Academic literature on the topic 'Glutathion peroxidasa'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Glutathion peroxidasa.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Glutathion peroxidasa"

1

Brenot, Audrey, Katherine Y. King, Blythe Janowiak, Owen Griffith, and Michael G. Caparon. "Contribution of Glutathione Peroxidase to the Virulence of Streptococcus pyogenes." Infection and Immunity 72, no. 1 (January 2004): 408–13. http://dx.doi.org/10.1128/iai.72.1.408-413.2004.

Full text
Abstract:
ABSTRACT Glutathione peroxidases are widespread among eukaryotic organisms and function as a major defense against hydrogen peroxide and organic peroxides. However, glutathione peroxidases are not well studied among prokaryotic organisms and have not previously been shown to promote bacterial virulence. Recently, a gene with homology to glutathione peroxidase was shown to contribute to the antioxidant defenses of Streptococcus pyogenes (group A streptococcus). Since this bacterium causes numerous suppurative diseases that require it to thrive in highly inflamed tissue, it was of interest to determine if glutathione peroxidase is important for virulence. In this study, we report that GpoA glutathione peroxidase is the major glutathione peroxidase in S. pyogenes and is essential for S. pyogenes pathogenesis in several murine models that mimic different aspects of streptococcal suppurative disease. In contrast, glutathione peroxidase is not essential for virulence in a zebrafish model of streptococcal myositis, a disease characterized by the absence of an inflammatory cell infiltrate. Taken together, these data suggest that S. pyogenes requires glutathione peroxidase to adapt to oxidative stress that accompanies an inflammatory response, and the data provide the first demonstration of a role for glutathione peroxidase in bacterial virulence. The fact that genes encoding putative glutathione peroxidases are found in the genomes of many pathogenic bacterial species suggests that glutathione peroxidase may have a general role in bacterial pathogenesis.
APA, Harvard, Vancouver, ISO, and other styles
2

Missall, Tricia A., Jocie F. Cherry-Harris, and Jennifer K. Lodge. "Two glutathione peroxidases in the fungal pathogen Cryptococcus neoformans are expressed in the presence of specific substrates." Microbiology 151, no. 8 (August 1, 2005): 2573–81. http://dx.doi.org/10.1099/mic.0.28132-0.

Full text
Abstract:
Glutathione peroxidases catalyse the reduction of peroxides by reduced glutathione. To determine if these enzymes are important for resistance to oxidative stress and evasion of the innate immune system by the fungal pathogen Cryptococcus neoformans, two glutathione peroxidase homologues, which share 38 % identity, were identified and investigated. In this study, these peroxidases, Gpx1 and Gpx2, their localization, their contribution to total glutathione peroxidase activity, and their importance to the oxidative and nitrosative stress resistance of C. neoformans are described. It is shown that the two glutathione peroxidase genes are differentially expressed in response to stress. While both GPX1 and GPX2 are induced during t-butylhydroperoxide or cumene hydroperoxide stress and repressed during nitric oxide stress, only GPX2 is induced in response to hydrogen peroxide stress. Deletion mutants of each and both of the glutathione peroxidases were generated, and it was found that they are sensitive to various peroxide stresses while showing wild-type resistance to other oxidant stresses, such as superoxide and nitric oxide. While the glutathione peroxidase mutants are slightly sensitive to oxidant killing by macrophages, they exhibit wild-type virulence in a mouse model of cryptococcosis.
APA, Harvard, Vancouver, ISO, and other styles
3

WILKINSON, Shane R., David J. MEYER, and John M. KELLY. "Biochemical characterization of a trypanosome enzyme with glutathione-dependent peroxidase activity." Biochemical Journal 352, no. 3 (December 8, 2000): 755–61. http://dx.doi.org/10.1042/bj3520755.

Full text
Abstract:
In most eukaryotes, glutathione-dependent peroxidases play a key role in the metabolism of peroxides. Numerous studies have reported that trypanosomatids lack this activity. Here we show that this is not the case, at least for the American trypanosome Trypanosoma cruzi. We have isolated a single-copy gene from T. cruzi with the potential to encode an 18kDa enzyme, the sequence of which has highest similarity with glutathione peroxidases from plants. A recombinant form of the protein was purified following expression in Escherichia coli. The enzyme was shown to have peroxidase activity in the presence of glutathione/glutathione reductase but not in the presence of trypanothione/trypanothione reductase. It could metabolize a wide range of hydroperoxides (linoleic acid hydroperoxide and phosphatidylcholine hydroperoxide> cumene hydroperoxide>t-butyl hydroperoxide), but no activity towards hydrogen peroxide was detected. Enzyme activity could be saturated by glutathione when both fatty acid and short-chain organic hydroperoxides were used as substrate. For linoleic acid hydroperoxide, the rate-limiting step of this reaction is the reduction of the peroxidase by glutathione. With lower-affinity substrates such as t-butyl hydroperoxide, the rate-limiting step is the reduction of the oxidant. The data presented here identify a new arm of the T. cruzi oxidative defence system.
APA, Harvard, Vancouver, ISO, and other styles
4

Iturbe-Ormaetxe, Iñaki, Manuel A. Matamoros, Maria C. Rubio, David A. Dalton, and Manuel Becana. "The Antioxidants of Legume Nodule Mitochondria." Molecular Plant-Microbe Interactions® 14, no. 10 (October 2001): 1189–96. http://dx.doi.org/10.1094/mpmi.2001.14.10.1189.

Full text
Abstract:
The mitochondria of legume root nodules are critical to sustain the energy-intensive process of nitrogen fixation. They also generate reactive oxygen species at high rates and thus require the protection of antioxidant enzymes and metabolites. We show here that highly purified mitochondria from bean nodules (Phaseolus vulgaris L. cv. Contender × Rhizobium leguminosarum bv. phaseoli strain 3622) contain ascorbate peroxidase primarily in the inner membrane (with lesser amounts detected occasionally in the matrix), guaiacol peroxidases in the outer membrane and matrix, and manganese superoxide dismutase (MnSOD) and an ascorbate-regenerating system in the matrix. This regenerating system relies on homoglutathione (instead of glutathione) and pyridine nucleotides as electron donors and involves the enzymes monodehy-droascorbate reductase, dehydroascorbate reductase, and homoglutathione reductase. Homoglutathione is synthesized in the cytosol and taken up by the mitochondria and bacteroids. Although bacteroids synthesize glutathione, it is not exported to the plant in significant amounts. We propose a model for the detoxification of peroxides in nodule mitochondria in which membrane-bound ascorbate peroxidase scavenges the peroxide formed by the electron transport chain using ascorbate provided by L-galactono-1,4-lactone dehydrogenase in the inner membrane. The resulting monodehydroascorbate and dehydroascorbate can be recycled in the matrix or cytosol. In the matrix, the peroxides formed by oxidative reactions and by MnSOD may be scavenged by specific isozymes of guaiacol peroxidase, ascorbate peroxidase, and catalase.
APA, Harvard, Vancouver, ISO, and other styles
5

Porter, M., D. J. Pearson, V. J. Suarez-Mendez, and A. D. Blann. "Plasma, platelet and erythrocyte glutathione peroxidases as risk factors in ischaemic heart disease in man." Clinical Science 83, no. 3 (September 1, 1992): 343–45. http://dx.doi.org/10.1042/cs0830343.

Full text
Abstract:
1. Plasma, platelet and erythrocyte glutathione peroxidase activities and serum lipid concentrations were measured in patients with ischaemic heart disease and matched control subjects. 2. Mean plasma and platelet glutathione peroxidase activities were significantly lower in the patients with ischaemic heart disease. Erythrocyte glutathione peroxidase activities and serum lipid concentrations were similar in patients with ischaemic heart disease and control subjects. 3. No correlations between plasma, platelet and erythrocyte glutathione peroxidase activities were observed. 4. The combination of plasma and platelet glutathione peroxidase activities provided an 86% discrimination between patients with ischaemic heart disease and matched control subjects. 5. Our data suggest that plasma and platelet glutathione peroxidases may be significant risk factors for ischaemic heart disease. Plasma glutathione peroxidase is a previously unrecognized risk factor.
APA, Harvard, Vancouver, ISO, and other styles
6

Gutowicz, Marzena. "Antioxidant and detoxycative mechanisms in central nervous system." Postępy Higieny i Medycyny Doświadczalnej 74 (February 19, 2020): 1–11. http://dx.doi.org/10.5604/01.3001.0013.8548.

Full text
Abstract:
Since the brain contains a large amount of polyunsaturated fatty acids, consumes up to 20% of oxygen used by the whole body and exhibits low antioxidants activity, it seems to be especially vulnerable to oxidative stress. The most important antioxidant enzymes are superoxide dismutase (SOD), which catalyze the dismutation of superoxide anion to hydrogen peroxide, catalase (CAT), which converts toxic hydrogen peroxide to water and oxygen, and glutathione peroxidase (Se-GSHPx), which reduces hydrogen peroxide and organic peroxides with glutathione as the cofactor. Among other detoxifying enzymes, the most significant is glutathione transferase (GST), which shows detoksyvarious catalytic activities allowing for removal of xenobiotics, reducing organic peroxides and oxidized cell components. One of the most important brain nonenzymatic antioxidants is reduced glutathione (GSH), which (individually or in cooperation with peroxidases) participates in the reduction of free radicals, repair of oxidative damage and the regeneration of other antioxidants, such as ascorbate or tocopherol. Glutathione as a cosubstrate of glutathione transferase scavenges toxic electrophilic compounds. Although the etiology of the major neurodegenerative diseases are unknown, numerous data suggest that reactive oxygen species play an important role. Even a small change in the level of antioxidants can leads to the many disorders in the CNS.
APA, Harvard, Vancouver, ISO, and other styles
7

Miller, Charles D., Drauzio Rangel, Gilberto UL Braga, Stephan Flint, Sun-Il Kwon, Claudio L. Messias, Donald W. Roberts, and Anne J. Anderson. "Enzyme activities associated with oxidative stress in Metarhizium anisopliae during germination, mycelial growth, and conidiation and in response to near-UV irradiation." Canadian Journal of Microbiology 50, no. 1 (January 1, 2004): 41–49. http://dx.doi.org/10.1139/w03-097.

Full text
Abstract:
Metarhizium anisopliae isolates have a wide insect host range, but an impediment to their commercial use as a biocontrol agent of above-ground insects is the high susceptibility of spores to the near-UV present in solar irradiation. To understand stress responses in M. anisopliae, we initiated studies of enzymes that protect against oxidative stress in two strains selected because their spores differed in sensitivity to UV-B. Spores of the more near-UV resistant strain in M. anisopliae 324 displayed different isozyme profiles for catalase–peroxidase, glutathione reductase, and superoxide dismutase when compared with the less resistant strain 2575. A transient loss in activity of catalase–peroxidase and glutathione reductase was observed during germination of the spores, whereas the intensity of isozymes displaying superoxide dismutase did not change as the mycelium developed. Isozyme composition for catalase–peroxidases and glutathione reductase in germlings changed with growth phase. UV-B exposure from lamps reduced the activity of isozymes displaying catalase–peroxidase and glutathione reductase activities in 2575 more than in 324. The major effect of solar UV-A plus UV-B also was a reduction in catalase–peroxidases isozyme level, a finding confirmed by measurement of catalase specific activity. Impaired growth of M. anisopliae after near-UV exposure may be related to reduced abilities to handle oxidative stress.Key words: catalase–peroxidase, germination, glutathione reductase, Metarhizium anisopliae, near-UV, protein oxidation, superoxide dismutase.
APA, Harvard, Vancouver, ISO, and other styles
8

Shigeoka, S., T. Takeda, and T. Hanaoka. "Characterization and immunological properties of selenium-containing glutathione peroxidase induced by selenite in Chlamydomonas reinhardtii." Biochemical Journal 275, no. 3 (May 1, 1991): 623–27. http://dx.doi.org/10.1042/bj2750623.

Full text
Abstract:
The selenite-induced glutathione peroxidase in Chlamydomonas reinhardtii has been purified about 323-fold with a 10% yield, as judged by PAGE. The native enzyme had an Mr of 67,000 and was composed of four identical subunits of Mr 17,000. Glutathione was the only electron donor, giving a specific activity of 193.6 mumol/min per mg of protein. L-Ascorbate, NADH, NADPH, pyrogallol, guaiacol and o-dianisidine did not donate electrons to the enzyme. In addition to H2O2, organic hydroperoxides were reduced by the enzyme. The Km values for glutathione and H2O2 were 3.7 mM and 0.24 mM respectively. The enzyme reaction proceeded by a Ping Pong Bi Bi mechanism. Cyanide and azide had no effect on the activity. The enzyme contained approx. 3.5 atoms of selenium per mol of protein. On immunoprecipitation, Chlamydomonas glutathione peroxidase was precipitated and its activity was inhibited about 90% by the antibody raised against bovine erythrocyte glutathione peroxidase. The antibody also cross-reacted with the subunits of Chlamydomonas glutathione peroxidase in Western blotting SDS/PAGE. In terms of enzymic, physico-chemical and immunological properties, the experimental results demonstrate clearly that Chlamydomonas glutathione peroxidase resembles other well-characterized glutathione peroxidases from animal sources that contain selenium.
APA, Harvard, Vancouver, ISO, and other styles
9

Gaetani, GF, AM Ferraris, M. Rolfo, R. Mangerini, S. Arena, and HN Kirkman. "Predominant role of catalase in the disposal of hydrogen peroxide within human erythrocytes." Blood 87, no. 4 (February 15, 1996): 1595–99. http://dx.doi.org/10.1182/blood.v87.4.1595.bloodjournal8741595.

Full text
Abstract:
Purified enzymes were mixed to form a cell-free system that simulated the conditions for removal of hydrogen peroxide within human erythrocytes. Human glutathione peroxidase disposed of hydrogen peroxide (H2O2) at a rate that was only 17% of the rate at which human catalase simultaneously removed hydrogen peroxide. The relative rates observed were in agreement with the relative rates predicted from the kinetic constants of the two enzymes. These results confirm two earlier studies on intact erythrocytes, which refuted the notion that glutathione peroxidase is the primary enzyme for removal of hydrogen peroxide within erythrocytes. The present findings differ from the results with intact cells, however, in showing that glutathione peroxidase accounts for even less than 50% of the removal of hydrogen peroxide. A means is proposed for calculating the relative contribution of glutathione peroxidase and catalase in other cells and species. The present results raise the possibility that the major function of glutathione peroxidase may be the disposal of organic peroxides rather than the removal of hydrogen peroxide.
APA, Harvard, Vancouver, ISO, and other styles
10

Bhowmick, Debasish, and Govindasamy Mugesh. "Insights into the catalytic mechanism of synthetic glutathione peroxidase mimetics." Organic & Biomolecular Chemistry 13, no. 41 (2015): 10262–72. http://dx.doi.org/10.1039/c5ob01665g.

Full text
Abstract:
This review focuses on the variation of the catalytic mechanisms of synthetic glutathione peroxidase (GPx) mimics depending on their structures and reactivities towards thiols and peroxides. Compounds of different categories follow a characteristic mechanism for the reduction of peroxides.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Glutathion peroxidasa"

1

Knight, Simon Alexander Bowles 1961. "The use of anti-glutathione peroxidase antibodies in the study of selenium-dependent glutathione peroxidase." Thesis, The University of Arizona, 1988. http://hdl.handle.net/10150/276906.

Full text
Abstract:
Liver glutathione peroxidase activity is affected by changes in selenium (Se) status. To investigate the effect of Se status on GSH-Px protein we prepared antibodies against rat liver GSH-Px and used them in an ELISA. The immunoreactivity of the anti-GSH-Px antibodies against GSH-Px was both tissue and species specific. When rats were depleted of Se, liver GSH-Px activity decreased exponentially to zero with a half-life of 2.8 d. Liver GSH-Px protein also decreased exponentially, but not to zero, with a longer half-life of 5.2 d. Dietary repletion of Se-deficient rats with 0.5 mg Se/kg diet increased GSH-Px protein and activity after 1 d. After 14 d of repletion the levels of GSH-Px protein and activity had plateaued at the levels present in Se-adequate rats. When Se-deficient rats were injected with 15 or 60 ug Se, only rats injected with 60 ug Se and killed 24 h later showed an increase in GSH-Px protein and activity. These results suggest that when Se is limiting, GSH-Px protein and GSH-Px activity are coordinately regulated by the available Se, but in Se-adequacy homeostatic processes control the level of GSH-Px.
APA, Harvard, Vancouver, ISO, and other styles
2

Ufer, Christoph. "Untersuchungen zur Expressionsregulation der Phospholipid-Hydroperoxid-Glutathion-Peroxidase." Doctoral thesis, [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=979803632.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Saudrais, Élodie. "Mécanismes de neuroprotection liés au glutathion dans la barrière sang - liquide céphalorachidien choroïdienne au cours du développement périnatal." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSE1026/document.

Full text
Abstract:
Plus de 50 % des handicaps neurodéveloppementaux sont dus à une exposition périnatale à des stress toxiques ou oxydants. Comprendre comment le cerveau est protégé au cours du développement périnatal et pourquoi ses mécanismes de défense sont dépassés lorsque l’enfant est soumis à un stress important est donc crucial. La barrière sang – liquide céphalorachidien (LCR), localisée au niveau des plexus choroïdes, présente une capacité de détoxification élevée et pourrait donc avoir un rôle prépondérant dans la protection du cerveau au stade périnatal. Nous avons étudié la capacité de plusieurs enzymes choroïdiennes à protéger l'environnement liquidien cérébral pendant la période postnatale chez le rat, et évalué si leurs activités pouvaient être induites par la voie du nuclear factor erythroid-2-related factor 2 (Nrf2). Le facteur Nrf2 peut en effet moduler l’expression de différents gènes codant pour des enzymes de détoxification. Nous avons montré que les glutathion transférases (Gst) et les glutathion peroxydases (Gpx), intervenant respectivement dans l’inactivation des molécules toxiques et dans la régulation du stress oxydant, présentaient des activités choroïdiennes élevées pendant la période postnatale, et avons caractérisé fonctionnellement leur capacités de neuroprotection. Le traitement des ratons avec du diméthylfumarate (DMF), inducteur de la voie Nrf2, induit la migration nucléaire de Nrf2, augmente l’activité choroïdienne Gst, et réduit de 40 % le passage cérébral de toxiques substrats des Gst. Ces données montrent la capacité neuroprotectrice précoce des plexus choroïdes, et indique qu’elle peut être induite pharmacologiquement
More than 50 % of intellectual or sensory-motor deficits in children are due to perinatal exposure to oxidative stress or toxicants. Understanding brain protection mechanisms during development is crucial to design therapeutic strategies to address these disabilitating disorders. The choroid plexuses, forming an interface between the blood and the cerebrospinal fluid (CSF), have a high detoxifying capacity, suggesting their involvement in neuroprotection. The nuclear factor erythroid-2-related factor 2 (Nrf2) pathway can modulate the expression of several genes encoding for antioxidant proteins and detoxifying enzymes. We studied the ability of several choroidal enzyme families to protect the brain fluid environment during the postnatal period in rat and explored whether this protection can be enhanced by Nrf2 pathway. We focused on glutathione transferases (Gsts), which conjugate toxic compounds to glutathione, and glutathione peroxidases (Gpxs), which detoxify reactive oxygen species. Gst and Gpx specific activities were high during the postnatal period in choroid plexuses compared to the cerebral cortex, and their neuroprotective functions were efficient. The Nrf2 factor is expressed in choroid plexuses during the perinatal period. Treatment of rat pups with Nrf2 activator dimethylfumarate induced Nrf2 nuclear translocation and increased Gst activities in choroid plexus tissues. The dimethylfumarate treatment resulted in a large decrease of the blood-to-CSF permeability of a prototypical Gst substrate. These data substantiate the early neuroprotective functions of choroid plexuses, which can be enhanced upon treatment with clinically used pharmacological compounds
APA, Harvard, Vancouver, ISO, and other styles
4

Adams, Ruqaiyah. "Characterization of a novel soybean candidate glutathione peroxidase/thioredoxin-dependent peroxidase under salt stress." Thesis, University of the Western Cape, 2012. http://hdl.handle.net/11394/3800.

Full text
Abstract:
The study aimed to investigate the following: 1. Investigate a putative glutathione peroxidase gene (Glyma17g34110) within Glycine max by an in silico analysis and spatial expression. 2. Determine the effects of exogenously applied nitric oxide on the expression of Glyma17g34110. 3. Investigate the antioxidant mechanism with attention to Glyma17g34110,reactive oxygen species and cell death in the response to salt stress. 4. Establish whether Glyma17g34110 is a glutathione peroxidase or thioredoxindependent peroxidase gene.
Magister Scientiae - MSc
APA, Harvard, Vancouver, ISO, and other styles
5

Wiencierz, Anne Maria. "Entwicklung eines Dual-Luciferase-Reportergen-Assays zum Nachweis der Induktion antioxidativer Enzyme durch Nahrungsbestandteile." Master's thesis, Universität Potsdam, 2008. http://opus.kobv.de/ubp/volltexte/2009/2790/.

Full text
Abstract:
Die Induktion antioxidativer Enzyme gilt als eine Möglichkeit, die antioxidative Kapazität von Zellen zu steigern und dadurch mit oxidativem Stress assoziierten Erkrankungen (z. B. Herz-Kreislauf-Erkrankungen, Neurodegeneration, Atherosklerose) vorzubeugen. Ausgehend davon wurde in der vorliegenden Arbeit der Dual-Luciferase-Reportergen-(DLR)-Assay zum Nachweis der Induktion der antioxidativen Enzyme Katalase (CAT), zytosolische Glutathion-Peroxidase (GPX1) und Kupfer-Zink-Superoxid-Dismutase (SOD1) entwickelt. Im Zuge dessen wurden drei Säugetierzelllinien (CaCo2, IEC-18, V79) auf ihre Eignung zur Modellzelllinie untersucht. Aufgrund der Transfektionseffizienz wurde die Fibroblastenzelllinie V79 ausgewählt. Zur Gewährleistung eines hohen Substanzdurchsatzes des DLR-Assays wurden bei der Etablierung Parameter wie Kulturplattenformat, DNA-Menge, Luciferasen-Kinetik berücksichtigt. Nach erfolgreicher Etablierung des Versuchs im 96-Well-Format wurden L-Carnitin, Catechin, Epigallocatechingallat, Genistein, Wasserstoffperoxid (H2O2), Natrium-Ascorbat, Paraquat, Quercetin, 12-O-Tetradecanoylphorbol-13-Acetat (TPA) und Trolox in nicht-zytotoxischen Konzentrationen hinsichtlich der Aktivierung des Ratten-CAT-, des humanen GPX1- und des humanen SOD1-Promotors untersucht. Die Bestimmung der maximal tolerierbaren Behandlungskonzentration erfolgte im Vorfeld mittels Resazurintest. Von den zehn Verbindungen zeichneten sich drei Substanzen als potente Induktoren für die SOD1 und die GPX1 aus. Die 24-stündige Behandlung von mit Reportergenkonstrukten transient transfizierten V79-Zellen mit 100 µM Paraquat resultierte in einer Verdopplung der relativen SOD1-Promotor-Aktivität und einer Erhöhung der relativen GPX1-Promotor-Aktivität auf 1,6 bzw. 1,7. Die Stimulation mit 20 µM Genistein oder 10 µM Quercetin führte wiederum zu einer Verdopplung bis Verdreifachung der relativen SOD1- und GPX1-Promotor-Aktivität. Der Promotor der Rattenkatalase konnte demgegenüber nur durch 50 µM H2O2 aktiviert werden (1,5fach). Für diesen DLR-Assays bieten sich folglich Genistein, Quercetin wie auch H2O2 als Referenzsubstanzen an. Um aber eine qualitative Charakterisierung der einzelnen Verbindungen hinsichtlich ihres Induktionspotentials zu gewährleisten, sollten von allen getesteten Substanzen Dosis-Wirkungskurven aufgenommen werden. Zudem wird für den routinemäßigen Einsatz die Verwendung stabil transfizierter Zellen zur Vermeidung von mit der Transfektion verbundenen experimentellen Schwankungen empfohlen.
The induction of antioxidative enzymes might be an opportunity to elevate the cellular antioxidative capacity and, thus, to prevent oxidative stress associated diseases (e. g. cardio-vascular disease, neurodegenerative disease, atherosclerosis). Based on this idea the dual luciferase reporter gene (DLR) assay was developed to demonstrate the induction of three antioxidative enzymes: catalase (CAT), cytosolic glutathione peroxidase (GPX1), and copper-zinc superoxide dismutase (SOD1). In the course of the development three mammalian cell lines (CaCo2, IEC-18, V79) were tested for their ability to serve as a model cell line. The line V79 was chosen due to the transfection efficiency. To give consideration to a high-throughput several parameters were studied (e. g. format of the cultural plates, amount of DNA, kinetics of the luciferases) and the DLR assay was successfully established in 96 well plates. Subsequently, L-carnitine, catechin, epigallocatechin gallate, genistein, hydrogen peroxide (H2O2), sodium ascorbate, paraquat, quercetin, 12-O-tetradecanoylphorbol-13-acetate (TPA) and trolox were tested in non-cytotoxic concentrations for the activation of the rat CAT, human GPX1 and human SOD1 promoter. The maximally tolerable concentrations were determined by resazurin test in advance. Three out of these ten compounds were identified as potent inducers of GPX1 and SOD1. Stimulation of reporter gene construct transient transfected V79 cells for 24 hours with 100 µM paraquat caused a duplication of the relative GPX1 promoter activity and a 1.6-/1.7-fold increase of the relative SOD1 promoter activity. The incubation with 20 µM gen-istein or 10 µM quercetin resulted in duplication to triplication of both, the relative GPX1 and SOD1 promoter activity. In contrast, the rat CAT promoter was activated by 50 µM H2O2 (1.5-fold). Consequently, genistein, quercetin, and H2O2 are considered to be suitable reference substances for this DLR assay. To further characterize the inducing potential of the tested compounds all of them should be tested in different concentrations. Furthermore, for the routinely performed DLR assay it is recommended to use stably transfected cells to eliminate transfection caused variations.
APA, Harvard, Vancouver, ISO, and other styles
6

De, Oliveira Bouvière Jessica. "Rôle de la sélénoprotéine P et de la glutathion peroxydase 3 dans le phénotype des macrophages et la régénération musculaire." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSE1167/document.

Full text
Abstract:
Les macrophages peuvent transiter entre les états pro et anti-inflammatoires, un processus appelé de polarisation. Les molécules sécrétées par les macrophages sont capables d'induire différents profils métaboliques. Les analyses transcriptomiques de macrophages pro et anti-inflammatoires humains ont identifié nouvelles molécules avec un peptide sécrétoire. Parmi ces candidates, les sélénoprotéines étaient l’une des plus exprimés dans les macrophages anti-inflammatoires. Ainsi, nous évaluons l’impact des sélénoprotéines sur la polarisation des macrophages, secondaires à l’inflammation et leur implication au cours de la régénération musculaire. Une fois établi que les cytokines stimulent les transitions des macrophages, nous avons utilisé IFN-gamma et IL10 pour explorer ces différents profils inflammatoires in vitro. Les macrophages dérivés de la moelle osseuse de WT et de sélénoprotéines KO ont été polarisés avec les deux cytokines pour obtenir un phénotype pro et anti-inflammatoire, respectivement. Nos résultats ont montré que, en absence de sélénoprotéines, les macrophages réduisaient leur capacité à migrer d'un état d'activation à l’autre par rapport au contrôle, soulignant ainsi l'importance de ces molécules pour contrôler les états d’alternance des macrophages. Le modèle de lésion en réponse à la cardiotoxine a été utilisé pour examiner, in vivo, la capacité des macrophages à modifier leur phénotype au cours de la régénération du muscle squelettique. Trois jours après une lésion, la population pro est remplacé par une anti-inflammatoire, comme l'a déjà montré l'analyse par cytométrie en flux. Cependant, les modèles de macrophages pro-inflammatoires sélénoprotéines KO étaient présent trois fois plus nombreux relativement à la population anti-inflammatoire, indiquant que ces macrophages n’ont pas acquis le phénotype anti-inflammatoire. De plus, nous évaluons la fonction des macrophages en absence de sélénoprotéines. Suite à la polarisation avec les cytokines, décrites ci-dessus, les expériences ont démontré que les macrophages anti-inflammatoires WT favorisaient la fusion des myoblastes, alors que les sélénoprotéines KO n'étaient pas en mesure de maintenir cette fusion. En conclusion, les sélénoprotéines modulent la polarisation des macrophages, impliquant leur capacité à acquérir différents phénotypes in vitro et in vivo, ainsi que leurs effets sur la fusion des myoblastes
Macrophages can go through transitions between pro and anti-inflammatory states, one process called polarization skewing. Molecules secreted by macrophages are able to induce different metabolic profiles. Transcriptomic analyses of human pro and anti-inflammatory macrophages identified new molecules with a secretory peptide. Selenoproteins were one of the most expressed in anti-inflammatory macrophages. Thus, we evaluate the respective roles of selenoproteins on macrophage polarization parameters in inflammation and their implication in regenerative processes. Once established that cytokines largely spur macrophage transitions we used IFN-gamma and IL10 to explore these different inflammatory profiles in vitro. Bone marrow derived macrophages from WT and selenoproteins KO models were polarized with both cytokines to obtain a pro and anti-inflammatory phenotype, respectively. Our results showed that without selenoproteins, macrophages had impairment of their capacity to switch from one activation state to another as compared with the control, emphasizing the importance of these molecules to control macrophage transitional states. The cardiotoxin injury model was use to in vivo examine the macrophages capability to switch their phenotype during skeletal muscle regeneration. Three days after an injury pro is replaced by anti-inflammatory population, as has already been shown by flow cytometry analysis. However, macrophages from selenoproteins KO presented three-fold increase of pro-inflammatory macrophages while anti-inflammatory population decreased, indicating that they did not acquire an anti-inflammatory phenotype. In addition, we evaluate the macrophage function in absence of selenoproteins. After polarization with cytokines, experiments demonstrated that WT anti-inflammatory macrophages promoted myoblast fusion, whereas selenoproteins KO were not able to sustain their fusion. In conclusion, selenoproteins modulate macrophage polarization implicating their ability to acquire different phenotypes in vitro and in vivo as well as their effects on myoblast fusion
APA, Harvard, Vancouver, ISO, and other styles
7

Hille, Jan Matthias. "Die Trinukleotid-Expansion des Gens für zelluläre Glutathion-Peroxidase bei Patienten mit sporadischer amyotropher Lateralsklerose." Doctoral thesis, Humboldt-Universität zu Berlin, Medizinische Fakultät - Universitätsklinikum Charité, 2003. http://dx.doi.org/10.18452/14952.

Full text
Abstract:
Trotz intensiver Forschung ist die Ätiologie der sporadischen amyotrophen Lateralsklerose (sALS) weiterhin unbekannt. Zahlreiche Anzeichen deuten allerdings auf eine Mitbeteiligung von oxidativem Streß an der Pathogenese der sALS hin. So fand sich eine verminderte Aktivität der zellulären Glutathion-Peroxidase (GPX-1), eines als Radikalenfänger fungierenden Enzyms, in den Gyrus praecentrales bei sALS-Patienten. Zusätzliche Studien fanden eine Trinukleotid-Expansion des GGG-repeats im 1. Exon des für die GPX-1 kodierenden Gens. Da Trinukleotid-Expansionen bei einer Vielzahl von neurodegenerativen Erkrankungen wie dem Kennedy-Syndrom und der spinozerebellären Ataxie nachgewiesen werden konnten, war das Ziel dieser Arbeit, eine fragliche Mitbeteiligung dieser Trinkukleotid-Expansion der GPX-1 an der Pathogenese der sALS zu klären. Nach Etablierung der Methode bestehend aus einer Kombination von Polymerase-Kettenreaktion (PCR) und Restriktions-Fragment-Längen-Polymorphismus (RFLP) zeigte sich, dass der Genotyp 4*5 bei einer Gruppe von 231 sALS-Patienten signifikant häufiger vertreten war, wohingegen der Genotyp 5*6 in der Kontrollgruppe signifikant überrepräsentiert war. Im Vergleich zu bisher veröffentlichten Ergebnissen ließ sich der Genotyp 4*4 in der Kontrollgruppe signifikant häufiger nachweisen. Ursache hierfür könnte - neben einem tatsächlich erhöhten Risiko, an sALS zu erkranken - der Zusammenhang mit einem C/T-Polymorphismus der GPX-1 sein, der zu einem Austausch von Prolin zu Leucin führt. Die für Leucin kodierende Variante tritt hierbei nur zusammen mit 5 GCG-repeats auf, während die für Prolin kodierende Variante mit dem Auftreten von 4 und 6 GCG-repeats korreliert.
In spite of intensive research efforts the ethiology of sporadic amyotrophic lateral sclerosis (sALS) remains unknown. Various indices indeed suggest an involvement of oxidative stress in the pathogenesis of sALS. Thus a decreased activity of the cellular glutathione peroxidase (GPX-1) in gyrus praecentrales of sALS patients could be detected, an enzym strongly participating in the clearence of free radicals. Additional studies uncovered a trinucleotid expansion of a GCG repeat in the 1st exon of the gene coding for GPX-1. Such trinucleotid expansions play a major role in a variety of neurodegenerative disorders like the Kennedy Syndrom and spinal-cerebellary ataxia. Goal of this work was to disclose a possible involvement of the GCG expansion in the pathogenesis of sALS. Through the successful establishment of the methodology consisting of a combination of polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) we could demonstrate a significant decrease of the genotype 4*5 in a group of 231 sALS patients, whereas the genotype 5*6 was overrepresented in the control group. Compared to hitherto publications we detected an increased occurrence of the 4*4 genotype in the control group. Besides an effective increased risk to contract sALS, the distribution of the GCG-repeat expansion could originate from another C/T polymorphism of GPX-1-gene leading to a substitution of proline with leucine. The leucine coding mutation occurs together with 5 GCG repeats, whereas the proline coding mutant correlates with 4 and 6 GCG-repeats.
APA, Harvard, Vancouver, ISO, and other styles
8

Huang, Wenhu. "Extracellular glutathione peroxidase purification, immunoassay, nutritional regulation and clinical aspects /." Lund : Lund University Dept. of Applied Nutrition and Food Chemistry, 1996. http://catalog.hathitrust.org/api/volumes/oclc/38100668.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Eftekharpour, Eftekhar. "Glutathione dependent and thioredoxin dependent peroxidase systems in neural cells." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/NQ63863.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Phillips, Kyle. "Characterisation of a novel soybean candidate glutathione peroxidase/thioredoxin-dependent peroxidase in soybean exposed to osmotic/drought stress." University of the Western Cape, 2012. http://hdl.handle.net/11394/4643.

Full text
Abstract:
>Magister Scientiae - MSc
Drought stress is a major contributor to reduced soybean crop yield and quality, this can however be mitigated by the plant’s antioxidant defence mechanisms. One group of antioxidant enzymes that are active in these defence mechanisms are glutathione peroxidases (GPXs). GPXs are antioxidant proteins which are able to reduce H2O2, a toxic reactive oxygen species which accumulates under stress conditions. This study aims at isolating the protein encoded by Glyma01g42840 and determining if it has Phospholipid hydroperoxidase glutathione peroxidase (PHGPX) and/or Thioredoxin dependent peroxidase (TRX-PX) activity as well as assaying the effect of Drought stress on the expression of this putative GPX . This will be accomplished by molecular cloning, sequencing as well as the expression of the isolated protein to assay it enzymatic activity. It was found that the enzyme encoded by Glyma01g42840 is able to use glutathione and thioredoxin as electron donors for the detoxification peroxides, however enzymatic activity is more efficient when using glutathione as an electron donor. In conclusion it was found that glyma01g42840 encodes an enzyme which is able to utilise more than one electron donor and as glutathione produces the greatest amount of enzymatic activity it can be said that glyma01g42840 encodes a GPX.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Glutathion peroxidasa"

1

Hassan, Afaf Mahmoud. Glutathione peroxidase activity in aspirin-induced asthma. Manchester: Universityof Manchester, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

McKeown, Renny. Immunohistochemical localisation of glutathione peroxidase in bovine, porcine and rat tissues. (s.l: The Author), 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Porter, Marilyn. Human plasma glutathione peroxidase as a risk factor for ischaemic heart disease. Manchester: University of Manchester, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cowan, Douglas B. Redox regulation of human glutathione peroxidase gene expression. 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Glutathion peroxidasa"

1

Manevich, Yefim. "Peroxiredoxin 6 as Glutathione Peroxidase." In Glutathione, 143–59. Boca Raton: Taylor & Francis, 2018. | Series: Oxidative stress and: CRC Press, 2018. http://dx.doi.org/10.1201/9781351261760-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Reddy, C. C., and G. A. Hamilton. "Glutathione Peroxidase." In Inorganic Reactions and Methods, 490–92. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145319.ch211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schomburg, D., M. Salzmann, and D. Stephan. "Glutathione peroxidase." In Enzyme Handbook 7, 759–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-78521-4_144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Flohé, L. "Glutathione Peroxidase." In Oxygen Radicals in Biology and Medicine, 663–68. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-5568-7_104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Flohé, Leopold. "Glutathione Peroxidases." In Advanced Topics in Science and Technology in China, 1–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22236-8_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Schomburg, Lutz. "Glutathione Peroxidases and the Thyroid Gland." In Glutathione, 161–71. Boca Raton: Taylor & Francis, 2018. | Series: Oxidative stress and: CRC Press, 2018. http://dx.doi.org/10.1201/9781351261760-10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Orian, Laura, Giorgio Cozza, Matilde Maiorino, Stefano Toppo, and Fulvio Ursini. "The Catalytic Mechanism of Glutathione Peroxidases." In Glutathione, 53–57. Boca Raton: Taylor & Francis, 2018. | Series: Oxidative stress and: CRC Press, 2018. http://dx.doi.org/10.1201/9781351261760-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Maiorino, Matilde, Valentina Bosello, Giorgio Cozza, Antonella Roveri, Stefano Toppo, and Fulvio Ursini. "Glutathione Peroxidase-4." In Selenium, 181–95. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-1025-6_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kopel, Jonathan. "Erythrocyte Glutathione Peroxidase." In Encyclopedia of Autism Spectrum Disorders, 1–2. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4614-6435-8_102075-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Maiorino, Matilde, Valentina Bosello-Travain, Giorgio Cozza, Giovanni Miotto, Laura Orian, Antonella Roveri, Stefano Toppo, Mattia Zaccarin, and Fulvio Ursini. "Glutathione Peroxidase 4." In Selenium, 223–34. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41283-2_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Glutathion peroxidasa"

1

Chang-Cheng Gao, Xian-Feng Zou, Qiong Wu, Xing Chen, Li-Hong Zhang, and Li-Na Chen. "A novel micromolecule glutathione peroxidase mimic." In 2011 International Symposium on Information Technology in Medicine and Education (ITME 2011). IEEE, 2011. http://dx.doi.org/10.1109/itime.2011.6132096.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chaikovskaya, L. A., M. I. Baranskaya, and O. L. Ovsienko. "Microbial preparations as a factor of plant resistance to the stress effects of heavy metals." In РАЦИОНАЛЬНОЕ ИСПОЛЬЗОВАНИЕ ПРИРОДНЫХ РЕСУРСОВ В АГРОЦЕНОЗАХ. Federal State Budget Scientific Institution “Research Institute of Agriculture of Crimea”, 2020. http://dx.doi.org/10.33952/2542-0720-15.05.2020.21.

Full text
Abstract:
The results of the influence of the complex microbial preparations (CMP) on the formation of the winter wheat antioxidant protection system in case of soil contamination with Pb, Cu, Cr are presented. Soil contamination with HM led to an increase in the content of ascorbic acid, glutathione, and peroxidase in wheat leaves. The use of CMP for pre-sowing inoculation of seeds helps to reduce the content of these indicators in the leaves of plants. Thus, bacterization contributed to a decrease in the content of ascorbic acid in the leaves by 13-35%. There was also a decrease in the content of glutathione in the leaves of plants grown from inoculated seeds. It decreased by 14-32%, 12-25%, and 19-24% on the background of НM soil contamination at the level of 1, 2.5 and 5 MPC, respectively. Our studies have shown a decrease in the content of peroxidase in the leaves of bacterized wheat plants on the background of soil contamination at the level of 1, 2.5 and 5 MPC HM by 7–19%, 14-33%, and 25-49%, respectively. Thus, soil contamination with HM leads to an increase in the content of ascorbic acid, glutathione, and peroxidase in the leaves of young winter wheat plants. The use of CMP for pre- sowing inoculation of seeds helps to reduce the content of these indicators in the phytomass of plants. This indicates an increased plant resistance to oxidative stress caused by HM.
APA, Harvard, Vancouver, ISO, and other styles
3

RoyChoudhury, Sourav, Rashmi Mukherjee, and Koel Chaudhury. "Molecular characterization of selenoproteins based on decreased glutathione peroxidase activity in preeclampsia." In 2010 International Conference on Systems in Medicine and Biology (ICSMB). IEEE, 2010. http://dx.doi.org/10.1109/icsmb.2010.5735420.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yu, Yan P., Hui Wang, Katherine L. Luo, and Jian-Hua Luo. "Abstract 204: p53-induced gene 3 activity is glutathione peroxidase 3 dependent." In Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

"Evolutionary and phylogenetic study of Glutathione peroxidase gene in Khazak and Ross strain." In International Conference on Medicine, Public Health and Biological Sciences. CASRP Publishing Company, Ltd. Uk, 2016. http://dx.doi.org/10.18869/mphbs.2016.235.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Xu, Ya-wei, Cheng Wang, Ping-sheng Gong, Gang-lin Yan, and Jun-jie Xu. "Preparation and antioxidant characters of selenium-containing soybean peptide with glutathione peroxidase activity." In 2012 International Symposium on Information Technology in Medicine and Education (ITME 2012). IEEE, 2012. http://dx.doi.org/10.1109/itime.2012.6291423.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Haug, Ulrike, Elizabeth M. Poole, Liren Xiao, Marty L. Slattery, Rachel L. Galbraith, David Duggan, Li Hsu, et al. "Abstract 933: Glutathione peroxidase (GPX) candidate and tagSNPs and risk of colorectal neoplasia." In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-933.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Geraghty, Patrick, Andrew Hardigan, Sonya Gahdvi, Alison Wallace, Oleg Mirochnitchenko, Jincy Thankachen, Leo Arellanos, et al. "Glutathione Peroxidase-1 (GPx-1) Protects The Lung From Cigarette Smoke Induced Injury." In American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California. American Thoracic Society, 2012. http://dx.doi.org/10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a1255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sabet, SF, MM Mostafa, M. El-Shinawi, D. Peng, MA Nouh, and W. El-Rifai. "Abstract P3-04-05: Hypermethylation and Downregulation of Glutathione Peroxidase-3 in Inflammatory Breast Carcinogenesis." In Abstracts: Thirty-Third Annual CTRC‐AACR San Antonio Breast Cancer Symposium‐‐ Dec 8‐12, 2010; San Antonio, TX. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/0008-5472.sabcs10-p3-04-05.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Vlahos, Ross, Selcuk Yatmaz, Huei J. Seow, Rosa C. Gualano, Zi X. Wong, Peter J. Crack, Steven Bozinovski, and Gary P. Anderson. "The Antioxidant Enzyme Glutathione Peroxidase-1 (GPx-1) Reduces Influenza A Virus-Induced Lung Inflammation." In American Thoracic Society 2011 International Conference, May 13-18, 2011 • Denver Colorado. American Thoracic Society, 2011. http://dx.doi.org/10.1164/ajrccm-conference.2011.183.1_meetingabstracts.a2754.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Glutathion peroxidasa"

1

Diamond, A. M., J. L. Murray, P. Dale, R. Tritz, and D. J. Grdina. The effects of selenium on glutathione peroxidase activity and radioprotection in mammalian cells. Office of Scientific and Technical Information (OSTI), September 1995. http://dx.doi.org/10.2172/510356.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography