Contents
Academic literature on the topic 'Global submanifolds'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Global submanifolds.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Global submanifolds"
YANG, GUO-HONG, SHI-XIANG FENG, GUANG-JIONG NI, and YI-SHI DUAN. "RELATIONS OF TWO TRANSVERSAL SUBMANIFOLDS AND GLOBAL MANIFOLD." International Journal of Modern Physics A 16, no. 21 (2001): 3535–51. http://dx.doi.org/10.1142/s0217751x01005080.
Full textMondino, Andrea, and Huy T. Nguyen. "Global Conformal Invariants of Submanifolds." Annales de l'Institut Fourier 68, no. 6 (2018): 2663–95. http://dx.doi.org/10.5802/aif.3220.
Full textMerkulov, Sergey A. "Moduli spaces of compact complex submanifolds of complex fibered manifolds." Mathematical Proceedings of the Cambridge Philosophical Society 118, no. 1 (1995): 71–91. http://dx.doi.org/10.1017/s0305004100073473.
Full textDajczer, Marcos, and Lucio Rodríguez. "Substantial Codimension of Submanifolds: Global Results." Bulletin of the London Mathematical Society 19, no. 5 (1987): 467–73. http://dx.doi.org/10.1112/blms/19.5.467.
Full textCai, Kairen. "Global pinching theorems of submanifolds in spheres." International Journal of Mathematics and Mathematical Sciences 31, no. 3 (2002): 183–91. http://dx.doi.org/10.1155/s0161171202106247.
Full textCai, Kairen. "Global pinching theorems for minimal submanifolds in spheres." Colloquium Mathematicum 96, no. 2 (2003): 225–34. http://dx.doi.org/10.4064/cm96-2-7.
Full textSARDANASHVILY, G. "SUPERINTEGRABLE HAMILTONIAN SYSTEMS WITH NONCOMPACT INVARIANT SUBMANIFOLDS: KEPLER SYSTEM." International Journal of Geometric Methods in Modern Physics 06, no. 08 (2009): 1391–414. http://dx.doi.org/10.1142/s0219887809004260.
Full textDAJCZER, MARCOS, and RUY TOJEIRO. "AN EXTENSION OF THE CLASSICAL RIBAUCOUR TRANSFORMATION." Proceedings of the London Mathematical Society 85, no. 1 (2002): 211–32. http://dx.doi.org/10.1112/s0024611502013552.
Full textForstneric, Franc, and Erik Low. "Global holomorphic equivalence of smooth submanifolds in C^n." Indiana University Mathematics Journal 46, no. 1 (1997): 0. http://dx.doi.org/10.1512/iumj.1997.46.1348.
Full textGonzález-Dávila, J. C., M. C. González-Dávila, and L. Vanhecke. "Invariant submanifolds in flow geometry." Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics 62, no. 3 (1997): 290–314. http://dx.doi.org/10.1017/s1446788700001026.
Full text