Academic literature on the topic 'Glutathion transferase'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Glutathion transferase.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Glutathion transferase"

1

Silivanova, E. A., P. A. Shumilova, and M. A. Levchenko. "Activities of detoxifying enzymes in adults of houseflies Musca domestica L. selected with chlorfenapyr." Biomics 12, no. 4 (2020): 492–503. http://dx.doi.org/10.31301/2221-6197.bmcs.2020-43.

Full text
Abstract:
In insects, biochemical mechanisms of insecticide resistance base on increasing of activities of main detoxyfying enzymes – monooxygenases, nonspesific esterases, and glutathion-S-transferases. Currently, the progress of resistance development and the degree of contributing enzymes to resistance in insects have been studied for certain insecticides. The goal of this study was to assess activities of monooxygenase, carboxylesterase, glutathione-S-transferase, and alkaline phosphatase in females and males housefly Musca domestica in the second, fourth, sixth, eighth and tenth generations of the chlorfenapyr-selected strain. Evaluation of chlorfenapyr susceptibility showed that adults M. domestica in tenth generations was tolerating to chlorfenapyr as the resistance ration value was 3.6. In certain generations of chlorfenapyr-selected strain M. domestica, monooxygenase activities in males and females were 1.4-2.1 times more, and alkaline phosphatase activities in females were 2.3-2.7 times more than that in control insects. Glutathione-S-transferase activities had no significant differences in adults M. domestica of control and chlorfenapyr-selected strains. For chlorfenapyr-selected strain M. domestica, activities of monooxygenase, carboxylesterase, and alkaline phosphatase differed in males and females of same generations that suggests that mode and pattern of resistance development might be sex-specific in this specie.
APA, Harvard, Vancouver, ISO, and other styles
2

Ito, Mika, Satoshi Shuto, Yoshihiro Ito, and Hiroshi Abe. "Development of Molecular Probe Targeting on Glutathion Transferase." Journal of Synthetic Organic Chemistry, Japan 72, no. 7 (2014): 822–31. http://dx.doi.org/10.5059/yukigoseikyokaishi.72.822.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tison, F., C. Coutelle, P. Henry, and A. Cassaigne. "Glutathion s-transferase (class ?) phenotype in Parkinson's disease." Movement Disorders 9, no. 1 (1994): 117–18. http://dx.doi.org/10.1002/mds.870090128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Borkar, Dipali B., and Vishal L. Bagde. "Role of Glutathion-S-Transferase in Imparting Resistance in Plutella Xylostella (L.) Against Flubendiamide." Indian Journal of Applied Research 3, no. 9 (October 1, 2011): 7–8. http://dx.doi.org/10.15373/2249555x/sept2013/3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Su, Fengxi, Xiaoqu Hu, Weijuan Jia, Chang Gong, Erwei Song, and Peter Hamar. "Glutathion s transferase π indicates chemotherapy resistance in breast cancer." Journal of Surgical Research 113, no. 1 (July 2003): 102–8. http://dx.doi.org/10.1016/s0022-4804(03)00200-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kopylchuk, Halyna, and Ivanna Nykolaichuk. "Basic components of glutathion system in rat erythrocytes under conditions of toxic damage on the background of an alimental protein lack." Biolohichni systemy 12, no. 1 (June 25, 2020): 31–38. http://dx.doi.org/10.31861/biosystems2020.01.031.

Full text
Abstract:
The article is devoted to the study of the main components of the glutathione system under conditions of toxic damage against the background of nutritional protein deficiency: the content of reduced and oxidized glutathione with the determination of the GSH/GSSG ratio, the activity of glutathione-dependent enzymes – glutathione peroxidase, glutathione transferase, glutathione reductase, and glucose-6-phosphate dehydrogenase. The concentration of reduced glutathione in the erythrocyte hemolysate was studied using Elman's reagent after deproteinization of the samples. Glutathione transferase activity was determined by the rate of formation of glutathione S conjugates by reacting reduced glutathione with a substrate of 1-chloro-2.4-dinitrobenzene. Glutathione peroxidase activity was evaluated by the formation of oxidized glutathione. The activity of glutathione reductase in erythrocytes was determined by the method, is based on measuring the oxidation rate of NADPH+H+, which is recorded by decreasing absorption at a wavelength of 340 nm. A decrease in the ratio of GSH/GSSG in rat erythrocytes under conditions of toxic damage against a nutritional deficiency of protein is indicated by a functional shift in the thiol-disulfide balance towards increased use of the reduced form of glutathione for antioxidant protection. It was established that toxic damage is a key factor in reducing the level of glutathione transferase against the background of an increase in glutathione peroxidase activity in rat erythrocytes, the activation of which probably prevents the progression of LPO processes. At the same time, under conditions of toxic damage, against the background of alimentary protein deficiency, a decrease in glutathione reductase and glucose-6-phosphate dehydrogenase activity is observed, which leads to blocking of the first stage of glucose-6-phosphate metabolism in the pentose phosphate cycle, resulting in a decrease in the amount of NADPH and, accordingly reduced glutathione.
APA, Harvard, Vancouver, ISO, and other styles
7

