Academic literature on the topic 'Gluconacetobacter xylinum'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Gluconacetobacter xylinum.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Gluconacetobacter xylinum"

1

Lee, Jin W., Fang Deng, Walter G. Yeomans, Alfred L. Allen, Richard A. Gross, and David L. Kaplan. "Direct Incorporation of Glucosamine andN-Acetylglucosamine into Exopolymers byGluconacetobacter xylinus (=Acetobacter xylinum) ATCC 10245: Production of Chitosan-Cellulose and Chitin-Cellulose Exopolymers." Applied and Environmental Microbiology 67, no. 9 (2001): 3970–75. http://dx.doi.org/10.1128/aem.67.9.3970-3975.2001.

Full text
Abstract:
ABSTRACT Gluconacetobacter xylinus (=Acetobacter xylinum) ATCC 10245 incorporated 2-amino-2-deoxy-d-glucose (glucosamine) and 2-acetamido-2-deoxy-d-glucose (N-acetylglucosamine), but not 3-O-methyl-d-glucose or 2-deoxy-d-glucose into exopolymers. Incorporation was confirmed by gas chromatography with and without mass spectrometry, Fourier transform infrared, and 1H nuclear magnetic resonance. The average molar percentage of glucosamine andN-acetylglucosamine in the exopolymers was about 18%.
APA, Harvard, Vancouver, ISO, and other styles
2

Yee, Foong Choi, and Saiful Izwan Abd Razak. "Surface Modification of Bacterial Cellulose Film." Materials Science Forum 889 (March 2017): 71–74. http://dx.doi.org/10.4028/www.scientific.net/msf.889.71.

Full text
Abstract:
Bacterial cellulose (BC) is the cellulose which is produced by specific bacteria such as Acetobacter xylinum, Agrobacterium, Gluconacetobacter, Rhizobium, Achromobacter, Alcaligenes, Aerobacter, Azotobacter, Salmonella, Esherichia, and Sarcina. Surface modification of bacterial cellulose (BC) by coating with synthetic biodegradable polyester on it was reported. BC films were coated with the polymer at different concentrations in order to improve the surface structure of BC. Tear and burst indices of the BC film were increased with such modification.
APA, Harvard, Vancouver, ISO, and other styles
3

Soudi, Mohammad Reza, Sepideh Khazeni, Ashrafalsadat Hatamian-Zarmi, et al. "Production of Nano Cellulose in Miniature-Bioreactor: Optimization and Characterization." Preparative Biochemistry and Biotechnology 47, no. 4 (2020): 371–78. https://doi.org/10.1080/10826068.2016.1252923.

Full text
Abstract:
Bacterial cellulose (BC) is a very fascinating microbial biopolymer which is mainly produced by Gluconacetobacter xylinum. Optimization of BC production by G. xylinum was performed based on scale-down studies in miniature-bioreactor and response surface methodology in which the optimum pH value (6.5) and shaking rate (50 rpm) were obtained. The static culture condition for BC production has newly been defined. Nanostructure of BC includes nanofibers up to (60 nm) and nanoporosity up to (265 nm) was observed by scanning electron microscopy. By Fourier transform infrared spectroscopy study, the
APA, Harvard, Vancouver, ISO, and other styles
4

Weng, Yuanyuan, Brittney Nagle, Karl Mueller, and Jeffrey Catchmark. "The formation of Gluconacetobacter xylinum cellulose under the influence of the dye brilliant yellow." Cellulose 26, no. 18 (2019): 9373–86. http://dx.doi.org/10.1007/s10570-019-02651-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ha, Jung Hwan, and Joong Kon Park. "Improvement of bacterial cellulose production in Acetobacter xylinum using byproduct produced by Gluconacetobacter hansenii." Korean Journal of Chemical Engineering 29, no. 5 (2012): 563–66. http://dx.doi.org/10.1007/s11814-011-0224-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ojo, Abidemi Oluranti, and Olga de Smidt. "Microbial Composition, Bioactive Compounds, Potential Benefits and Risks Associated with Kombucha: A Concise Review." Fermentation 9, no. 5 (2023): 472. http://dx.doi.org/10.3390/fermentation9050472.

Full text
Abstract:
Kombucha is a fermented tea beverage containing bioactive compounds from tea and vital compounds such as acetic acid, D-saccharic acid-1,4-lactone, and glucuronic and gluconic acids produced from the metabolic activities of bacteria and yeasts, which benefit human health. Kombucha contains a symbiotic culture of bacteria and yeast (SCOBY), which actively ferments sugar. Kombucha microbial compositions vary due to environmental conditions and the starter culture. Saccharomyces sp., Schizosaccharomyces pombe, Schizosaccharomyces sp., and Brettanomyces sp. (yeasts) and Acetobacter aceti, Komagata
APA, Harvard, Vancouver, ISO, and other styles
7

Chavez-Pacheco, J. L., S. Martinez-Yee, M. L. Contreras, S. Gomez-Manzo, J. Membrillo-Hernandez, and J. E. Escamilla. "Partial bioenergetic characterization of Gluconacetobacter xylinum cells released from cellulose pellicles by a novel methodology." Journal of Applied Microbiology 99, no. 5 (2005): 1130–40. http://dx.doi.org/10.1111/j.1365-2672.2005.02708.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

G., Gayathry, and Murugesan R. "Laxative Properties of Bacterial Cellulose Isolated from Gluconacetobacter xylinum sju-1 against Loperamide Induced Constipated Sprague-Dawley Rats." Journal of Scientific Research & Reports 14, no. 6 (2017): 1–7. https://doi.org/10.9734/JSRR/2017/34631.

Full text
Abstract:
<strong>Aims: </strong>To evaluate the laxative properties of bacterial cellulose (BC) isolated from <em>Gluconacetobacter xylinum</em> sju-1 against loperamide induced constipated Sprague-Dawley rats. <strong>Study Design:</strong> Completely Randomised Design (CRD). <strong>Place and Duration of Study:</strong> Department of Agricultural Microbiology,Tamil Nadu Agricultural University (TNAU), Coimbatore, Tamil Nadu and Kovai Medical College Hospital, KMCH College of Pharmacy, Institute Animal House Facility, Coimbatore, Tamil Nadu between March 2013- April 2014. <strong>Methodology:</strong>
APA, Harvard, Vancouver, ISO, and other styles
9

Gayathry, G., and R. Murugesan. "Laxative Properties of Bacterial Cellulose Isolated from Gluconacetobacter xylinum sju-1 against Loperamide Induced Constipated Sprague-Dawley Rats." Journal of Scientific Research and Reports 14, no. 6 (2017): 1–7. http://dx.doi.org/10.9734/jsrr/2017/34631.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gayathry, G. "Production of Nata de Coco - a Natural Dietary Fibre Product from Mature Coconut Water using Gluconacetobacter xylinum (sju-1)." International Journal of Food and Fermentation Technology 5, no. 2 (2015): 231. http://dx.doi.org/10.5958/2277-9396.2016.00006.4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Gluconacetobacter xylinum"

1

COIMBRA, Cynthia Gisele de Oliveira. "Produção de celulose bacteriana por Gluconacetobacter xylinus e elaboração de filmes comestíveis." Universidade Federal de Pernambuco, 2015. https://repositorio.ufpe.br/handle/123456789/17462.

Full text
Abstract:
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2016-07-19T13:51:41Z No. of bitstreams: 3 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Tese Cynthia Coimbra BC.pdf: 5378162 bytes, checksum: c76cbf49b8ae27ba5d421eba30de2290 (MD5) Tese Cynthia Coimbra BC.pdf: 5378162 bytes, checksum: c76cbf49b8ae27ba5d421eba30de2290 (MD5)<br>Made available in DSpace on 2016-07-19T13:51:41Z (GMT). No. of bitstreams: 3 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Tese Cynthia Coimbra BC.pdf: 5378162 bytes, checksum: c76cbf49b8ae27ba5d
APA, Harvard, Vancouver, ISO, and other styles
2

Sandoval, Vargas Diego Esteban. "Evaluación del rendimiento de producción de celulosa bacteriana usando microalgas como fuente sustentable de oxígeno." Tesis, Universidad de Chile, 2017. http://repositorio.uchile.cl/handle/2250/144130.

Full text
Abstract:
Seminario de Título entregado a la Universidad de Chile en cumplimiento parcial de los requisitos para optar al Título de Ingeniero en Biotecnología Molecular<br>La celulosa es un polisacárido que se encuentra presente en la naturaleza, el cual es de importancia mundial, debido a sus propiedades únicas que lo hacen fundamental en aplicaciones industriales tan diversas, como lo son en la producción del papel, en la industria biomédica, en el vestuario, cosméticos, entre otros. No sólo los organismos vegetales son capaces de producir celulosa, sino que también microorganismos como las bacte
APA, Harvard, Vancouver, ISO, and other styles
3

Sandoval, Vargas Diego Esteban. "Evaluación del rendimiento de producción de celulosa bacteriana usando microalgas como fuente sustentable de oxíge." Tesis, Universidad de Chile, 2017. http://repositorio.uchile.cl/handle/2250/145553.

Full text
Abstract:
La celulosa es un polisacárido que se encuentra presente en la naturaleza, el cual es de importancia mundial, debido a sus propiedades únicas que lo hacen fundamental en aplicaciones industriales tan diversas, como lo son en la producción del papel, en la industria biomédica, en el vestuario, cosméticos, entre otros. No sólo los organismos vegetales son capaces de producir celulosa, sino que también microorganismos como las bacterias Acetobacter, entre ellas la bacteria Gluconacetobacter xylinus (G. xylinus), la cual es el organismo más estudiado por el rendimiento de biopelícula produci
APA, Harvard, Vancouver, ISO, and other styles
4

Vieira, Denise Cristina Moretti. "Produção de biofilme (membrana de biocelulose) por Gluconacetobacter xylinus em meio de resíduos de frutas e folhas de chá verde." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/9/9134/tde-19062013-185045/.

Full text
Abstract:
A biomembrana, que é uma membrana de celulose bacteriana (C6H10O5)n formada na superfície do meio de cultivo durante a fermentação acética, foi obtida através do cultivo associado de Gluconacetobacter xylinus (formalmente Acetobacter xylinum) e Saccharomyces cerevisiae em meio de folhas de chá verde, resíduos de frutas (abacaxi, mamão, laranja), resíduos de vegetais (beterraba), vinho e colágeno em condições estáticas a 28 ± 2°C de 7 a 30 dias de cultivo. Foi incorporado à biomembrana, extrato hidroalcoólico de Calendula officinalis, devido as suas propriedades anti-inflamatórias, antioxidante
APA, Harvard, Vancouver, ISO, and other styles
5

Hofinger, Michael Dominik [Verfasser], Dirk [Akademischer Betreuer] Weuster-Botz, Tim C. [Akademischer Betreuer] Lüth, and Wolfgang [Akademischer Betreuer] Liebl. "Membrangestützte Herstellung bakterieller Cellulose mit Gluconacetobacter xylinus / Michael Hofinger. Gutachter: Tim C. Lüth ; Wolfgang Liebl. Betreuer: Dirk Weuster-Botz." München : Universitätsbibliothek der TU München, 2011. http://d-nb.info/101959019X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Vidotto, Francielle Lina. "Produção de celulose e perfil dos metabólitos de fermentação de glicerol associado às fontes glucose e sacarose por Gluconacetobacter xylinus." Universidade Estadual de Londrina. Centro de Ciências Exatas. Programa de Pós-Graduação em Biotecnologia, 2015. http://www.bibliotecadigital.uel.br/document/?code=vtls000207567.

Full text
Abstract:
A celulose bacteriana é dotada de propriedades físicas únicas, incluindo uma rede de fibra ultrafina altamente cristalina. Grande esforço tem sido dedicado a melhorar a produção biotecnológica de celulose e reduzir os custos de produção. A produção de celulose associada ao glicerol é de interesse por este ser o principal subproduto da produção de biodiesel. Devido à sua ampla ocorrência na natureza, muitos microrganismos podem utilizar glicerol como fonte de carbono e energia, desta forma este têm atraído a atenção para o uso na bioconversão do glicerol. Para a biossíntese de celulose utilizou
APA, Harvard, Vancouver, ISO, and other styles
7

Donini, Ígor Augusto Negri [UNESP]. "Desenvolvimento de métodos de cultivo de Gluconacetobacter xylinus para obtenção de compósitos à base de celulose bacteriana e colágeno tipo I adicionado in situ." Universidade Estadual Paulista (UNESP), 2011. http://hdl.handle.net/11449/88021.

Full text
Abstract:
Made available in DSpace on 2014-06-11T19:23:06Z (GMT). No. of bitstreams: 0 Previous issue date: 2011-08-12Bitstream added on 2014-06-13T18:09:17Z : No. of bitstreams: 1 donini_ian_me_araiq_parcial.pdf: 182729 bytes, checksum: bdb9579af5c8f6e36e501988b64407ee (MD5) Bitstreams deleted on 2015-06-25T13:01:21Z: donini_ian_me_araiq_parcial.pdf,. Added 1 bitstream(s) on 2015-06-25T13:03:34Z : No. of bitstreams: 1 000691030_20160812.pdf: 182386 bytes, checksum: 7e3d4364fb5bfca56e21950fa8331ae7 (MD5) Bitstreams deleted on 2016-08-12T12:00:47Z: 000691030_20160812.pdf,. Added 1 bitstream(s) on 201
APA, Harvard, Vancouver, ISO, and other styles
8

Donini, Ígor Augusto Negri. "Desenvolvimento de métodos de cultivo de Gluconacetobacter xylinus para obtenção de compósitos à base de celulose bacteriana e colágeno tipo I adicionado in situ /." Araraquara : [s.n.], 2011. http://hdl.handle.net/11449/88021.

Full text
Abstract:
Orientador: Reinaldo Marchetto<br>Coorientador: Younés Messaddeq<br>Banca: Wilton Rogério Lustri<br>Banca: Rosana Maria Nascimento de Assunção<br>Resumo: A celulose bacteriana (CB) é um polímero produzido pela bactéria Gluconacetobacter xylinus, e apresenta diversas aplicações biomédicas e tecnológicas. Recentemente foi desenvolvido o método de inserção in situ, que visa a produção de compósitos via adição de materiais no meio de cultura. Neste trabalho tem sido realizada a inserção de colágeno durante a formação da CB no intuito de melhorar as propriedades osteocondutoras do compósito, forman
APA, Harvard, Vancouver, ISO, and other styles
9

Auta, Richard. "Purification and characterisation of novel recombinant β-glucosidases from aspergillus with application in biofuel production". Thesis, University of Wolverhampton, 2015. http://hdl.handle.net/2436/606935.

Full text
Abstract:
β-glucosidases are important components of the cellulase enzyme system in which they not only hydrolyse cellobiose to glucose, but also remove the feedback inhibition effects of cellobiose on exoglucanase and endoglucanase thereby increasing the rate of cellulose degradation to fermentable sugars. A total of 166 proteins were identified as β-glucosidases after manual BLASTp search on the Aspergillus comparative database from eight species. Evidence for Horizontal Gene Transfer (HGT) of bacterial origin of some β-glucosidase genes was provided by their lack of introns, absence of some fungal sp
APA, Harvard, Vancouver, ISO, and other styles
10

Mehta, Kalpa Pravin. "Functional analysis of the acsD gene for understanding cellulose biosynthesis in Gluconacetobacter xylinus." Thesis, 2012. http://hdl.handle.net/2152/ETD-UT-2012-05-5198.

Full text
Abstract:
The acsD gene is a unique gene present in the cellulose biosynthesis operon in G. xylinus. With the use of homologous recombination, the acsD gene disruption mutation was created in the G. xylinus genome. Phenotypic characterization of the acsD gene mutant was investigated with the assistance of light and electron microscopy observations, carboxymethyl cellulose alterations, and lower temperature incubation. The microscopic analysis of the cellulose ribbons secreted from the acsD gene mutant shows that the polymerization and the crystallization components in mutant cells were functional. Obser
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Gluconacetobacter xylinum"

1

Zhu, Huixia, Shiru Jia, Hongjiang Yang, Lin Yan, and Jing Li. "The Study of Optimal Conditions of Electroporation in Gluconacetobacter Xylinum." In Advances in Intelligent and Soft Computing. Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25349-2_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zheng, Xintong, Cheng Zhong, Miao Liu, Ainan Guo, Yanyan Li, and Shiru Jia. "The Cells of Gluconacetobacter xylinus Response to Exposure." In Proceedings of the 2012 International Conference on Applied Biotechnology (ICAB 2012). Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37925-3_188.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bayraktar, Aytül. "Biopolymer Bacterial Cellulose Produced by Bacteria and Its Use in Health." In Current Researches in Health Sciences-III. Özgür Yayınları, 2023. http://dx.doi.org/10.58830/ozgur.pub305.c1286.

Full text
Abstract:
Bacterial cellulose is frequently used because it is economical and suitable for various production areas. Bacterial cellulose (BC) is a pure, crystalline material with superior properties, synthesized by aerobic bacteria. BC is produced by some bacteria, such as Gluconacetobacter xylinum, which stores abundant amounts of fibrils in 3D networks. Bacterial cellulose (BC) is a very comprehensive biomaterial. It is used in many areas such as the food industry, pharmaceutical industry, industrial and agricultural sectors. By producing bacterial cellulose from waste materials, it reduces costs and
APA, Harvard, Vancouver, ISO, and other styles
4

Bajpai, Pratima. "General Background and Introduction." In Bacterial Nanocellulose for Papermaking and Packaging. BENTHAM SCIENCE PUBLISHERS, 2024. https://doi.org/10.2174/9789815322163124010004.

Full text
Abstract:
Bacterial nanocellulose (BNC) is a singular natural nanomaterial when compared to other naturally occurring or artificially created nanomaterials. Numerous bacteria have the ability to generate BNC, which helps them survive in various ecological environments. Due to its exceptional physico-chemical and biological properties, it is becoming a biomaterial that is significant in many industrial areas. BNC is a strong contender for usage in papermaking because of its intrinsic nanometric size and strength characteristics. For the manufacture of cellulose, Gluconacetobacter xylinus, previously know
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Gluconacetobacter xylinum"

1

Schwertz, Joseph M., Paul Gatenholm, and Alan W. Eberhardt. "Mechanical Analysis of Bacterial Nanocellulose for Biomedical Applications." In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80491.

Full text
Abstract:
Bacterial nanocellulose (BNC) is a biopolymer that has been used in a variety of applications ranging from speaker diaphragms to biomedical products. With the exact chemical structure as that produced by plants, BNC is created by microbes like Gluconacetobacter xylinus. One of the unique aspects of BNC is its ability to have a wide variety of mechanical properties while in hydrogel form.
APA, Harvard, Vancouver, ISO, and other styles
2

Fang Lin and Jeffrey M Catchmark. "Characterization of Exopolysaccharides from Certain strains of Gluconacetobacter xylinus." In 2011 Louisville, Kentucky, August 7 - August 10, 2011. American Society of Agricultural and Biological Engineers, 2011. http://dx.doi.org/10.13031/2013.37752.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bou, Jordi J., Eliana Ramirez, and Martina Bou-Larrosa. "Effect of alcohols on bacterial nanocellulose production by fermentation using Gluconacetobacter Xylinus." In 15th Mediterranean Congress of Chemical Engineering (MeCCE-15). Grupo Pacífico, 2023. http://dx.doi.org/10.48158/mecce-15.t2-p-02.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fang Lin and Jeffrey M Catchmark. "Analysis of Gluconacetobacter xylinus exopolysaccharides and its impacts on bacterial cellulose production and crystallization." In 2012 Dallas, Texas, July 29 - August 1, 2012. American Society of Agricultural and Biological Engineers, 2012. http://dx.doi.org/10.13031/2013.41835.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yuanyuan Weng and Jeffrey M. Catchmark. "Impact of brilliant yellow on the synthesis and structure change of Gluconacetobacter xylinus cellulose." In 2013 Kansas City, Missouri, July 21 - July 24, 2013. American Society of Agricultural and Biological Engineers, 2013. http://dx.doi.org/10.13031/aim.20131621202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fang Lin and Jeffrey M Catchmark. "Comparison of cellulose production of two different Gluconacetobacter xylinus strains using both glucose and galactose as carbon sources." In 2010 Pittsburgh, Pennsylvania, June 20 - June 23, 2010. American Society of Agricultural and Biological Engineers, 2010. http://dx.doi.org/10.13031/2013.29926.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Raghuwanshi, Vikram Singh, Ziwei Huang, Christopher J. Garvey, Warren Batchelor, and Gil Garnier. "Biomacromolecule Adsorption at the Cellulose–Liquid Interface." In Advances in Pulp and Paper Research, Oxford 2017, edited by W. Batchelor and D. Söderberg. Fundamental Research Committee (FRC), Manchester, 2017. http://dx.doi.org/10.15376/frc.2017.2.895.

Full text
Abstract:
A novel methodology is developed to visualize and quantify biomolecules adsorption at the cellulose film0liquid interface. Hydrogenated cellulose (HC) films were made from cellulose acetate and deuterated cellulose (DC) films produced using deuterated bacterial cellulose. Deuterated bacterial cellulose was obtained by growing the Gluconacetobacter xylinus strain ATCC 53524 in D2O media. Horse Radish Peroxidase (HRP), a robust and well knw enzyme, was selected as model functional biomacromolecule to adsorb at the cellulose interface. The film thickness and quantification of adsorbed HRP molecul
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!