Academic literature on the topic '¿-glucosidasa'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic '¿-glucosidasa.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "¿-glucosidasa"
Rangel Alfaro, Carlos Alberto, Héctor Manuel Mora-Montes, Alberto Flores-Martínez та Arturo Flores Carreón. "Aislamiento y caracterización bioquímica de la α-glucosidasa II del hongo patógeno Candida albicans". Acta Universitaria 21, № 2 (2011): 5–10. http://dx.doi.org/10.15174/au.2011.20.
Full textCoral Caycho, Erick Raúl, María Rosario Calixto Cotos та María Mercedes Soberón Lozano. "ACTIVIDAD INHIBITORIA in vitro DE LOS EXTRACTOS ACUOSOS DE LOS FRUTOS DE Hylocereus megalanthus Y Passiflora tripartita var. mollisima SOBRE LAS ENZIMAS α-AMILASA Y α-GLUCOSIDASA". Revista de la Sociedad Química del Perú 86, № 2 (2020): 93–104. http://dx.doi.org/10.37761/rsqp.v86i2.279.
Full textSevilla-Asencio, Osmery Alín, Octavio Dublán-García, Leobardo Manuel Gómez-Oliván та Leticia Xochitl López-Martínez. "Actividad inhibitoria sobre α-glucosidasa y α-amilasa de extractos acuosos de algunas especias utilizados en la cocina mexicana". CienciaUAT 8, № 1 (2013): 42. http://dx.doi.org/10.29059/cienciauat.v8i1.6.
Full textVera Cala, Lina María, Sergio Eduardo Serrano Gómez, Alexandra Cortés, Ismael Estrada, and Aurora Gáfaro. "Validez de la prueba de actividad enzimática de la glucocerebrosidasa para el diagnóstico de enfermedad de Gaucher, revisión sistemática." MedUNAB 20, no. 2 (2017): 201–6. http://dx.doi.org/10.29375/01237047.3247.
Full textLópez-Martínez, Leticia X., Luisa M. Aguilar Cisneros та Octavio Dublán-García. "Actividad antioxidante e inhibidora de α-glucosidasa y α-amilasa de tres variedades de cebolla (Allium cepa L.)". Nova Scientia 6, № 12 (2014): 234. http://dx.doi.org/10.21640/ns.v6i12.51.
Full textRey, Diana Patricia, Luis Fernando Ospina, and Diana Marcela Aragón. "Inhibitory effects of an extract of fruits of Physalis peruviana on some intestinal carbohydrases." Revista Colombiana de Ciencias Químico-Farmacéuticas 44, no. 1 (2015): 72–89. http://dx.doi.org/10.15446/rcciquifa.v44n1.54281.
Full textIwashita, Kazuhiro, Tatsuya Nagahara, Hitoshi Kimura, Makoto Takano, Hitoshi Shimoi та Kiyoshi Ito. "The bglA Gene of Aspergillus kawachii Encodes Both Extracellular and Cell Wall-Bound β-Glucosidases". Applied and Environmental Microbiology 65, № 12 (1999): 5546–53. http://dx.doi.org/10.1128/aem.65.12.5546-5553.1999.
Full textGrandez-Urbina, J. Antonio, Claudio Bustamante-Ubillus, Rossy Farro-Calderon, Ismael Linares-Alarcon, and Silvana Goyzueta-Knox. "Enfermedad de Pompe de inicio temprano. A propósito de un caso." Revista Medica Herediana 24, no. 4 (2013): 311. http://dx.doi.org/10.20453/rmh.v24i4.276.
Full textPiñero, Vivian Lis, Gabriela Cristina Sarti, Silvia Catán, Erika Pacheco Rudz, Ana Eva Josefina Cristóbal Miguez, and Diana Noemí Effron. "Propiedades microbiologicas en un suelo bajo plantaciones forestales / Microbiological properties in a soil under forest plantations." Brazilian Journal of Animal and Environmental Research 4, no. 3 (2021): 4165–73. http://dx.doi.org/10.34188/bjaerv4n3-105.
Full textRincón Silva, Juan David, Nelson Giovanny Rincon-Silva та Jairo Steffan Acosta Vargas. "Inhibición de la α-glucosidasa mediante flavonoides de origen natural como vía de control en el desarrollo de diabetes mellitus". Biociencias 14, № 2 (2019): 129–48. http://dx.doi.org/10.18041/2390-0512/biociencias.2.6026.
