Academic literature on the topic 'Global Optimization, Clustering Methods'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Global Optimization, Clustering Methods.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Global Optimization, Clustering Methods"

1

SOUZA, Ellen Polliana Ramos. "Swarm optimization clustering methods for opinion mining." Universidade Federal de Pernambuco, 2017. https://repositorio.ufpe.br/handle/123456789/25227.

Full text
Abstract:
Submitted by Pedro Barros (pedro.silvabarros@ufpe.br) on 2018-07-25T19:46:45Z No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) TESE Ellen Polliana Ramos Souza.pdf: 1140564 bytes, checksum: 0afe0dc25ea5b10611d057c23af46dec (MD5)<br>Approved for entry into archive by Alice Araujo (alice.caraujo@ufpe.br) on 2018-07-26T21:58:03Z (GMT) No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) TESE Ellen Polliana Ramos Souza.pdf: 1140564 bytes, checksum: 0afe0dc25ea5b10611d057c23af46dec (MD5)<br>Made available in DSpace on 2018-07-26T21:58:03Z (GMT). No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) TESE Ellen Polliana Ramos Souza.pdf: 1140564 bytes, checksum: 0afe0dc25ea5b10611d057c23af46dec (MD5) Previous issue date: 2017-02-22<br>Opinion Mining (OM), also known as sentiment analysis, is the field of study that analyzes people’s sentiments, evaluations, attitudes, and emotions about different entities expressed in textual input. This is accomplished through the classification of an opinion into categories, such as positive, negative, or neutral. Supervised machine learning (ML) and lexicon-based are the most frequent approaches for OM. However, these approaches require considerable effort for preparing training data and to build the opinion lexicon, respectively. In order to address the drawbacks of these approaches, this Thesis proposes the use of unsupervised clustering approach for the OM task which is able to produce accurate results for several domains without manually labeled data for the training step or tools which are language dependent. Three swarm algorithms based on Particle Swarm Optimization (PSO) and Cuckoo Search (CS) are proposed: the DPSOMUT which is based on a discrete PSO binary version, the IDPSOMUT that is based on an Improved Self-Adaptive PSO algorithm with detection function, and the IDPSOMUT/CS that is a hybrid version of IDPSOMUT and CS. Several experiments were conducted with different corpora types, domains, text language, class balancing, fitness function, and pre-processing techniques. The effectiveness of the clustering algorithms was evaluated with external measures such as accuracy, precision, recall, and F-score. From the statistical analysis, it was possible to observe that the swarm-based algorithms, especially the PSO ones, were able to find better solutions than conventional grouping techniques, such as K-means and Agglomerative. The PSO-based algorithms achieved better accuracy using a word bigram pre-processing and the Global Silhouette as fitness function. The OBCC corpus is also another contribution of this Thesis and contains a gold collection with 2,940 tweets in Brazilian Portuguese with opinions of consumers about products and services.<br>A mineração de opinião, também conhecida como análise de sentimento, é um campo de estudo que analisa os sentimentos, opiniões, atitudes e emoções das pessoas sobre diferentes entidades, expressos de forma textual. Tal análise é obtida através da classificação das opiniões em categorias, tais como positiva, negativa ou neutra. As abordagens de aprendizado supervisionado e baseadas em léxico são mais comumente utilizadas na mineração de opinião. No entanto, tais abordagens requerem um esforço considerável para preparação da base de dados de treinamento e para construção dos léxicos de opinião, respectivamente. A fim de minimizar as desvantagens das abordagens apresentadas, esta Tese propõe o uso de uma abordagem de agrupamento não supervisionada para a tarefa de mineração de opinião, a qual é capaz de produzir resultados precisos para diversos domínios sem a necessidade de dados rotulados manualmente para a etapa treinamento e sem fazer uso de ferramentas dependentes de língua. Três algoritmos de agrupamento não-supervisionado baseados em otimização de partícula de enxame (Particle Swarm Optimization - PSO) são propostos: o DPSOMUT, que é baseado em versão discreta do PSO; o IDPSOMUT, que é baseado em uma versão melhorada e autoadaptativa do PSO com função de detecção; e o IDPSOMUT/CS, que é uma versão híbrida do IDPSOMUT com o Cuckoo Search (CS). Diversos experimentos foram conduzidos com diferentes tipos de corpora, domínios, idioma do texto, balanceamento de classes, função de otimização e técnicas de pré-processamento. A eficácia dos algoritmos de agrupamento foi avaliada com medidas externas como acurácia, precisão, revocação e f-medida. A partir das análises estatísticas, os algortimos baseados em inteligência coletiva, especialmente os baseado em PSO, obtiveram melhores resultados que os algortimos que utilizam técnicas convencionais de agrupamento como o K-means e o Agglomerative. Os algoritmos propostos obtiveram um melhor desempenho utilizando o pré-processamento baseado em n-grama e utilizando a Global Silhouete como função de otimização. O corpus OBCC é também uma contribuição desta Tese e contem uma coleção dourada com 2.940 tweets com opiniões de consumidores sobre produtos e serviços em Português brasileiro.
APA, Harvard, Vancouver, ISO, and other styles
2

Ren, Zhiwei. "Portfolio Construction using Clustering Methods." Link to electronic thesis, 2005. http://www.wpi.edu/Pubs/ETD/Available/etd-042605-092010/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schütze, Oliver. "Set oriented methods for global optimization." [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=976566982.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gutmann, H. M. "Radial basis function methods for global optimization." Thesis, University of Cambridge, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.599804.

