To see the other types of publications on this topic, follow the link: Global analysis (mathematics) engineering mechanic.

Journal articles on the topic 'Global analysis (mathematics) engineering mechanic'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Global analysis (mathematics) engineering mechanic.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Healey, Timothy J., and Henry C. Simpson. "Global Continuation in Nonlinear Elasticity." Archive for Rational Mechanics and Analysis 143, no. 1 (1998): 1–28. http://dx.doi.org/10.1007/s002050050098.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bouchitté, Guy, Irene Fonseca, and Luisa Mascarenhas. "A Global Method for Relaxation." Archive for Rational Mechanics and Analysis 145, no. 1 (1998): 51–98. http://dx.doi.org/10.1007/s002050050124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kapania, R. K., S. G. Haryadi, and R. T. Haftka. "Global/local analysis of composite plates with cutouts." Computational Mechanics 19, no. 5 (1997): 386–96. http://dx.doi.org/10.1007/s004660050187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Auchmuty, Giles. "The global branching of rotating stars." Archive for Rational Mechanics and Analysis 114, no. 2 (1991): 179–93. http://dx.doi.org/10.1007/bf00375402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Alexander, J. C., and Giles Auchmuty. "Global bifurcations of phase-locked oscillators." Archive for Rational Mechanics and Analysis 93, no. 3 (1986): 253–70. http://dx.doi.org/10.1007/bf00281500.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hu, Xianpeng, and Nader Masmoudi. "Global Solutions to Repulsive Hookean Elastodynamics." Archive for Rational Mechanics and Analysis 223, no. 1 (2016): 543–90. http://dx.doi.org/10.1007/s00205-016-1039-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Montanaro, Adriano. "Global Equivalence for Deformable Theormoeleastic Bodies." Archive for Rational Mechanics and Analysis 143, no. 4 (1998): 375–400. http://dx.doi.org/10.1007/s002050050110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Xiao, Hai-bin. "Global analysis of Ivlev’s type predator-prey dynamic systems." Applied Mathematics and Mechanics 28, no. 4 (2007): 461–70. http://dx.doi.org/10.1007/s10483-007-0406-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Alonso, Diego M., Eduardo E. Paolini, and Jorge L. Moiola. "Global Bifurcation Analysis of a Controlled Underactuated Mechanical System." Nonlinear Dynamics 40, no. 3 (2005): 205–25. http://dx.doi.org/10.1007/s11071-005-6188-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fiedler, Bernold. "Global Hopf bifurcation of two-parameter flows." Archive for Rational Mechanics and Analysis 94, no. 1 (1986): 59–81. http://dx.doi.org/10.1007/bf00278243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Georgiev, Vladimir, Bruno Rubino, and Rosella Sampalmieri. "Global Existence for Elastic Waves with Memory." Archive for Rational Mechanics and Analysis 176, no. 3 (2005): 303–30. http://dx.doi.org/10.1007/s00205-004-0345-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Cai, Yuan, and Zhen Lei. "Global Well-Posedness of the Incompressible Magnetohydrodynamics." Archive for Rational Mechanics and Analysis 228, no. 3 (2018): 969–93. http://dx.doi.org/10.1007/s00205-017-1210-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Nguyen, Huy Q., and Toan T. Nguyen. "On Global Stability of Optimal Rearrangement Maps." Archive for Rational Mechanics and Analysis 238, no. 2 (2020): 671–704. http://dx.doi.org/10.1007/s00205-020-01552-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Hongkai, Chen, Tang Hongmei, and Xiao Shengxie. "Global composite element iteration for analysis of seepage free surface." Applied Mathematics and Mechanics 20, no. 10 (1999): 1121–27. http://dx.doi.org/10.1007/bf02460329.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Lu, Tie-jun, Mei-juan Wang, and Yan Liu. "Global stability analysis of a ratio-dependent predator-prey system." Applied Mathematics and Mechanics 29, no. 4 (2008): 495–500. http://dx.doi.org/10.1007/s10483-008-0407-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Hu, Jun, and Shudao Zhang. "Global sensitivity analysis based on high-dimensional sparse surrogate construction." Applied Mathematics and Mechanics 38, no. 6 (2017): 797–814. http://dx.doi.org/10.1007/s10483-017-2208-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Bressan, Alberto, and Adrian Constantin. "Global Conservative Solutions of the Camassa–Holm Equation." Archive for Rational Mechanics and Analysis 183, no. 2 (2006): 215–39. http://dx.doi.org/10.1007/s00205-006-0010-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Hurd, A. E. "Global existence and validity for the BBGKY hierarchy." Archive for Rational Mechanics and Analysis 98, no. 3 (1987): 191–209. http://dx.doi.org/10.1007/bf00251171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Cesari, Lamberto, and Patrizia Pucci. "Global periodic solutions of the nonlinear wave equation." Archive for Rational Mechanics and Analysis 89, no. 3 (1985): 187–209. http://dx.doi.org/10.1007/bf00276871.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Do, Tam, Alexander Kiselev, Lenya Ryzhik, and Changhui Tan. "Global Regularity for the Fractional Euler Alignment System." Archive for Rational Mechanics and Analysis 228, no. 1 (2017): 1–37. http://dx.doi.org/10.1007/s00205-017-1184-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Córdoba, Diego, Javier Gómez-Serrano, and Alexandru D. Ionescu. "Global Solutions for the Generalized SQG Patch Equation." Archive for Rational Mechanics and Analysis 233, no. 3 (2019): 1211–51. http://dx.doi.org/10.1007/s00205-019-01377-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Iyer, Sameer. "On Global-in-x Stability of Blasius Profiles." Archive for Rational Mechanics and Analysis 237, no. 2 (2020): 951–98. http://dx.doi.org/10.1007/s00205-020-01523-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Herrero, Miguel A., Andrew A. Lacey, and Juan J. L. Velázquez. "Global Existence for Reaction-Diffusion Systems Modelling Ignition." Archive for Rational Mechanics and Analysis 142, no. 3 (1998): 219–51. http://dx.doi.org/10.1007/s002050050091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Heggelund, Svein Erling, and Torgeir Moan. "Analysis of Global Load Effects in Catamarans." Journal of Ship Research 46, no. 02 (2002): 81–91. http://dx.doi.org/10.5957/jsr.2002.46.2.81.

Full text
Abstract:
Relevant stresses and deformations resulting from longitudinal bending and torsion are calculated for a 60 m catamaran by a global finite-element model. The results are compared with results from prismatic beam theory modified to account for the effect of wide flanges and significant window openings typical for a catamaran hull. It is found that the global stresses are predicted with a reasonable accuracy for the initial design stage. In the present case, the effect of warping on shear stress due to torsional loading is moderate and can be neglected. However, this effect is strongly dependent
APA, Harvard, Vancouver, ISO, and other styles
25

MÁLEK, JOSEF, JINDŘICH NEČAS, and K. R. RAJAGOPAL. "Global Analysis of the Flows of Fluids with Pressure-Dependent Viscosities." Archive for Rational Mechanics and Analysis 165, no. 3 (2002): 243–69. http://dx.doi.org/10.1007/s00205-002-0219-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Ji-ye, Zhang. "Global stability analysis in cellular neural networks with unbounded time delays." Applied Mathematics and Mechanics 25, no. 6 (2004): 686–93. http://dx.doi.org/10.1007/bf02438212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

DiPerna, R. J., and P. L. Lions. "Global solutions of Boltzmann's equation and the entropy inequality." Archive for Rational Mechanics and Analysis 114, no. 1 (1991): 47–55. http://dx.doi.org/10.1007/bf00375684.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

D'Ancona, Piero, and Sergio Spagnolo. "A class of nonlinear hyperbolic problems with global solutions." Archive for Rational Mechanics and Analysis 124, no. 3 (1993): 201–19. http://dx.doi.org/10.1007/bf00953066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Gerhardt, Claus. "Global C1,1 -regularity for solutions of quasilinear variational inequalities." Archive For Rational Mechanics And Analysis 89, no. 1 (1985): 83–92. http://dx.doi.org/10.1007/bf00281746.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Gustafsson, Tommy. "Global Lp-properties for the spatially homogeneous Boltzmann equation." Archive for Rational Mechanics and Analysis 103, no. 1 (1988): 1–38. http://dx.doi.org/10.1007/bf00292919.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Bresch, D., B. Desjardins, J. M. Ghidaglia, and E. Grenier. "Global Weak Solutions to a Generic Two-Fluid Model." Archive for Rational Mechanics and Analysis 196, no. 2 (2009): 599–629. http://dx.doi.org/10.1007/s00205-009-0261-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Lee Samelson, Sandra. "Global Tchebychev nets on complete two-dimensional Riemannian surfaces." Archive for Rational Mechanics and Analysis 114, no. 3 (1991): 237–54. http://dx.doi.org/10.1007/bf00385970.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Ignatova, Mihaela, and Vlad Vicol. "Almost Global Existence for the Prandtl Boundary Layer Equations." Archive for Rational Mechanics and Analysis 220, no. 2 (2015): 809–48. http://dx.doi.org/10.1007/s00205-015-0942-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Levine, Howard A., and James Serrin. "Global Nonexistence Theorems for Quasilinear Evolution Equations with Dissipation." Archive for Rational Mechanics and Analysis 137, no. 4 (1997): 341–61. http://dx.doi.org/10.1007/s002050050032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Cors, Josep M., and Jaume Llibre. "The global flow of the hyperbolic restricted three-body problem." Archive for Rational Mechanics and Analysis 131, no. 4 (1995): 335–58. http://dx.doi.org/10.1007/bf00380914.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Ben-Artzi, Matania. "Global solutions of two-dimensional Navier-Stokes and euler equations." Archive for Rational Mechanics and Analysis 128, no. 4 (1994): 329–58. http://dx.doi.org/10.1007/bf00387712.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

LeFloch, Philippe G., and Vladimir Shelukhin. "Symmetries and Global Solvability of the Isothermal Gas Dynamics Equations." Archive for Rational Mechanics and Analysis 175, no. 3 (2004): 389–430. http://dx.doi.org/10.1007/s00205-004-0344-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Lu, Yun-guang. "Existence of Global Entropy Solutions of a Nonstrictly Hyperbolic System." Archive for Rational Mechanics and Analysis 178, no. 2 (2005): 287–99. http://dx.doi.org/10.1007/s00205-005-0379-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Hwang, Hyung Ju, and Juan J. L. Velázquez. "Global Existence for the Vlasov–Poisson System in Bounded Domains." Archive for Rational Mechanics and Analysis 195, no. 3 (2009): 763–96. http://dx.doi.org/10.1007/s00205-009-0239-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Yanagida, Eiji, and Shoji Yotsutani. "Global structure of positive solutions to equations of Matukuma type." Archive for Rational Mechanics and Analysis 134, no. 3 (1996): 199–226. http://dx.doi.org/10.1007/bf00379534.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Donnat, P., and J. Rauch. "Global solvability of the maxwell-bloch equations from nonlinear optics." Archive for Rational Mechanics and Analysis 136, no. 3 (1996): 291–303. http://dx.doi.org/10.1007/bf02206557.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Gang, Xu, and Yin Huicheng. "On Global Multidimensional Supersonic Flows with Vacuum States at Infinity." Archive for Rational Mechanics and Analysis 218, no. 3 (2015): 1189–238. http://dx.doi.org/10.1007/s00205-015-0878-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Deng, Yu, Alexandru D. Ionescu, and Benoit Pausader. "The Euler–Maxwell System for Electrons: Global Solutions in 2D." Archive for Rational Mechanics and Analysis 225, no. 2 (2017): 771–871. http://dx.doi.org/10.1007/s00205-017-1114-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Li, Tian-Hong, JingHua Wang, and HaiRui Wen. "Global Structure and Regularity of Solutions to the Eikonal Equation." Archive for Rational Mechanics and Analysis 232, no. 2 (2019): 1073–112. http://dx.doi.org/10.1007/s00205-018-01339-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Donnat, P., and J. Rauch. "Global Solvability of the Maxwell-Bloch Equations from Nonlinear Optics." Archive for Rational Mechanics and Analysis 136, no. 3 (1996): 291–303. http://dx.doi.org/10.1007/s002050050017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Földes, Juraj, and Mouhamadou Sy. "Invariant Measures and Global Well Posedness for the SQG Equation." Archive for Rational Mechanics and Analysis 241, no. 1 (2021): 187–230. http://dx.doi.org/10.1007/s00205-021-01650-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

HENNINGSON, DAN S. "Description of complex flow behaviour using global dynamic modes." Journal of Fluid Mechanics 656 (July 20, 2010): 1–4. http://dx.doi.org/10.1017/s0022112010002776.

Full text
Abstract:
A novel method for performing spectral analysis of a fluid flow solely based on snapshot sequences from numerical simulations or experimental data is presented by Schmid (J. Fluid Mech., 2010, this issue, vol. 656, pp. 5–28). Dominant frequencies and wavenumbers are extracted together with dynamic modes which represent the associated flow structures. The mathematics underlying this decomposition is related to the Koopman operator which provides a linear representation of a nonlinear dynamical system. The procedure to calculate the spectra and dynamic modes is based on Krylov subspace methods;
APA, Harvard, Vancouver, ISO, and other styles
48

Racke, Reinhard, and Yoshihiro Shibata. "Global smooth solutions and asymptotic stability in one-dimensional nonlinear thermoelasticity." Archive for Rational Mechanics and Analysis 116, no. 1 (1991): 1–34. http://dx.doi.org/10.1007/bf00375601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Fischer, J. "Global Existence of Renormalized Solutions to Entropy-Dissipating Reaction–Diffusion Systems." Archive for Rational Mechanics and Analysis 218, no. 1 (2015): 553–87. http://dx.doi.org/10.1007/s00205-015-0866-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Kozono, Hideo, and Taku Yanagisawa. "Global Compensated Compactness Theorem for General Differential Operators of First Order." Archive for Rational Mechanics and Analysis 207, no. 3 (2012): 879–905. http://dx.doi.org/10.1007/s00205-012-0583-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!