Park, Hyeyoung, and Youn-Kyoo Choung. "Degradation of Antibiotics (Tetracycline, Sulfathiazole, Ampicillin) Using Enzymes of Glutathion S-Transferase." Human and Ecological Risk Assessment: An International Journal 13, no. 5 (September 18, 2007): 1147–55. http://dx.doi.org/10.1080/10807030701506223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Verbeeck, MAE, P. Marx, EFM Wouters, SjSc Wagenaar, and FBJM Thunnissen. "Increased gene expression of glutathion-S-transferase-pi in human lung carcinomas." Cancer Genetics and Cytogenetics 77, no. 2 (October 1994): 173. http://dx.doi.org/10.1016/0165-4608(94)90328-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zamora, Zullyt B., Aluet Borrego, Orlay Y. López, René Delgado, Ricardo González, Silvia Menéndez, Frank Hernández, and Siegfried Schulz. "Effects of Ozone Oxidative Preconditioning on TNF-αRelease and Antioxidant-Prooxidant Intracellular Balance in Mice During Endotoxic Shock." Mediators of Inflammation 2005, no. 1 (2005): 16–22. http://dx.doi.org/10.1155/mi.2005.16.

Full text
Abstract:
Ozone oxidative preconditioning is a prophylactic approach, which favors the antioxidant-prooxidant balance for preservation of cell redox state by the increase of antioxidant endogenous systems in both in vivo and in vitro experimental models. Our aim is to analyze the effect of ozone oxidative preconditioning on serum TNF-αlevels and as a modulator of oxidative stress on hepatic tissue in entodoxic shock model (mice treated with lipopolysaccharide (LPS)). Ozone/oxygen gaseous mixture which was administered intraperitoneally (0.2,0.4, and1.2mg/kg) once daily for five days before LPS (0.1mg/kg, intraperitoneal). TNF-αwas measured by cytotoxicity on L-929 cells. Biochemical parameters such as thiobarbituric acid reactive substances (TBARS), enzymatic activity of catalase, glutathione peroxidase, and glutathione-S transferase were measured in hepatic tissue. One hour after LPS injection there was a significant increase in TNF-αlevels in mouse serum. Ozone/oxygen gaseous mixture reduced serum TNF-αlevels in a dose-dependent manner. Statistically significant decreases in TNF-αlevels after LPS injection were observed in mice pretreated with ozone intraperitoneal applications at0.2(78%),0.4(98%), and1.2(99%). Also a significant increase in TBARS content was observed in the hepatic tissue of LPS-treated mice, whereas enzymatic activity of glutathion-S transferase and glutathione peroxidase was decreased. However in ozone-treated animals a significant decrease in TBARS content was appreciated as well as an increase in the activity of antioxidant enzymes. These results indicate that ozone oxidative preconditioning exerts inhibitory effects on TNF-αproduction and on the other hand it exerts influence on the antioxidant-prooxidant balance for preservation of cell redox state by the increase of endogenous antioxidant systems.
APA, Harvard, Vancouver, ISO, and other styles
10

LAWAL-ARE, Aderonke Omolara, Rasheed Olatunji MORUF, Sarah Oyeyinka OLUSEYE-ARE, and Tajudeen Opeyemi ISOLA. "Antioxidant Defense System Alternations in Four Crab Species as a Bio-Indicator of Environmental Contamination." Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Veterinary Medicine 76, no. 1 (June 12, 2019): 73. http://dx.doi.org/10.15835/buasvmcn-vm:2019.0001.

Full text
Abstract:
The ecological health status of aquatic environment is a determinant for the survival and growth of organisms within such niche. An investigative study was carried out on four crab species – Cardiosoma armatum, Goniopsis pelli, Callinectes amnicola, Portunus validusinhabiting contaminated sites in Lagos Lagoon- exploring their anti-oxidant defense mechanism in the light of heavy metal concentration in the crab tissues. Amongst the measured heavy metals, cadmium level proved to be significantly highest (P<0.05) with range concentration of 0.42±0.12mg/kg (G. pelli)- 0.79±0.06 mg/kg (C. armatum). Contrastingly, lead was marginally low with concentration below 0.01 mg/kg in all the crab species. Organismal responses to environmental pollution showed a high level of biomarkers. C. armatum was observed to have elevated level of superoxide dismutase (123.04±0.01min/mg/pro), catalase (7.74±0.05min/mg/pro), glutathion transferase (18.21±0.02 Hmol/mg pro), reduced glutathione (2.92±0.04Hmol/mg pro) and glutathione peroxidase (61.85±0.06 Hmol/mg pro) above other species with C. amnicola recording the lowest concentration of the biomarkers. With the low level of heavy metals and corresponding high concentration of these biomarkers, the pollution indices within the study habitat are quite modest.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Glutathion transferase"

1

Petit, Elise. "Etude des Glutathion Transférases : caractérisation de la classe Kappa et rôle de ces enzymes dans l'hépatotoxicité des Thiopurines." Rennes 1, 2007. http://www.theses.fr/2007REN1B072.

Full text
Abstract:
Les Glutathion Tranférases (GST) constituent un système multienzymatique de détoxication. Elles sont impliquées dans la prévention , le développement des tumeurs et dans la réponse aux anticancéreux. Pendant ma thèse , je me suis intéressée à la GST de classe Kappa. Sa caractérisation nous a permis de mettre en évidence sa présence dans les mitochondries et les peroxysomes. Cette localisation particulière suggère que le GST Kappa pourrait avoir un rôle lié aux fonctions cellulaires de ces deux organites. Les GST étant en outre impliquées dans des phénomènes de résistance à des anticancéreux, je me suis également intéressée à l’hépatotoxicité des thiopurines. Nos résultats montrent que les cellules d’origine humaine sont moins sensibles à un traitement par les thiopurines que les hépatocytes de rat, bien que les composés provoquent une hépatoxicité. En conclusion le GST Kappa est présente dans les mitochondries et les peroxysomes et il pourrait y avoir une relation entre son activité et le métabolisme lipidique. Ce travail a également été l’occasion d’initier pour la première fois une étude sur les htiopurines dans les cellules hépatiques humaines
APA, Harvard, Vancouver, ISO, and other styles
2

Tea, Borany. "Rôle du système glutathion-glutathion-s-transférases dans la chimiothérapie anticancéreuse." Paris 5, 1997. http://www.theses.fr/1997PA05P079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

AUDAN, ALAIN. "Status de l'acetyl- et de la glutathion-transferases chez les porteurs d'adenomes colo-rectaux : etude preliminaire." Nantes, 1994. http://www.theses.fr/1994NANT204M.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Evelo, Christoffel Theodorus Anthonius. "Toxicological stress indicators in human red blood cells changes in glutathione and glutathione S-transferase as biological markers for electrophilic and oxidative stress /." [Maastricht : Maastricht : Rijksuniversiteit Limburg] ; University Library, Maastricht University [Host], 1995. http://arno.unimaas.nl/show.cgi?fid=6632.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Arnoud, Françoise. "Intérêt de la glutathion-S-transférase alpha lors de l'hépatite chronique à transaminases normales et lors du suivi de greffe hépatique." Bordeaux 2, 1997. http://www.theses.fr/1997BOR2P052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Landais, Florence. "Les glutathion s-transférases : étude de la GST mu chez les sujets sains et chez les alcooliques cirrhotiques." Bordeaux 2, 1990. http://www.theses.fr/1990BOR23023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lunel-Orsini, Cécile. "Réversion de l'amplification d'un gène codant une glutathion S-transferase : mécanismes et applications." Châtenay-Malabry, Ecole centrale de Paris, 1994. http://www.theses.fr/1994ECAP0347.

Full text
Abstract:
L’amplification génique est l'acquisition par les cellules de multiples copies d'une fraction de leur génome. Chez les mammifères, ce phénomène intervient seulement dans des tumeurs et constitue fréquemment un facteur pronostic défavorable. Contrôler ce processus en éliminant les cellules dans lesquelles il intervient ou en favorisant sa réversion constitue donc un enjeu important. Nous avons abordé ce problème dans des lignées de fibroblastes de hamster qui résistent à la coformycine par amplification intrachromosomique du gène codant la cible de ce composé, l'AMPdésaminase, et coamplifient une glutathion S-transferase (GST) de la famille mu. La surexpression de cette GST s'accompagne d'une sensibilité accrue à la buthionine sulfoximine (BSO), un inhibiteur de la biosynthèse du glutathion (GSH), ce qui a fourni un crible pour la sélection des révertants. La perte des copies géniques excédentaires se poursuit progressivement en l'absence de sélection jusqu'à l'élimination de l'allèle amplifié. Ce processus peut être induit par des inhibiteurs de la poly (ADP-ribose) polymérase, un enzyme du métabolisme de l’ADN. Ces inhibiteurs permettent donc de guérir des cellules de leur amplification indépendamment du contenu génique des domaines amplifiés. Certaines expériences ont exploité la sensibilité accrue au BSO des cellules surexprimant fortement une GST. La surexpression modérée d'une GST est une propriété fréquente des cellules tumorales qui peut être exploitée pour les éliminer sélectivement: une carence en GSH, induite spécifiquement dans ces cellules, augmente leur sensibilité à des agents antinéoplasiques (moutardes azotées). Nous avons défini des conditions de dosage du GSH par cryométrie en flux à l'aide du monochlorobimane, un substrat des GST. Ce composé permet de visualiser la carence induite dans les cellules qui surexpriment une GST particulière et permet ainsi de trier des cellules viables selon leur niveau d'expression en GST. Cette application parait intéressante pour prédire la réponse de cellules tumorales a des médicaments.
APA, Harvard, Vancouver, ISO, and other styles
8

Habdous, Mohammed. "Place des glutathion S-transférases parmi les marqueurs biologiques de risques cardiovasculaires." Nancy 1, 2003. http://www.theses.fr/2003NAN12507.

Full text
Abstract:
Les Glutathion S-Transférases (GS1), enzymes polymorphes impliquées dans la conjugaison de composés électrophiles nocifs au glutathion, la cancérogenèse et la chimiorésistance aux agents anticancéreux, restent peu étudiées dans les pathologies cardiovasculaires. Récemment, plusieurs études suggèrent que les GST joueraient un rôle antioxydant potentiel protégeant les cellules concernées des dommages occasionnés par les radicaux libres. De plus, de nombreuses études épidémiologiques ont mis en évidence l'implication de certains variants allèliques de la GST dans le développement de plusieurs maladies liées à la consommation de tabac, à savoir les cancers et les maladies cardiovasculaires. Fort de ces constatations, nous avons adopté une approche raisonnée pour étudier les GST comme gènes candidats éventuels du risque cardiovasculaire. Nous avons commencé par développer, optimiser et automatiser une méthode spectrophotométrique mesurant l'activité GST sérique. Grâce à cette méthode, nous avons établi des limites de référence et montré pour la première fois que la prise des contraceptifs oraux augmente l'activité GST sérique. Nous avons ensuite examiné les interrelations potentielles entre l'activité GST sérique et trois importants indicateurs du statut antioxydant (superoxyde dismutase, glutathion peroxydase et statut antioxydant global (TAS)). Les résultats de cette étude ont montré que le mécanisme de défense cellulaire impliquant le système GST / GSH est indépendant des autres et que dans l'ensemble, ces mécanismes sembleraient agir en synergie. Enfm, chez des sujets sains, nous avons étudié les relations éventuelles entre les variants allèliques GST et les cytokines inflammatoires, à savoir l'interleukine- 6 (IL-6) et tumour necrosis factor alpha (INF-a). Les taux d'IL-6 sont négativement associés à l'allèle nul GSTTI*O. Inversement, les concentrations du TNF-a sont positivement associées à l'allèle nul GSTMI*O. L'hypothèse émise pour expliquer ces associations est que les variations des taux des cytokines pourraient être dues à des facteurs exogènes et/ou endogènes dont les effets seraient modulés par les GST. La consommation de tabac et d'alcool n'affecte pas les taux de ces cytokines suggérant que les associations trouvées possèderaient plutôt une origine endogène intimement liée aux fonctions biologiques remplies par les GST. Les fonctions de détoxication/bioactivation des substrats, la biosynthèse d'éicosanoi͏̈des pro- / anti-inflammatoires, l'inhibition des voies de signalisation intracellulaires pro- et anti-inflammatoires sont autant d'éléments qui pourraient expliquer les variations GST-dépendantes des taux des cytokines. Une nouvelle voie de recherche est ainsi ouverte qui explorera le rôle joué par les polymorphismes des GST dans les processus inflammatoires.
APA, Harvard, Vancouver, ISO, and other styles
9

Bruhn, Claudia. "Untersuchungen zum genetischen Polymorphismus der humanen Biotransformationsenzyme Glutathion-S-Transferase T1-1 und Arylamin-N-Acetyltransferase 1." [S.l.] : [s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=961698659.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Busch, Mirjam Dorothea. "Ischämie- und Reperfusionsschaden nach orthotoper Lebertransplantation am Schwein Glutathion-S-Transferase als Parameter zum Vergleich verschiedener Reperfusionsstrategien /." [S.l.] : [s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=971082286.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Glutathion transferase"

1

1942-, Sies H., and Ketterer Brian, eds. Glutathione conjugation: Mechanisms and biological significance. London: Academic Press, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

C, Awasthi Yogesh, ed. Toxicology of glutathione transferases. Boca Raton, FL: CRC\Taylor & Francis, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

D, Hayes J., Pickett C. B, Mantle T. J, University of Edinburgh. Dept. of Clinical Chemistry., and International GST Conference (3rd : 1989 : Royal College of Physicians of Edinburgh), eds. Glutathione S-transferases and drug resistance. London: Taylor & Francis, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

D, Tew Kenneth, ed. Structure and function of glutathione transferases. Boca Raton: CRC Press, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

E, Vermeulen N. P., ed. Glutathione S-transferases: Structure, function and clinical implications. London: Taylor & Francis, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Eldik, Annamaria Johanna van. Synthesis of glutathione conjugates as selective inhibitors for parasitic glutathione s-transferases. Leicester: De Montfort University, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

International ISSX Workshop on Glutathione S-Transferases (1995 Noordwijkerhout, Netherlands). 1995 International ISSX Workshop on Glutathione S-Transferases: Noordwijkerhout, The Netherlands, April 22-25, 1995. Bethesda, MD: International Society for the Study of Xenobiotics, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

McBride, Rhoda. Mitochondrial aspartate aminotransferase, carbohydrate-deficient transferrin and glutathione S-transferase as markersof alcohol abuse. [S.l: The Author], 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bubnic, Simon Joseph. Studies on the induction of early glutathione S-transferase-P-positive hepatocyte populations during hepatocarcinogenesis. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Beaumont, Peter Orton. Role of glutathione S-transferases in the resistance of human colon cancer cell lines to doxorubicin. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Glutathion transferase"

1

Bier, H., T. Hoffmann, I. Haas, and P. Eickelmann. "Glutathion und Glutathion-S-Transferase als Parameter der Chemosensitivität von Kopf-Hals-Karzinomzellinien." In Sitzungsbericht, 281–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-85188-9_249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mannervik, Bengt, and Birgitta Sjödin. "Glutathione Transferases." In Glutathione, 175–99. Boca Raton: Taylor & Francis, 2018. | Series: Oxidative stress and: CRC Press, 2018. http://dx.doi.org/10.1201/9781351261760-11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schomburg, Dietmar, and Dörte Stephan. "Glutathione transferase." In Enzyme Handbook 13, 73–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-59176-1_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Brabender, J., R. Metzger, P. M. Schneider, R. V. Lord, T. R. DeMeester, K. D. Danenberg, A. H. Hölscher, and P. V. Danenberg. "Die Bedeutung der Glutathion S-Transferase PI (GSTPI) mRNA Expression bei der Pathogenese und Progression des Barrett-Ösophagus." In Deutsche Gesellschaft für Chirurgie, 348–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-55715-6_214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tew, Kenneth D. "Protein S-Glutathionylation and Glutathione S-Transferase P." In Glutathione, 201–13. Boca Raton: Taylor & Francis, 2018. | Series: Oxidative stress and: CRC Press, 2018. http://dx.doi.org/10.1201/9781351261760-12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gressner, A. M., and O. A. Gressner. "Glutathion-S-Transferasen." In Lexikon der Medizinischen Laboratoriumsdiagnostik, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-49054-9_1287-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gressner, A. M., and O. A. Gressner. "Glutathion-S-Transferasen." In Springer Reference Medizin, 996–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-48986-4_1287.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yin, Zhimin. "Glutathione S-Transferase." In Encyclopedia of Cancer, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-27841-9_2441-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yin, Zhimin. "Glutathione S-Transferase." In Encyclopedia of Cancer, 1926–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-46875-3_2441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yin, Zhimin. "Glutathione-S Transferase." In Encyclopedia of Cancer, 1563–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-16483-5_2441.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Glutathion transferase"

1

Kulikova, D. B., V. O. Nosova, and A. A. Tishchenko. "FEATURES OF THE GLUTATHIONE REDOX SYSTEM IN PATIENTS AFTER CORONAVIRUS INFECTION." In X Международная конференция молодых ученых: биоинформатиков, биотехнологов, биофизиков, вирусологов и молекулярных биологов — 2023. Novosibirsk State University, 2023. http://dx.doi.org/10.25205/978-5-4437-1526-1-342.