Full text
Abstract:
In many real world optimization problems it is essential or desirable to determine the global minimum of the objective function. The subject of this dissertation is a new class of methods that tackle such problems. In particular, we have in mind problems where function evaluations are expensive and no additional information is available. The methods employ radial basis functions that have been proved to be useful for interpolation problems. Examples include thin plate splines and multiquadrics. Specifically, in each iteration, radial basis function interpolation is used to define a utility function. A maximizer of this function is chosen to be the next point where the objective function is evaluated. Relations to similar optimization methods are established, and a general framework is presented that combines these methods and our methods. A large part of the dissertation is devoted to the convergence theory. We show that convergence can be achieved for most types of basis functions without further assumptions on the objective function. For other types, however, a similar results could not be obtained. This is due to the properties of the so-called native space that is associated with a basis function. In particular, it is of interest whether this space contains sufficiently smooth functions with compact support. In order to address this question, we present two approaches. First, we establish a characterization of the native space in terms of generalized Fourier transforms. For many types, for example thin plate splines, this helps to derive conditions on the smoothness of a function that guarantee that it is in the native space. For other types, for example multiquadrics, however, we show that the native space does not contain a nonzero function with compact support. The second approach we present gives slightly weaker results, but it employs some new theory using interpolation on an infinite regular grid.
APA, Harvard, Vancouver, ISO, and other styles
5

Stepanenko, Svetlana. "Global Optimization Methods based on Tabu Search." Doctoral thesis, kostenfrei, 2008. http://www.opus-bayern.de/uni-wuerzburg/volltexte/2008/3060/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pettersson, Tobias. "Global optimization methods for estimation of descriptive models." Thesis, Linköping University, Department of Electrical Engineering, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-11781.

Full text
Abstract:
<p>Using mathematical models with the purpose to understand and store knowlegde about a system is not a new field in science with early contributions dated back to, e.g., Kepler’s laws of planetary motion.</p><p>The aim is to obtain such a comprehensive predictive and quantitative knowledge about a phenomenon so that mathematical expressions or models can be used to forecast every relevant detail about that phenomenon. Such models can be used for reducing pollutions from car engines; prevent aviation incidents; or developing new therapeutic drugs. Models used to forecast, or predict, the behavior of a system are refered to predictive models. For such, the estimation problem aims to find one model and is well known and can be handeled by using standard methods for global nonlinear optimization.</p><p>Descriptive models are used to obtain and store quantitative knowledge of system. Estimation of descriptive models has not been much described by the literature so far; instead the methods used for predictive models have beed applied. Rather than finding one particular model, the parameter estimation for descriptive models aims to find every model that contains descriptive information about the system. Thus, the parameter estimation problem for descriptive models can not be stated as a standard optimization problem.</p><p>The main objective for this thesis is to propose methods for estimation of descriptive models. This is made by using methods for nonlinear optimization including both new and existing theory.</p>
APA, Harvard, Vancouver, ISO, and other styles
7

McMeen, John Norman Jr. "Ranking Methods for Global Optimization of Molecular Structures." Digital Commons @ East Tennessee State University, 2014. https://dc.etsu.edu/etd/2447.

Full text
Abstract:
This work presents heuristics for searching large sets of molecular structures for low-energy, stable systems. The goal is to find the globally optimal structures in less time or by consuming less computational resources. The strategies intermittently evaluate and rank structures during molecular dynamics optimizations, culling possible weaker solutions from evaluations earlier, leaving better solutions to receive more simulation time. Although some imprecision was introduced from not allowing all structures to fully optimize before ranking, the strategies identify metrics that can be used to make these searches more efficient when computational resources are limited.
APA, Harvard, Vancouver, ISO, and other styles
8

Akteke, Basak. "Derivative Free Optimization Methods: Application In Stirrer Configuration And Data Clustering." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/2/12606591/index.pdf.

Full text
Abstract:
Recent developments show that derivative free methods are highly demanded by researches for solving optimization problems in various practical contexts. Although well-known optimization methods that employ derivative information can be very effcient, a derivative free method will be more effcient in cases where the objective function is nondifferentiable, the derivative information is not available or is not reliable. Derivative Free Optimization (DFO) is developed for solving small dimensional problems (less than 100 variables) in which the computation of an objective function is relatively expensive and the derivatives of the objective function are not available. Problems of this nature more and more arise in modern physical, chemical and econometric measurements and in engineering applications, where computer simulation is employed for the evaluation of the objective functions. In this thesis, we give an example of the implementation of DFO in an approach for optimizing stirrer configurations, including a parametrized grid generator, a flow solver, and DFO. A derivative free method, i.e., DFO is preferred because the gradient of the objective function with respect to the stirrer&rsquo<br>s design variables is not directly available. This nonlinear objective function is obtained from the flow field by the flow solver. We present and interpret numerical results of this implementation. Moreover, a contribution is given to a survey and a distinction of DFO research directions, to an analysis and discussion of these. We also state a derivative free algorithm used within a clustering algorithm in combination with non-smooth optimization techniques to reveal the effectiveness of derivative free methods in computations. This algorithm is applied on some data sets from various sources of public life and medicine. We compare various methods, their practical backgrounds, and conclude with a summary and outlook. This work may serve as a preparation of possible future research.
APA, Harvard, Vancouver, ISO, and other styles
9

Stolpe, Mathias. "On Models and Methods for Global Optimization of Structural Topology." Doctoral thesis, KTH, Mathematics, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3478.

Full text
Abstract:
<p>This thesis consists of an introduction and sevenindependent, but closely related, papers which all deal withproblems in structural optimization. In particular, we considermodels and methods for global optimization of problems intopology design of discrete and continuum structures.</p><p>In the first four papers of the thesis the nonconvex problemof minimizing the weight of a truss structure subject to stressconstraints is considered. First itis shown that a certainsubclass of these problems can equivalently be cast as linearprograms and thus efficiently solved to global optimality.Thereafter, the behavior of a certain well-known perturbationtechnique is studied. It is concluded that, in practice, thistechnique can not guarantee that a global minimizer is found.Finally, a convergent continuous branch-and-bound method forglobal optimization of minimum weight problems with stress,displacement, and local buckling constraints is developed.Using this method, several problems taken from the literatureare solved with a proof of global optimality for the firsttime.</p><p>The last three papers of the thesis deal with topologyoptimization of discretized continuum structures. Theseproblems are usually modeled as mixed or pure nonlinear 0-1programs. First, the behavior of certain often usedpenalization methods for minimum compliance problems isstudied. It is concluded that these methods may fail to producea zero-one solution to the considered problem. To remedy this,a material interpolation scheme based on a rational functionsuch that compli- ance becomes a concave function is proposed.Finally, it is shown that a broad range of nonlinear 0-1topology optimization problems, including stress- anddisplacement-constrained minimum weight problems, canequivalently be modeled as linear mixed 0-1 programs. Thisresult implies that any of the standard methods available forgeneral linear integer programming can now be used on topologyoptimization problems.</p><p><b>Keywords:</b>topology optimization, global optimization,stress constraints, linear programming, mixed integerprogramming, branch-and-bound.</p>
APA, Harvard, Vancouver, ISO, and other styles
10

Robertson, Blair Lennon. "Direct Search Methods for Nonsmooth Problems using Global Optimization Techniques." Thesis, University of Canterbury. Mathematics and Statistics, 2010. http://hdl.handle.net/10092/5060.

Full text
Abstract:
This thesis considers the practical problem of constrained and unconstrained local optimization. This subject has been well studied when the objective function f is assumed to smooth. However, nonsmooth problems occur naturally and frequently in practice. Here f is assumed to be nonsmooth or discontinuous without forcing smoothness assumptions near, or at, a potential solution. Various methods have been presented by others to solve nonsmooth optimization problems, however only partial convergence results are possible for these methods. In this thesis, an optimization method which use a series of local and localized global optimization phases is proposed. The local phase searches for a local minimum and gives the methods numerical performance on parts of f which are smooth. The localized global phase exhaustively searches for points of descent in a neighborhood of cluster points. It is the localized global phase which provides strong theoretical convergence results on nonsmooth problems. Algorithms are presented for solving bound constrained, unconstrained and constrained nonlinear nonsmooth optimization problems. These algorithms use direct search methods in the local phase as they can be applied directly to nonsmooth problems because gradients are not explicitly required. The localized global optimization phase uses a new partitioning random search algorithm to direct random sampling into promising subsets of ℝⁿ. The partition is formed using classification and regression trees (CART) from statistical pattern recognition. The CART partition defines desirable subsets where f is relatively low, based on previous sampling, from which further samples are drawn directly. For each algorithm, convergence to an essential local minimizer of f is demonstrated under mild conditions. That is, a point x* for which the set of all feasible points with lower f values has Lebesgue measure zero for all sufficiently small neighborhoods of x*. Stopping rules are derived for each algorithm giving practical convergence to estimates of essential local minimizers. Numerical results are presented on a range of nonsmooth test problems for 2 to 10 dimensions showing the methods are effective in practice.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography