Academic literature on the topic 'Glial cells. eng'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Glial cells. eng.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Glial cells. eng"
Dimou, Leda, and Magdalena Götz. "Glial Cells as Progenitors and Stem Cells: New Roles in the Healthy and Diseased Brain." Physiological Reviews 94, no. 3 (July 2014): 709–37. http://dx.doi.org/10.1152/physrev.00036.2013.
Full textWang, Sheng-Zhi, Xiao-Dong Liu, Yu-Xin Huang, Qing-Jiu Ma, and Jing-Jie Wang. "Disruption of Glial Function Regulates the Effects of Electro-Acupuncture at Tsusanli on Gastric Activity in Rats." American Journal of Chinese Medicine 37, no. 04 (January 2009): 647–56. http://dx.doi.org/10.1142/s0192415x09007132.
Full textKoussa, Mounir A., Leslie P. Tolbert, and Lynne A. Oland. "Development of a glial network in the olfactory nerve: role of calcium and neuronal activity." Neuron Glia Biology 6, no. 4 (November 2010): 245–61. http://dx.doi.org/10.1017/s1740925x11000081.
Full textMcClain, Jonathon L., and Brian D. Gulbransen. "The acute inhibition of enteric glial metabolism with fluoroacetate alters calcium signaling, hemichannel function, and the expression of key proteins." Journal of Neurophysiology 117, no. 1 (January 1, 2017): 365–75. http://dx.doi.org/10.1152/jn.00507.2016.
Full textSuter, Marc R., Yeong-Ray Wen, Isabelle Decosterd, and Ru-Rong Ji. "Do glial cells control pain?" Neuron Glia Biology 3, no. 3 (August 2007): 255–68. http://dx.doi.org/10.1017/s1740925x08000100.
Full textLee, Huiju, and Yoon Choi. "Regenerative Effects of Heme Oxygenase Metabolites on Neuroinflammatory Diseases." International Journal of Molecular Sciences 20, no. 1 (December 25, 2018): 78. http://dx.doi.org/10.3390/ijms20010078.
Full textKriho, V., H. Y. Yang, C. M. Lue, N. Lieska, and G. D. Pappas. "An Early Developmental Marker for Radial Glia in Rat Spinal Cord." Proceedings, annual meeting, Electron Microscopy Society of America 54 (August 11, 1996): 36–37. http://dx.doi.org/10.1017/s0424820100162648.
Full textGiacomoni, Jessica, Andreas Bruzelius, Christina-Anastasia Stamouli, and Daniella Rylander Ottosson. "Direct Conversion of Human Stem Cell-Derived Glial Progenitor Cells into GABAergic Interneurons." Cells 9, no. 11 (November 10, 2020): 2451. http://dx.doi.org/10.3390/cells9112451.
Full textPawolski, Verena, and Mirko H. H. Schmidt. "Neuron–Glia Interaction in the Developing and Adult Enteric Nervous System." Cells 10, no. 1 (December 31, 2020): 47. http://dx.doi.org/10.3390/cells10010047.
Full textCai, Yuheng, Xuying Zhang, Shahar Z. Kovalsky, H. Troy Ghashghaei, and Alon Greenbaum. "Detection and classification of neurons and glial cells in the MADM mouse brain using RetinaNet." PLOS ONE 16, no. 9 (September 24, 2021): e0257426. http://dx.doi.org/10.1371/journal.pone.0257426.
Full textDissertations / Theses on the topic "Glial cells. eng"
Lachat, Denise. "Análise ultraestrutural do nervo óptico de ratos Wistar hígidos ou com anemia ferropriva neonatal /." Jaboticabal : [s.n.], 2010. http://hdl.handle.net/11449/101101.
Full textBanca: José Antonio Thomazini
Banca: Luiza da Silva Lopes
Banca: Áureo Evangelista Santana
Banca: Marcos Lania de Araujo
Resumo: Diversos estudos mostraram que a ingestão de dieta com níveis inadequados de ferro pode causar, no sistema nervoso central (SNC) de ratos, alterações morfológicas, bioquímicas e comportamentais no animal. Esses estudos têm ainda indicado que animais deficientes em ferro apresentam redução no número de lamelas de mielina e prejuízos na aprendizagem. A deficiência de ferro é uma das mais comuns desordens nutricionais em pacientes pediátricos e adultos e atinge cerca de 2,5 a 5 bilhões de pessoas em todo mundo. A consequência mais explícita da deficiência de ferro é a anemia. O ferro está relacionado ao desenvolvimento de fibras nervosas mielínicas, as quais constituem mais de 80% do nervo óptico. Objetivou-se, na presente investigação, avaliar com o auxílio de microscopia eletrônica de transmissão, os possíveis efeitos da anemia ferropriva na estrutura do nervo óptico de ratos Wistar durante os períodos de lactação e pós-lactação. Os animais foram divididos em 2 grupos: Controle e Anêmico. Os anêmicos receberam uma dieta com 4 mg de ferro/Kg, e os controle, uma dieta com 35 mg de ferro/Kg. Avaliações do peso corpóreo, hemoglobina e hematócrito foram feitas para checar os efeitos da deficiência de ferro. Os animais foram anestesiados com cloridrato de quetamina IM (22 mg/Kg) e então sacrificados por perfusão transcardíaca com PBS 0,05M, pH 7,4, seguido da mistura fixadora paraformaldeído 2% e glutaraldeído 1% diluída em tampão fosfato. Um segmento do nervo óptico foi retirado e pós-fixado em solução de tetróxido de ósmio a 1% por duas horas a 4ºC, desidratado em acetona e incluído em araldite. Cortes ultra-finos com 60 nanômetros de espessura foram montados em grades de cobre, contrastados com acetato de uranila e citrato de chumbo, observados e fotografados ao microscópio eletrônico de transmissão para detalhada análise ultraestrutural... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: Several studies showed that ingestion of diets with inadequate iron levels can cause morphological, biochemical and behavioral changes in the central nervous system (CNS) of rats. These studies have also shown that iron-deficient animals have reduced number of myelin lamellae and prejudice on learning. Iron deficiency is one of the most common nutritional disorders in pediatric patients and adults and affects about 2.5-5 billion people around the world. The most explicit result of iron deficiency is anemia. The iron is related to the development of myelinated nerve fibers, which constitute more than 80% of the optic nerve. The aim of this research is to evaluate, with transmission electronic microscopy, the possible effects of iron deficiency anemia in Wistar rats optic nerve structure during lactation and pos-lactation period. The animals were divided into 2 groups: Control and Anemic. The anemic group received 4 mg iron/Kg, the control group received 35 mg iron/Kg. Evaluation of body weight, hemoglobin and hematocrit were made to check the iron deficiency effects. The animals were anesthetized with ketamine 22 mg/Kg and then sacrificed by transcardiac perfusion with PBS 0.05 M, pH 7.4, followed by paraformaldehyde fixative mixture 2% and 1% glutaraldehyde. An optic nerve segment was removed and post-fixed in a solution of osmium tetroxide for two hours at 4°C, dehydrated in acetone and embedded in Araldite. Ultrathin sections with 60 nanometers thick were mounted on copper grids, contrasted with uranyl acetate and lead citrate, observed and photographed by transmission electronic microscope for detailed ultrastructural analysis of nerve fibers, blood vessels and glial cells. Both hematological and body weight were smaller in the anemic group. The ultrastructural analysis showed damaged myelinated and unmyelinated fibers, and glial cells of the anemic animals when compared with... (Complete abstract click electronic access below)
Doutor
Connolly, Emma. "The glial cell line-derived neurotrophic factor family in airway infectious disease." Thesis, University of Manchester, 2018. https://www.research.manchester.ac.uk/portal/en/theses/the-glial-cell-linederived-neurotrophic-factor-family-in-airway-infectious-disease(bf9c7388-c64e-4f47-bcd8-30545d715501).html.
Full textMazaud, David. "Genetic analysis of glial cells in health and disease using Drosophila melanogaster as a model." Thesis, King's College London (University of London), 2016. https://kclpure.kcl.ac.uk/portal/en/theses/genetic-analysis-of-glial-cells-in-health-and-disease-using-drosophila-melanogaster-as-a-model(80fefa2a-4228-4ae5-9057-33081b22716f).html.
Full textLeow-Dyke, Sophie. "Inflammatory activation of the cerebrovascular endothelium in response to oxygen-glucose deprivation." Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/inflammatory-activation-of-the-cerebrovascular-endothelium-in-response-to-oxygenglucose-deprivation(32ef4859-9fa2-4dde-ab76-b547158ae045).html.
Full textJohnson, Erik Andrew. "Survivin expression after traumatic brain injury potential roles in neuroprotection /." [Gainesville, Fla.] : University of Florida, 2004. http://purl.fcla.edu/fcla/etd/UFE0008337.
Full textTypescript. Title from title page of source document. Document formatted into pages; contains 87 pages. Includes Vita. Includes bibliographical references.
Rodrigues, DAVID. "GLIAL CELL LINE-DERIVED NEUROTROPHIC FACTOR MODULATES STRUCTURE AND FUNCTION OF POSTNATAL MYENTERIC NEURONS." Thesis, 2008. http://hdl.handle.net/1974/1396.
Full textThesis (Master, Physiology) -- Queen's University, 2008-09-03 13:27:23.042
Campeão, Mafalda Maria Salvador. "Methylenedioxypyrovalerone (MDPV) and methamphetamine (METH) play with central innate immune system: focusing on RAGE and glial cells." Master's thesis, 2017. http://hdl.handle.net/10316/82999.
Full textA imunidade inata é a primeira linha de defesa efectiva de todos os organismos,englobando mecanismos moleculares e celulares com vista a uma acção imediata, reconhecendopadrões moleculares associados a patogénios de origem externa (PAMPs), bem como, padrõesmoleculares associados a uma ameaça de origem interna (DAMPs). Esse reconhecimento épossível através de diversos receptors de reconhecimento padrão (PRRs), orquestrando, assim, aactivação de respostas imunes. Um destes receptores é o receptor dos produtos de glicaçãoavançada (RAGE, também conhecido por AGER), que é um receptor, localizado à superfície dascélulas, pertencendo à superfamília de proteinas imunoglobulinas, tendo um papel central naresposta inflamatória, mediando acções na imunidade inata. Para além do mais, o receptor RAGEtem sido implicado na neurotoxicidade e activação das células da glia. É de salientar que esterecptor é expresso em muitos tipos de células incluíndo as células do sistema nervoso central(CNS) como os neurónios, microglia, astrócitos. De notar também que, sendo um receptor queinterage com multiplos ligandos, RAGE é capaz de reconhecer um largo espectro de diferentesfamílias de ligandos estruturalmente diversos, incluíndo o ligando S100β, pertencente à famíliade proteínas S100.Nos dias de hoje, o consumo inadequado e a adição de drogas de abuso, incluíndo a diçãodos estimulantes do tipo das anfetaminas (ATS), é um problema sério e verificado em todo omundo, com inegável impacto na saúde pública, direitos humanos e na segurança. A par destesaspectos, a rápida difusão e abuso de novas substâncias psicoactivas (new psychoactivesubstances, NPS), também conhecidas como “substâncias químicas de pesquisa” ou “drogasdesenhadas”, engloba a catinonas sintética, Methylenedioxypyrovalerone (MDPV), designadapor “sais de banho”, claramente parece piorar a actual situação, já que é usada como um substitutode estimulantes ilegais, como a cocaína. O acesso incrivelmente facilitado a estas catinonas, comoo MDPV, no mercado de drogas global, através das “smart shops”, internet (“darknet”), e oaspecto da “falsa legalidade” destas substâncias, assim como, o relativo baixo custo e a suaqualidade, comparativamente a outras drogas tradicionais, são factores que têm contribuído paraa sua crescente popularidade.Ultimamente, têm sido investigados novos aspectos dentro do tema das drogas de abuso.A título de exemplo, existem cada vez mais evidências no que diz respeito à methanphetamina naimunidade inata central e periférica. Contudo, os efeitos de catinonas (como o MDPV) naimunidade inata central ainda estão por investigar. Neste sentido, este trabalho tem como principalfoco, caraterizar, pela primeira vez o impacto do MDPV nas células da glia, no cortéx frontal enos intervenientes da imunidade inata, incluíndo o receptor dos productos de glicação avançada(RAGE) e o sei ligando S100 β, 24 houras após a um regime binge de MDPV.Para além disso, o perfil comportamental dos roedores após a administração do MDPVestá pouco documentado, em comparação com a METH. Assim sendo, o nosso objectivo comeste trabalho foi caraterizar, pela primeira vez, o impacto do MDPV no cortéx frontal,nomeadamente nas células da glia e nos intervenientes da imunidade inata, incluíndo o receptordos produtos de glicação avançada (RAGE) e o seu ligando S100β, nas 24 horas após um regimede “binging”. Em paralelo à administração de MDPV, também foi administrada uma dosagemigualmente aguda de METH, no sentido de aumentar os actuais conhecimentos sobre aneurotoxicidade da METH.Assim, em primeiro lugar, e no que diz respeito ao perfil comportamental, o nosso estudooferece a primeira evidência de que um episódio de administração aguda de MDPV não acarretouperturbações emocionais nem locomoras, aumentando, no entanto, e curiosamente, a actividadeexploratória nos ratinhos. Em segundo lugar, ficou demonstrado que nem o MDPV nem a METHinfluenciaram os parametros de neurotoxicidade relacionados com as células da microglia, célulasastrocíticas, fibras de mielina, bem como, com marcadores dopaminergicos. Tal foi comprovadopelos níveis inalterados de Iba-1, GFAP, S100β, MBP e TH, respectivamente. Para além do mais,concluímos que nenhuma droga influenciou marcadamente os níveis de expressão ou os níveis deproteína total correspondentes ao receptor RAGE.Finalmente, não podemos descartar a hipótese de esta janela temporal de 24 horascorresponder a uma fase prematura para observar quaisquer alterações moleculares e celularessignificativas, induzidas por ambos os psicoestimulantes, no cortéx frontal. Neste contexto,estudos posteriores serão necessários para caraterizar os efeitos, neuronais e ao nível das célulasda glia, do MDPV, que podem passar, quer pela adopção de outras janelas temporais, quer poroutros regimes de administração, ou ainda quer pela avaliação numa outra área cerebral.
Innate immunity is the first effective line of defense of all organisms, comprising cellularand molecular mechanisms for immediate action, recognizing exogenous pathogen associatedmolecular patterns (PAMPs), as well as, endogenous danger associated molecular patterns(DAMPs). Such detection is possible through diverse pattern recognition receptors (PRRs),thereby orchestrating the activation of innate responses. One of these receptors is the receptor foradvanced glycation end-products (RAGE, also known as AGER), which is a cell-surface receptorbelonging to the superfamily of immunoglobulin proteins, thus playing a central role in theinflammatory response mediating events of innate immunity. Moreover, RAGE has beenimplicated in the sustainment of glial activation and neurotoxicity. Noteworthy, RAGE receptorexhibits broad expression on many different cells including CNS cells, such as neurons, microgliaand astrocytes. Also, as a multiligand receptor, RAGE recognizes a broad repertoire ofstructurally different ligand families, including S100β, belonging to the S100 protein family.Nowadays, drug misuse, including amphetamine-type stimulants (ATS) addiction, is amajor worldwide issue with an undeniable impact on public health, human rights and security. Inparallel, the rapid emergence and abuse of new psychoactive substances (NPS), also termed as“research chemicals” or “design drugs”, including the synthetic cathinone,Methylenedioxypyrovalerone (MDPV), known as "bath salt", clearly seems to worsen thisscenario, as it acts as a substitute for illegal stimulant drugs such as cocaine. The incredibly easyaccess to these cathinones, including the newly synthesized MDPV, in the global drug market,through smart shops, internet (“darknet”), and the aspect of“fake legallyness” of such substances,as well as the relative affordability and better quality compared with traditional drugs, are on thebasis of some of the reasons underlying their increasing popularity.In the last decades, a great deal of attention has been drawn to the aspects underlyingmethamphetamine (METH; an ATS)-induced neurotoxicity, in many brain regions. Nevertheless,little is known regarding MDPV neurotoxicity, including in frontal cortex, which is known to beaffected by drugs of abuse. Additionally, the behavioral profile of rodents after drugadministration is poorly documented for MDPV, in comparison with METH.Additionally, novel avenues in drug addiction sciences are being explored. As anexample, there is a growing body of evidence regarding the impact of drugs of abuse includingMETH to both peripheral and central innate immunity. However, the effects of new cathinones(including MDPV) in the central innate immunity remain unknown. Therefore, this thesis aimedto characterize, for the first time, the impact of MDPV on frontal cortex glial cells and innateimmune players including receptor for advanced glycation end-products (RAGE) and its ligand S100β, within first 24 hours following a binge MDPV regimen. In addition, emotional behaviorwas assessed. A binge neurotoxic regimen of METH was also employed to deepen currentknowledge on METH neurotoxicity.Concerning the behavioral profile, we offer a first evidence that a single binge MDPVregimen did not come with any changes in both emotional and locomotor parameters, butcuriously enhanced exploratory activity in mice. Secondly, we concluded that neither drugimpose any changes in innate immunity as well as in neurotoxicity parameters includingmicroglial, astrocytic, myelin and dopaminergic markers, as seen by the unaltered levels ofRAGE, S100β, Iba-1, GFAP and, MBP and TH, respectively.One cannot exclude the hypothesis whereby this is a premature time-window to observesignificative molecular changes in frontal cortices following both stimulants. In this context,future studies are required to further characterize neuronal and glial effects of MDPV by usingother time-points, dosing regimens and brain regions.
Books on the topic "Glial cells. eng"
Amzica, Florin, and Fernando H. Lopes da Silva. Cellular Substrates of Brain Rhythms. Edited by Donald L. Schomer and Fernando H. Lopes da Silva. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190228484.003.0002.
Full textSchaible, Hans-Georg, and Rainer H. Straub. Pain neurophysiology. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199642489.003.0059.
Full textBook chapters on the topic "Glial cells. eng"
Parrington, John. "Growth and Development." In Mind Shift, 92–106. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198801634.003.0007.
Full textSchaible, Hans-Georg, and Rainer H. Straub. "Pain neurophysiology." In Oxford Textbook of Rheumatology, 431–36. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199642489.003.0059_update_002.
Full text