Full textDissertations / Theses on the topic "¿-glucosidasa"
Casa, Villegas Mary Fernanda. "Caracterización de glicosidasas y permeasas fúngicas implicadas en el transporte y metabolismo de azúcares." Doctoral thesis, Universitat Politècnica de València, 2018. http://hdl.handle.net/10251/106344.
Full textIn the present work, glycosyl hydrolases (GHs) and fungal permeases involved in the metabolism and transport of sugars were characterized, with two different applications: the production of ethanol and the synthesis of isomaltooligosaccharides (IMOS). Three specific objectives have been addressed in order to: 1) develop an efficient process of saccharification and simultaneous fermentation (SSF) of cellulose; 2) compare different strategies for cellobiose fermentation, a critical step in cellulose fermentation; 3) synthesize IMOS using, as catalytic material, yeast cells that produce Aspergillus niger ¿-glucosidase. Strategies for extracellular or intracellular hydrolysis of cellobiose have been compared. To this end, the T500 strain and new recombinant strains generated in this study were used. In a first approach for intracellular hydrolysis, three different ß-glucosidases and a cellobiose permease from Penicillium oxalicum were tested. In the resulting transformants, growth rate in cellobiose was limited by ß-glucosidases with low cellobiase activity, but above a certain activity value the main bottleneck was sugar transport. For this reason, we searched novel cellobiose transporters from T. reesei. Among 107 sequences designated as sugar transporters in the genome of T. reesei, ten were selected based on their higher sequence similarity with functionally characterized cellobiose permeases from other fungi. Only one of them (Tr_StrC) was able to facilitate cellobiose transport and to allow growth of S. cerevisiae. Finally, the ability to ferment cellobiose of the double yeast transformants, capable of transporting and hydrolyzing the disaccharide intracellularly, was compared with that of the transformant T500. The extracellular strategy allowed a faster fermentation rate and higher ethanol yields compared to the intracellular approach. The T500 strain was also more efficient in a cellulose SSF system. Recombinant strains of S. cerevisiae expressing a gene (aglA) encoding an ¿-glucosidase from A. niger have been constructed and analyzed. The yeast transformants produced ¿-glucosidase activity extracellularly, half of which was cell-associated and the other half was released into the culture medium. Using maltose as the only initial substrate, after 8 h of incubation, the main product of transglycosylation was panose, but after 24 h the predominant product was isomaltose. Isomaltose also predominated at short reaction times, if a mixture of maltose and glucose was used instead of maltose alone. In order to facilitate the synthesis of IMOS, a process was designed in which the yeast cells can be used directly as catalytic material. For this purpose, the aglA coding region was fused to full-length or truncated versions of the yeast gene SED1, containing the GPI (glycosylphosphatidyl inositol) sequence for anchoring to the cell wall, and expressed in S. cerevisiae. The resulting hybrid enzymes were fixed stably to the cell surface. Cells from the recombinant cultures expressing the aglA-SED1 constructs could be recycled to produce IMOS in successive reactions.
En aquest treball es van caracteritzar glicosil hidrolases (GHs) i permeases fúngiques implicades en el metabolisme i transport de sucres, amb dos aplicacions diferents: la producció d'etanol i la síntesi d'isomaltooligosacàrids (IMOS). S'han abordat tres objectius específics: 1) desenvolupar un procés eficient de sacarificació i fermentació simultània (SSF) de cel·lulosa; 2) comparar distintes estratègies per a la fermentació de celobiosa, pas crític en la fermentació de cel·lulosa; 3) sintetitzar IMOS utilizant com a material catalític cèl·lules de llevat que produeixen una ¿-glucosidasa de Aspergillus niger. En el procés proposat de sacarificació i fermentació simultània de cel·lulosa, el material de partida (paper de filtre) es va digerir amb una preparació enzimàtica de Trichodema reesei i es va fermentar amb una soca recombinant de Saccharomyces cerevisiae (T500), la qual secreta una ß-glucosidasa de Saccharomycopsis fibuligera. L'activitat ß-glucosidasa, deficitària en el còctel cel·lulolític de T. reesei, va millorar el progrés de la hidròlisi de la cel·lulosa i la fermentació, ja que disminuiex l'efecte inhibitori causat per l'acumulació de celobiosa. Amb aquest procés es van assolir rendiments d'etanol superiors a 70 g/L. S'han comparat estratègies d'hidròlisi extracel·lular o intracel·lular de celobiosa. Per a això, es va emprar la soca T500 i noves soques recombinants generades en aquest estudi. En una primera aproximació per a l'hidròlisi intracel·lular, s'assajaren tres ß-glucosidases distintes i una permeasa de celobiosa de Penicillium oxalicum. Als transformants resultants, la tasa de creixement amb celobiosa va estar limitada per ß-glucosidases amb baixa activitat celobiasa, però per damunt d'un cert valor d'activitat el principal coll d'ampolla va ser el transport del sucre. Per aquesta raó, cercàrem nous transportadors de celobiosa procedents de T. reesei. De 107 seqüències designades com a transportadors de sucres en el genoma de T. reesei, es van seleccionar deu per la seua major similitut de seqüència amb permeases de celobiosa d'altres fongs caracteritzades funcionalment. Només una d'elles (Tr_StrC) va ser capaç de facilitar el transport de celobiosa i permetre el creixement de S. cerevisiae. Finalment, es va comparar la capacitat de fermentar celobiosa dels dobles transformants de llevat, amb capacitat de transportar i hidrolitzar intracel·lularment el disacàrid, amb la del transformant T500. La estratègia extracel·lular va permetre una tasa de fermentació més ràpida i majors rendiments d'etanol en comparació amb la estratègia intracel·lular. La soca T500 també va ser més eficient en un sistema SSF de cel·lulosa. S'han construït i analitzat soques recombinants de S. cerevisiae que expresen un gen (aglA) que codifica una ¿-glucosidasa de A. niger. Els transformants de llevat produiren activitat ¿-glucosidasa extracelul·larment, la meitat de la qual va quedar associada a cèl·lules i l'altra meitat va ser alliberada al medi de cultiu. Utilitzant maltosa com a únic substrat de partida, després de 8 h d'incubació, el principal producte de transglicosilació va serpanosa, però després de 24 h el producte predominant va ser isomaltosa. La isomaltosa també va predominar a tiemps curts de reacció, si en lloc de només maltosa s'utilizava de partida una combinació de maltosa i glucosa. Per a facilitar la síntesi de IMOS es va dissenyar un procés en el qual les cèl·lules de llevat poden ser utilitzades directament com a material catalític. Per a això, s'expresaren en S. cerevisiae construccions gèniques del gen aglA fusionat amb el gen de llevat SED1, en versió completa o truncada, el qual conté la seqüència GPI (glicosilfosfatidil inositol) d'ancoratge a paret cel·lular. Els enzims híbrids resultants es van fixar de forma estable a la superfície cel·lular. Les cèl·lules provinents dels cultius recombinants que exp
Casa Villegas, MF. (2018). Caracterización de glicosidasas y permeasas fúngicas implicadas en el transporte y metabolismo de azúcares [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/106344
TESIS
Vallmitjana, Soler Miquel. "Anàlisi del mecanisme catalític i de l'especificitat de substrat d'una ß-glucosidasa de Streptomyces sp." Doctoral thesis, Universitat Autònoma de Barcelona, 2003. http://hdl.handle.net/10803/3498.
Full textS'ha caracteritzat l'activitat catalítica de la Bgl3 amb dues bateries de substrats, una que variava l'extrem no reductor per determinar l'especificitat del subseti -1, i l'altre que variava les característiques de l'aglicó amb l'objectiu d'establir una relació lineal d'energia lliure (anàlisi de Hammett). L'estudi de la dependència de l'activitat respecte a la temperatura i al pH, ha permès dilucidar aspectes del mecanisme catalític com l'energia d'activació i la variació dels pKa dels residus catalítics essencials.
Per mutagènesi dirigida s'han obtingut enzims sense algun dels dos residus catalítics essencials, i s'ha comprovat la reducció de l'activitat catalítica. S'ha comprovat el paper de cada un d'aquests residus a la catàlisi per rescat químic de l'activitat dels mutants amb l'addició d'un nucleòfil extern, i posterior identificació per Ressonància Magnètica Nuclear dels productes formats.
Finalment s'ha avançat en l'estudi de l'especificitat de substrat respecte l'aglicó mitjançant mutagènesi dirigida i caracterització cinètica dels mutants sobre una posició conservada del centre actiu: la cisteïna 181 de la Bgl3.
ßeta-glucosidases are enzymes that can hydrolyze ßeta-glycosidic bonds from disaccharides or oligosacharides, with a low regiospecificity, so than they recognize specifically the glucidic non-reducing extreme and they have low specificity for the reducing extreme or aglycon. The catalytic mechanism is a double displacement with catalysis acid/base and formation of an intermediary glycosil-enzyme; the hydrolysis is produced with retention of the configuration of the anomeric carbon. In this work it has studied the ß-glucosidase Bgl3 from Streptomyces sp. (ATCC 11238) cloned before in the group, it has improve the production of the enzyme expressing it under control of T7-RNA polymerase promotor, and it has improve the purity method fusing at the N-terminus of the gene, a 6 histidines tag, allowing pure protein obtaining with a sole step purification (affinity column). Protein so obtained has allowed the resolution of the 3D structure for ray X crystallography.
It have characterized the catalytic activity of Bgl3 with 2 sets of substrates, one that vary his non reducing extreme to determine the specificity of subset -1, and the other set that vary the characteristics of the aglycon moiety to determine a free energy relationship (Hammett analysis). The study of the dependence between activity and temperature or pH, has show aspects of the catalytic mechanism as Energy of activation and the pKa variations of the essential catalytic residues during catalysis.
Trough site directed mutagenesis, it has been obtained enzymes without any one of the two essential catalytic residues, and it has been check reduction of the catalytic activity. It has been proved the role of those residues in the catalysis with the chemical rescue of the activity of the mutant forms adding an extern nucleophile, and identifying the products with Nuclear Magnetic Resonance.
Finally, it have been progress in the substrate specificity respect aglycon by means of site directed mutagenesis and kinetic characterization of the mutants over a conserved position in the active center: the cysteine 181 of the Bgl3.
Veas, Albornoz Rubén Elías. "Evaluación de la actividad inhibitoria de [alfa]-glucosidasa de los extractos de hojas de diez genotipos de Ugni molinae Turcz. y determinación del tipo de inhibición." Tesis, Universidad de Chile, 2015. http://repositorio.uchile.cl/handle/2250/140238.
Full textAutor no autoriza el acceso a texto completo de su documento hasta enero de 2020
Ugni molinae Turcz., Myrtaceae conocida normalmente como murta o murtilla es un arbusto nativo siempre-verde del centro-sur y sur de Chile. La medicina folclórica le atribuye muchas propiedades y entre sus usos destaca como tratamiento para la diabetes al consumir la infusión de sus hojas y ramas. Se han demostrado la presencia de ácidos triterpénicos pentacíclicos y polifenoles en los extractos de murtilla con potente actividad inhibitoria de α-glucosidasa. Su inhibición permite la disminución del peak postprandial de glucosa al retardar y disminuir la absorción de monosacáridos. El objetivo de este estudio fue comparar la actividad inhibitoria de α-glucosidasa de extractos etanólicos (EETs) y acetato de etilo (EAEs) de hojas de 10 genotipos de U. molinae cultivadas en las mismas condiciones edafoclimaticas y manejo agronómico y determinar su mecanismo de inhibición. El estudio se llevó a cabo mediante el método espectrofotométrico de inhibición de α-glucosidasa utilizando pNPG como sustrato, descrito previamente por Kim et al. (2001) con las modificaciones correspondientes. Los resultados sugieren que los extractos más potentes corresponden a los EET 23-2 y EAE 27-1 observándose diferencias significativas en un 70% y un 60% de los genotipos respectivamente con valores de CI50 de 1,12 0,07 y 8,20 0,20 g/mL. Sin embargo todos los extractos fueron más potentes que acarbosa, fármaco de referencia (CI50 = 251,0 34,0 g/mL). Además el genotipo 23-2 para ambos extractos presento un comportamiento de inhibidor acompetitivo y el genotipo 27-1, de inhibidor no competitivo mixto, evaluados por la gráfica de Lineweaver- Burk y los cambios en sus constantes cinéticas. Se concluye que los genotipos difieren en potencia y tipo de inhibición debido al factor genético. En general los genotipos 23-2 y 27-1 que no presentan diferencias con los genotipos 19-1 y 14-4 poseen buenas proyecciones in vivo para el potencial tratamiento de DMT2, dada sus actividades antioxidantes e inhibidoras de enzimas claves en la DMT2 in vitro
Ugni molinae Turcz., Myrtaceae generally known as murta or murtilla is an evergreen shrub native of south-central and southern Chile. Folk medicine attributes many properties and among its uses include as a treatment for diabetes by consuming the infusion of its leaves and branches. It has demonstrated the presence of pentacyclic triterpenic acids and polyphenols in murtilla extracts with potent inhibitory activity of α-glucosidase. Its inhibition allows decreasing the postprandial glucose peak by to decreasing the absorption of monosaccharides. The aim of this study was to compare the inhibitory activity of α-glucosidase from etanolic (ETEs) and ethyl acetate (EAEs) leaves extracts of 10 U. molinae genotypes grown in the same soil and climatic conditions and agronomic management and determine its mechanism of inhibition. The study was performed by the spectrophotometric method of inhibiting α-glucosidase using pNPG as substrate, previously described by Kim et al. (2001) with appropriate modifications. The results suggest that ETE 23-2 and EAE 27-1 are more potent with significant differences about 70% and 60% of the genotypes respectively with IC50 values of 1.12 0.07 and 8.20 0.20 g/mL. However all extracts were more potent than acarbose, reference drug (IC50 = 251.0 34.0 g/mL). Besides for both extracts the 23-2 genotype present uncompetitive inhibitor behavior and genotype 27-1, mixed noncompetitive inhibitor, evaluated by the Lineweaver-Burk and changes in their kinetic constants. It is concluded that genotypes differ in power and inhibition type due to genetic factor. In general 23-2 and 27-1 genotypes not show differences with 19-1 and 14-4 genotypes possess good in vivo projections for the potential treatment of T2DM, due to its in vitro antioxidant and inhibiting activities of key enzymes in T2DM
Perlant, Hugues. "Les inhibiteurs des alpha-glucosidases ont-ils leur intérêt dans le traitement des hypoglycémies réactionnelles d'origine idiopathique ? A propos d'un cas, revue de la littérature." Bordeaux 2, 1997. http://www.theses.fr/1997BOR2M150.
Full textMarana, Sandro Roberto. "Purificação e caracterização das β-glicosidases digestivas de Spodoptera frugiperda (Lepidoptera)." Universidade de São Paulo, 1999. http://www.teses.usp.br/teses/disponiveis/46/46131/tde-08082008-130612/.
Full textTwo digestive β-glycosidases (MW 47,000 and 50,000, named βgly47 and βgly50, respectively) whose are found in the S. frugiperda larvae were purified by a combination of chromatographic steps. Substrate competition experiments and chemical modification data showed that βgly47 has two active sites. One of them was called aryl β-glycosidase and presents a -1 subsite that prefers galactose while the +1 subsite binds small cyclic hydrophobic groups. The other active site was called cellobiase and presents 4 subsites that bind glucose residues weaker as they get far from the cleavage point. The cDNA that codes the βgly50 was cloned and sequenced. Amino acid sequence alignment, substrate competition experiments and inhibitions proved that this enzyme has just one active site. The -1 subsite specificity is controlled by a hydrogen bond network as it was showed comparing the kinetic parameters (Kcat and KcatlKm) for some NPβglycosides hydrolysis. The aglycone binding region, a hydrophobic cleft, was studied with alkyl β-glucosides and oligocellodextrins as competitive inhibitors. Amino acid sequence alignment between the βgly50 and other glycosil hydrolases showed the amino acids responsible for the substrate binding and that the GIU
Monteiro, Lummy Maria Oliveira. "Estudo bioquímico de β-glucosidases de Malbranchea pulchella e aplicações na hidrólise de resíduos agroindustriais e de antocianinas." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/17/17131/tde-10012017-113644/.
Full text?-glucosidases are enzymes that catalyze the hydrolysis of ?-1,4, ?-1,3 and ?-1,6 glucosidic linkages, from the non-reducing end of short chain oligosaccharides, alkyl and aryl ?-D-glucosides and disaccharides. Besides being complex key cellulolytic enzymes, they have important functions such as the improvement of wine flavors and anthocyanins hydrolysis. Malbranchea pulchella is usually found in decaying plant debris or in material rich in cellulose, for this reason it can be considered promising for the production of enzymes of biotechnological interest. In this context, the aim of this project was the functional characterization of a ?-glucosidase from M. pulchella and its application in the organic residues and anthocyanins hydrolysis. A BGL GH3 family produced by M. pulchella was purified with a purification factor and recovery of about 6.32 and 35 times. Its approximate molecular mass was 100 kDa, and Km, Vmax and kcat were 0.33 mM, 13.67 U/mg, 26.5 s-1, respectively. The circular dichroism revealed a structure composed of approximately 25% of ?-helix and 20% of ?-sheets. BGL presented optimum pH and temperature at 6.0 and 50 °C; and it was stable at 40 °C. It also showed good stability at pH 5.0 to 8.0, for 24 hours. None of the metal ions salts activated the enzyme and HgCl2 inhibited the activity by 90%. The enzyme showed no inhibition in the presence of glucose (0,1-1M) for 24 hours. Furthermore, it is glycosylated and the sugar proportion correspondsto 15% of the enzyme mass. The effect of cellobiose (C) and sugarcane bagasse in natura (BCAN) in the production of BGLs were evaluated in a CCRD, which indicated a reduced model of influence of the two variables. The best culture condition for BGLs production was 0.6% of C (w/v) and 4% (w/v) of BCAN. Through a mixture design, using the BCAN, ground soybean hulls (CS) and barley bagasse (BCev) were used to evaluate the potential of hydrolysis of these residues in the presence of enzymes present in the enzymatic extract, resulting in a greater efficiency of (BCev) hydrolysis, producing approximately 2 mg/mL of reducing sugars in 48 hours. The BGLs present in the optimized enzyme extract were also used in the immobilization on ionic support MANAE-agarose and affinity support Concanavalin A-Sepharose (ConA-Sepharose). The BGL-MANAE and BGL-ConA derivatives were activated approximately 10 and 3 times, respectively. BGL-MANAE and BGL-ConA were more stable than BGL-BrCN control in all pH tested within 24 hours. In addition, BGL-ConA remained 100% of its activity at 40 °C, 50 °C and 60 °C , and BGL-MANAE was stable at 40 °C and remained 83% of its activity, both in 24 hours. BGL-MANAE and BGL-ConA showed lower inhibitory effect in the presence of different glucose and ethanol concentrations when compared to BGL-BrCN and these results indicate that the immobilization, somehow, cooperated to a greater pH and temperature stability, as well as to increased tolerance by glucose and ethanol. The derivatives could be reused up to 20 times and when they were tested for their capacity to clarify wine and grape juice (anthocyanins hydrolysis), BGL-MANAE clarified 52% wine, 71% diluted wine, 77% grape juice and 56% diluted grape juice. On the other hand, BGL-ConA clarified 41% wine, 46% diluted wine, 63% grape juice and 23% diluted grape juice. BGL-MANAE was more efficient than BGL-ConA in clarifying wines and grape juices and it may be considered a promising biocatalyst in the anthocyanins hydrolysis, and consequently in the production of white and rose wines from different varieties of grapes. This work as we know, is the first to use immobilized BGLs applied in the clarification of grape juice and wine, for this reason, it can be considered an innovative work, and of great importance to the food and beverage industry
Soro, René Yadé. "Purification et caractérisation de l’alpha-glucosidase du suc digestif de l’escargot Archachatina ventricosa (Achatinidae) : Application à la synthèse de polyglucosylfructosides." Toulouse, INSA, 2007. http://eprint.insa-toulouse.fr/archive/00000198/.
Full textEnzymes active against sucrose are of great interest because of their potential uses in sucrose hydrolysis and sucrose high cost derivatives synthesis. In this means, the objectives of this thesis were the purification and the characterization of the invertasic activity enzyme of the snail Archachatina ventricosa’s digestive juice and to determine a potential use of this enzyme. The liquid chromatography on gels haven’t help to purify the enzyme. We have to use a combination of ion exchange chromatography and preparative polyacrylamide gel electrophoresis with the specific detection of the enzyme activity in situ in the polyacrylamide gel by a chromogenic substrate hydrolysis. The isolated enzyme was an alpha-glucosidase with an homodimeric glycoprotein structure. The sucrose hydrolysis kinetics by the purified enzyme was characteristic of transglycosylation reaction or excess substrate inhibition. The analysis of sucrose hydrolysis products indicated the synthesis of oligosaccharides by the transfer of glucosyle moieties. These oligosaccharides are constituted by different DP maltooligosaccharides linked to the sucrose glucosyle by alpha (14) bound (so-called polyglucosylfructosides from DP3 to DP8) and of disaccharides (maltose, isomaltose, nigerose) in lesser amount. Products identification allowed their synthesis pathways from sucrose
Louro, Patrícia Isabel Ramos. "Avaliação e caracterização da ação inibitória de iminociclitóis na atividade alfa-glucosidase de células de mamífero." Master's thesis, Universidade de Évora, 2014. http://hdl.handle.net/10174/10890.
Full textLin, Hongying. "Cellular responses to the induction of recombinant genes in Escherichia coli fed batch cultures." [S.l. : s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=960895345.
Full textPeng, Zhong. "Overexpression of human processing alpha-glucosidase I and functional study of yeast processing alpha-glucosidase I." Thesis, University of British Columbia, 2016. http://hdl.handle.net/2429/59087.
Full textLand and Food Systems, Faculty of
Graduate
Books on the topic "¿-glucosidasa"
Esen, Asim, ed. ß-Glucosidases. American Chemical Society, 1993. http://dx.doi.org/10.1021/bk-1993-0533.
Full textFowler, Paul Anthony. Polyhydroxylated amines as glucosidase inhibitors. University of East Anglia, 1993.
Bottorff, Michael B., William E. Evans, Ingrid Hillebrand, et al. Drug Concentration Monitoring Microbial Alpha-Glucosidase Inhibitors Plasminogen Activators. Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73461-8.
Full textDuff, Bernard. Studies on the alpha-glucosidase of Candida Fennica CBS 5928. University College Dublin, 1996.
E, Harding S., ed. An introduction to polysaccharide biotechnology. Taylor & Francis, 1998.
International, Symposium on Acarbose (3rd 1991 Munich Germany). New aspects in diabetes: Treatment strategies with alpha-glucosidase inhibitors : Third International Symposium on Acarbose. Walter de Gruyter, 1992.
Falk, Anders. Structure and expression of [beta]-glucosidases and their binding proteins in Brassica napus L. Uppsala Genetic Center, Dept. of Cell Research, Swedish University of Agricultural Sciences, 1994.
Salehi, Sebastian Albert. Insulin secretion: Modulation of islet acid glucan-1,4-gas-glucosidase activity by selective inhibitors, Ca2+ and nitric oxide. Department of Pharmacology, Lund University, 1995.
Alpha-Glucosidase Inhibitors. Elsevier, 2020. http://dx.doi.org/10.1016/c2017-0-02034-7.
Full text1938-, Esen Asim, American Chemical Society. Division of Agricultural and Food Chemistry., and American Chemical Society Meeting, eds. [Beta]-glucosidases: Biochemistry and molecular biology. American Chemical Society, 1993.
Book chapters on the topic "¿-glucosidasa"
Maret, A., R. Salvayre, M. Potier, G. Legler, G. Beauregard, and L. Douste-Blazy. "Comparison of Human Membrane-Bound β-Glucosidases: Lysosomal Glucosylceramide-β-Glucosidase and Non-Specific β-Glucosidase." In Lipid Storage Disorders. Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-1029-7_6.
Full textNairn, Alison V., and Kelley W. Moremen. "Mannosyl-Oligosaccharide Glucosidase (Glucosidase I, MOGS)." In Handbook of Glycosyltransferases and Related Genes. Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54240-7_10.
Full textSchomburg, Dietmar, and Margit Salzmann. "Alpha-glucosidase." In Enzyme Handbook 4. Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-84437-9_14.
Full textSchomburg, Dietmar, and Margit Salzmann. "Beta-glucosidase." In Enzyme Handbook 4. Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-84437-9_15.
Full textStellmach, Bruno. "β-Glucosidase." In Bestimmungsmethoden Enzyme. Steinkopff, 1988. http://dx.doi.org/10.1007/978-3-642-93668-5_18.
Full textSchwab, Manfred. "Beta-glucosidase." In Encyclopedia of Cancer. Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27841-9_589-2.
Full textNairn, Alison V., and Kelley W. Moremen. "Glucosidase, Alpha Neutral AB; Glucosidase II Subunit Beta (GANAB, PRKCSH, α-Glucosidase II)." In Handbook of Glycosyltransferases and Related Genes. Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54240-7_140.
Full textSchomburg, Dietmar, and Margit Salzmann. "Sucrose alpha-glucosidase." In Enzyme Handbook 4. Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-84437-9_39.
Full textSchomburg, Dietmar, and Margit Salzmann. "Steryl-beta-glucosidase." In Enzyme Handbook 4. Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-84437-9_93.
Full textSchomburg, Dietmar, and Margit Salzmann. "Strictosidine beta-glucosidase." In Enzyme Handbook 4. Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-84437-9_94.
Full textConference papers on the topic "¿-glucosidasa"
Okuyama, Masayuki, Haruhide Mori, Atsuo Kimura, and Seiya Chiba. "ALPHA-GLUCOSIDASE MUTANT CATALYZES "ALPHA-GLYCOSYNTHASE"-TYPE REACTION." In XXIst International Carbohydrate Symposium 2002. TheScientificWorld Ltd, 2002. http://dx.doi.org/10.1100/tsw.2002.756.
Full textLi, T., KT Kongstad та D. Staerk. "High-resolution α-glucosidase inhibition profiling combined with HPLC-HRMS-SPE-NMR for identification of α-glucosidase inhibitors in Machilus litseifolia (Lauraceae)". У GA 2017 – Book of Abstracts. Georg Thieme Verlag KG, 2017. http://dx.doi.org/10.1055/s-0037-1608251.
Full textWu, Meifu, та Hongli Zhou. "INHIBITORY EFFECT AND ENZYMOLYSIS KINETICS OF LENTINAN ON Α-GLUCOSIDASE". У International Conference on New Materials and Intelligent Manufacturing (ICNMIM). Volkson Press, 2018. http://dx.doi.org/10.26480/icnmim.01.2018.312.314.
Full textShoseyov, Oded, Wei Shu, Ira Marton, Mara Dekel, Siegel Dan, and Ben-Ami Bravdo. "INCREASING SCENT IN TRANSGENIC PLANTS EXPRESSING ASPERGILLUS NIGER BETA-GLUCOSIDASE." In XXIst International Carbohydrate Symposium 2002. TheScientificWorld Ltd, 2002. http://dx.doi.org/10.1100/tsw.2002.478.
Full textL., Yeo S., Shazilah K., Suhaila S., Abu Bakar F. D., and Murad A. M. A. "In-silico analysis of Aspergillus niger beta-glucosidases." In THE 2014 UKM FST POSTGRADUATE COLLOQUIUM: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2014 Postgraduate Colloquium. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4895257.
Full textTian, Jing, Zhenyu Hong, Longquan Xu, and Bin Zhai. "Separation and characterization of soyasaponin-β-glucosidase from Aspergillus sp.48." In 2011 4th International Conference on Biomedical Engineering and Informatics (BMEI). IEEE, 2011. http://dx.doi.org/10.1109/bmei.2011.6098580.
Full textYajit, Noor Liana Mat, Shazilah Kamaruddin, Noor Haza Fazlin Hashim, et al. "Cloning and expression of N-glycosylation-related glucosidase from Glaciozyma antarctica." In THE 2016 UKM FST POSTGRADUATE COLLOQUIUM: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2016 Postgraduate Colloquium. Author(s), 2016. http://dx.doi.org/10.1063/1.4966714.
Full textELObeid, Tahra, Susanna Phoboo, and Kalidas Shetty. "Anti-diabetic and Anti-hypertensive Potential of Indigenous Edible plants of Qatar." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0142.
Full textIndrianingsih, Anastasia Wheni, та Amalia Indah Prihantini. "In vitro antioxidant and α-glucosidase inhibitory assay of Zingiber cassumunar roxb." У 2ND INTERNATIONAL CONFERENCE ON CHEMISTRY, CHEMICAL PROCESS AND ENGINEERING (IC3PE). Author(s), 2018. http://dx.doi.org/10.1063/1.5064965.
Full textSaprudin, D., I. Batubara та N. P. Putri. "Endosperm of Indramayu mango (Mangifera indica) as α-glucosidase inhibitor and antioxidant". У THE 8TH INTERNATIONAL CONFERENCE OF THE INDONESIAN CHEMICAL SOCIETY (ICICS) 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0001080.
Full textReports on the topic "¿-glucosidasa"
Turner, Joshua, Lizabeth Thomas та Sarah Kennedy. Structural Analysis of a New Saccharomyces cerevisiae α-glucosidase Homology Model and Identification of Potential Inhibitor Enzyme Docking Sites. Journal of Young Investigators, 2020. http://dx.doi.org/10.22186/jyi.38.4.27-33.
Full text