda, Yukihiro Shiga, Naoko Takada, Tsutomu Kikawa, Hidetoshi Takahashi, Hideo Yokota, Masahiro Akiba, and Toru Nakazawa. "Classification of optic disc shape in glaucoma using machine learning based on quantified ocular parameters." PLOS ONE 12, no. 12 (December 19, 2017): e0190012. http://dx.doi.org/10.1371/journal.pone.0190012.
Full textKim, Mijung, Jong Chul Han, Seung Hyup Hyun, Olivier Janssens, Sofie Van Hoecke, Changwon Kee, and Wesley De Neve. "Medinoid: Computer-Aided Diagnosis and Localization of Glaucoma Using Deep Learning †." Applied Sciences 9, no. 15 (July 29, 2019): 3064. http://dx.doi.org/10.3390/app9153064.
Full textSchwaner, Stephen A., Andrew J. Feola, and C. Ross Ethier. "Factors affecting optic nerve head biomechanics in a rat model of glaucoma." Journal of The Royal Society Interface 17, no. 165 (April 2020): 20190695. http://dx.doi.org/10.1098/rsif.2019.0695.
Full textAntaki, Fares, Razek Georges Coussa, Karim Hammamji, and Renaud Duval. "Revisiting the Problem of Optic Nerve Detection in a Retinal Image Using Automated Machine Learning." Asia-Pacific Journal of Ophthalmology 10, no. 3 (May 2021): 335–36. http://dx.doi.org/10.1097/apo.0000000000000398.
Full textAlipanahi, Babak, Farhad Hormozdiari, Babak Behsaz, Justin Cosentino, Zachary R. McCaw, Emanuel Schorsch, D. Sculley, et al. "Large-scale machine-learning-based phenotyping significantly improves genomic discovery for optic nerve head morphology." American Journal of Human Genetics 108, no. 7 (July 2021): 1217–30. http://dx.doi.org/10.1016/j.ajhg.2021.05.004.
Full textWang, Hui Bin, Yu Rong Wu, Jie Shen, and Zhe Chen. "Research on Underwater Polarization Image Segmentation Inspired by Biological Optic Nerve." Applied Mechanics and Materials 347-350 (August 2013): 2178–84. http://dx.doi.org/10.4028/www.scientific.net/amm.347-350.2178.
Full textFumero Batista, Francisco José, Tinguaro Diaz-Aleman, Jose Sigut, Silvia Alayon, Rafael Arnay, and Denisse Angel-Pereira. "RIM-ONE DL: A Unified Retinal Image Database for Assessing Glaucoma Using Deep Learning." Image Analysis & Stereology 39, no. 3 (November 25, 2020): 161–67. http://dx.doi.org/10.5566/ias.2346.
Full textOdaibo, Stephen G. "Re: Wang et al.: Machine learning models for diagnosing glaucoma from retinal nerve fiber layer thickness maps (Ophthalmology Glaucoma. 2019;2:422–428)." Ophthalmology Glaucoma 3, no. 3 (May 2020): e3. http://dx.doi.org/10.1016/j.ogla.2020.03.002.
Full textKirar, Bhupendra, and Dheeraj Agrawal. "Glaucoma diagnosis using discrete wavelet transform and histogram features from fundus images." International Journal of Engineering & Technology 7, no. 4 (September 25, 2018): 2546. http://dx.doi.org/10.14419/ijet.v7i4.14809.
Full textSoh, Zhi Da, Mihir Deshmukh, Tyler Hyungtaek Rim, and Ching-Yu Cheng. "Response to: Revisiting the Problem of Optic Nerve Detection in a Retinal Image Using Automated Machine Learning." Asia-Pacific Journal of Ophthalmology 10, no. 3 (May 2021): 337. http://dx.doi.org/10.1097/01.apo.0000769904.75814.b5.
Full textZangwill, Linda M., Kwokleung Chan, Christopher Bowd, Jicuang Hao, Te-Won Lee, Robert N. Weinreb, Terrence J. Sejnowski, and Michael H. Goldbaum. "Heidelberg Retina Tomograph Measurements of the Optic Disc and Parapapillary Retina for Detecting Glaucoma Analyzed by Machine Learning Classifiers." Investigative Opthalmology & Visual Science 45, no. 9 (September 1, 2004): 3144. http://dx.doi.org/10.1167/iovs.04-0202.
Full textGonzalez-Hernandez, Marta, Daniel Gonzalez-Hernandez, Daniel Perez-Barbudo, Paloma Rodriguez-Esteve, Nisamar Betancor-Caro, and Manuel Gonzalez de la Rosa. "Fully Automated Colorimetric Analysis of the Optic Nerve Aided by Deep Learning and Its Association with Perimetry and OCT for the Study of Glaucoma." Journal of Clinical Medicine 10, no. 15 (July 22, 2021): 3231. http://dx.doi.org/10.3390/jcm10153231.
Full textChristopher, Mark, Akram Belghith, Robert N. Weinreb, Christopher Bowd, Michael H. Goldbaum, Luke J. Saunders, Felipe A. Medeiros, and Linda M. Zangwill. "Retinal Nerve Fiber Layer Features Identified by Unsupervised Machine Learning on Optical Coherence Tomography Scans Predict Glaucoma Progression." Investigative Opthalmology & Visual Science 59, no. 7 (June 1, 2018): 2748. http://dx.doi.org/10.1167/iovs.17-23387.
Full textBizios, Dimitrios, Anders Heijl, Jesper Leth Hougaard, and Boel Bengtsson. "Machine learning classifiers for glaucoma diagnosis based on classification of retinal nerve fibre layer thickness parameters measured by Stratus OCT." Acta Ophthalmologica 88, no. 1 (February 2010): 44–52. http://dx.doi.org/10.1111/j.1755-3768.2009.01784.x.
Full textElze, Tobias, Louis R. Pasquale, Lucy Q. Shen, Teresa C. Chen, Janey L. Wiggs, and Peter J. Bex. "Patterns of functional vision loss in glaucoma determined with archetypal analysis." Journal of The Royal Society Interface 12, no. 103 (February 2015): 20141118. http://dx.doi.org/10.1098/rsif.2014.1118.
Full textGaillet, Vivien, Eleonora Borda, Elodie Geneviève Zollinger, and Diego Ghezzi. "A machine-learning algorithm correctly classifies cortical evoked potentials from both visual stimulation and electrical stimulation of the optic nerve." Journal of Neural Engineering 18, no. 4 (April 26, 2021): 046031. http://dx.doi.org/10.1088/1741-2552/abf523.
Full textBhuiyan, Alauddin, Arun Govindaiah, and R. Theodore Smith. "An Artificial-Intelligence- and Telemedicine-Based Screening Tool to Identify Glaucoma Suspects from Color Fundus Imaging." Journal of Ophthalmology 2021 (May 28, 2021): 1–10. http://dx.doi.org/10.1155/2021/6694784.
Full textKasaragod, Deepa, Shuichi Makita, Young-Joo Hong, and Yoshiaki Yasuno. "Machine-learning based segmentation of the optic nerve head using multi-contrast Jones matrix optical coherence tomography with semi-automatic training dataset generation." Biomedical Optics Express 9, no. 7 (June 21, 2018): 3220. http://dx.doi.org/10.1364/boe.9.003220.
Full textHitzl, W., H. A. Reitsamer, K. Hornykewycz, A. Mistlberger, and G. Grabner. "Application of Discriminant, Classification Tree and Neural Network Analysis to Differentiate between Potential Glaucoma Suspects with and without Visual Field Defects." Journal of Theoretical Medicine 5, no. 3-4 (2003): 161–70. http://dx.doi.org/10.1080/10273360410001728011.
Full textCavaliere, Carlo, Elisa Vilades, Mª Alonso-Rodríguez, María Rodrigo, Luis Pablo, Juan Miguel, Elena López-Guillén, Eva Morla, Luciano Boquete, and Elena Garcia-Martin. "Computer-Aided Diagnosis of Multiple Sclerosis Using a Support Vector Machine and Optical Coherence Tomography Features." Sensors 19, no. 23 (December 3, 2019): 5323. http://dx.doi.org/10.3390/s19235323.
Full textLi, Shuo, Chiru Ge, Xiaodan Sui, Yuanjie Zheng, and Weikuan Jia. "Channel and Spatial Attention Regression Network for Cup-to-Disc Ratio Estimation." Electronics 9, no. 6 (May 29, 2020): 909. http://dx.doi.org/10.3390/electronics9060909.
Full textSarhan, Abdullah, Andrew Swift, Adam Gorner, Jon Rokne, Reda Alhajj, Gavin Docherty, and Andrew Crichton. "Utilizing a responsive web portal for studying disc tracing agreement in retinal images." PLOS ONE 16, no. 5 (May 25, 2021): e0251703. http://dx.doi.org/10.1371/journal.pone.0251703.
Full textPrakash, K., and M. Sudharsan. "A Mathematical Study of Glaucoma using Machine Learning Algorithms for Retina." International Journal of Advanced Research in Science, Communication and Technology, February 15, 2021, 31–33. http://dx.doi.org/10.48175/ijarsct-v2-i3-305.
Full textKayani, Huma. "Artificial intelligence and its applications in ophthalmology." Journal of Fatima Jinnah Medical University 13, no. 4 (January 15, 2020). http://dx.doi.org/10.37018/jfjmu.724.
Full textKhan, Sibghatullah I., Shruti Bhargava Choubey, Abhishek Choubey, Abhishek Bhatt, Pandya Vyomal Naishadhkumar, and Mohammed Mahaboob Basha. "Automated glaucoma detection from fundus images using wavelet-based denoising and machine learning." Concurrent Engineering, July 9, 2021, 1063293X2110266. http://dx.doi.org/10.1177/1063293x211026620.
Full textChandrinos, Aristeidis, and Dorotheos-Dimitrios Tzamouranis. "A Review of Learning Effect in Perimetry." Ophthalmology Research: An International Journal, April 21, 2020, 23–30. http://dx.doi.org/10.9734/or/2020/v12i230144.
Full textRomeni, Simone, Davide Zoccolan, and Silvestro Micera. "A Machine Learning Framework to Optimize Optic Nerve Electrical Stimulation for Vision Restoration." SSRN Electronic Journal, 2021. http://dx.doi.org/10.2139/ssrn.3787903.
Full textZou, Beiji, Changlong Chen, Rongchang Zhao, Pingbo Ouyang, Chengzhang Zhu, Qilin Chen, and Xuanchu Duan. "A novel glaucomatous representation method based on Radon and wavelet transform." BMC Bioinformatics 20, S25 (December 2019). http://dx.doi.org/10.1186/s12859-019-3267-6.
Full textXu, Yongli, Man Hu, Hanruo Liu, Hao Yang, Huaizhou Wang, Shuai Lu, Tianwei Liang, et al. "A hierarchical deep learning approach with transparency and interpretability based on small samples for glaucoma diagnosis." npj Digital Medicine 4, no. 1 (March 11, 2021). http://dx.doi.org/10.1038/s41746-021-00417-4.
Full text"Recent Automated Glaucoma Detection Techniques using Color Fundus Images." International Journal of Innovative Technology and Exploring Engineering 8, no. 9S (August 23, 2019): 737–42. http://dx.doi.org/10.35940/ijitee.i1119.0789s19.
Full text"Automated Fundoscopy for Glaucoma Detection and Classifiction." International Journal of Recent Technology and Engineering 8, no. 5 (January 30, 2020): 3274–78. http://dx.doi.org/10.35940/ijrte.e6370.018520.
Full textNwokocha, C. G., and C. S. Ejimadu. "Analysis of Optic Disc and Vertical Cup Disc Ratio among Glaucoma Suspects in a Black Population." Journal of Advances in Medicine and Medical Research, June 15, 2019, 1–8. http://dx.doi.org/10.9734/jammr/2019/v29i1130145.
Full textRezapour, Jasmin, Christopher Bowd, Jade Dohleman, Akram Belghith, James A. Proudfoot, Mark Christopher, Leslie Hyman, et al. "The influence of axial myopia on optic disc characteristics of glaucoma eyes." Scientific Reports 11, no. 1 (April 23, 2021). http://dx.doi.org/10.1038/s41598-021-88406-1.
Full textSeo, Sat byul, and Hyun-kyung Cho. "Deep learning classification of early normal-tension glaucoma and glaucoma suspects using Bruch’s membrane opening-minimum rim width and RNFL." Scientific Reports 10, no. 1 (November 4, 2020). http://dx.doi.org/10.1038/s41598-020-76154-7.
Full textDatta, Shounak, Eduardo B. Mariottoni, David Dov, Alessandro A. Jammal, Lawrence Carin, and Felipe A. Medeiros. "RetiNerveNet: using recursive deep learning to estimate pointwise 24-2 visual field data based on retinal structure." Scientific Reports 11, no. 1 (June 15, 2021). http://dx.doi.org/10.1038/s41598-021-91493-9.
Full text