Full text
Abstract:
COVID-19 includes a wide range of clinical signs and symptoms ranging from asymptomatic infections to acute respiratory distress. The glutathione redox system, represented in the human body by the enzymes glutathione-S-transferase (GST), glutathione peroxidase (GPO), and glutathione reductase (GR), provides antioxidant protection for cells. Oxidative stress plays a significant role in the course of coronavirus infection, therefore, an assessment of the state of the glutathione redox system allows us to draw conclusions about the presence and severity of oxidative stress in sick patients. In addition, studies of the antioxidant role of the glutathione redox system in protecting cells from oxidative stress have a perspective in the development and implementation of various pharmaceutical products.
APA, Harvard, Vancouver, ISO, and other styles
2

Salam, MT, T. Islam, C. Breton, and FD Gilliland. "Variants in Glutathione S-Transferase Genes and Childhood Asthma." In American Thoracic Society 2009 International Conference, May 15-20, 2009 • San Diego, California. American Thoracic Society, 2009. http://dx.doi.org/10.1164/ajrccm-conference.2009.179.1_meetingabstracts.a3654.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Frolova, O. V., S. V. Ermolaeva, and I. A. Tumozov. "Oxidative stress and antioxidant enzyme levelsin the blood serum of white mice when exposed to iron and manganese in drinking water under experimental conditions." In VIII Vserossijskaja konferencija s mezhdunarodnym uchastiem «Mediko-fiziologicheskie problemy jekologii cheloveka». Publishing center of Ulyanovsk State University, 2021. http://dx.doi.org/10.34014/mpphe.2021-206-208.

Full text
Abstract:
The object of the study of enzymatic antioxidants in the blood serum of white mice were 30 outbred white male and female mice of the same age and approximately of the same weight. The animals were divided into 3 groups: one control group and two experimental ones in which the mice consumed water with a high content of total iron and manganese (II) ion (over 5 MPC).This study revealed that the activity of glutathione transferase as a marker of antioxidant defense increased among the male mice in the experimental group after experiencing a 12-week-long intoxication, however the level of malondialdehyde in their blood serum indicated insignificant oxidative stress. Keywords: iron, manganese, drinking water, glutathione transferase, malondialdehyde, antioxidant defense, oxidative stress.
APA, Harvard, Vancouver, ISO, and other styles
4

Yamamoto, Kohji. "Function and crystal structure of aBombyx moriOmega-class glutathione transferase." In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.110089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

"Characterization of the glutathione S-transferase gene family in Mollusca." In Bioinformatics of Genome Regulation and Structure/Systems Biology (BGRS/SB-2022) :. Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, 2022. http://dx.doi.org/10.18699/sbb-2022-028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

"Characterization of the glutathione S-transferase gene family in Mollusca." In Bioinformatics of Genome Regulation and Structure/Systems Biology (BGRS/SB-2022) :. Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, 2022. http://dx.doi.org/10.18699/bgrs/sb-2022-028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kang, Bong-su, Beom Jun Lee, and Jong-Soo Kim. "Abstract B36: Glutathione S-transferase pi modulates DNA damage responses." In Abstracts: Second AACR International Conference on Frontiers in Basic Cancer Research--Sep 14-18, 2011; San Francisco, CA. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.fbcr11-b36.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tumurbaatar, Ariuntungalag, Ichinnorov Dashtseren, Sarantuya Jav, and Chimedlkhamsuren Ganbold. "Polymorphisms for epoxide hydrolase, glutathione transferase and genetic susceptibility to COPD." In ERS International Congress 2020 abstracts. European Respiratory Society, 2020. http://dx.doi.org/10.1183/13993003.congress-2020.3325.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fang, GuiJie, and XianFeng Qiao. "Molecular Cloning and Analysis of Glutathione S-Transferase Gene of Schistosoma japonicum." In 2010 2nd International Conference on Information Engineering and Computer Science (ICIECS). IEEE, 2010. http://dx.doi.org/10.1109/iciecs.2010.5678431.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fletcher, M., M. Takata, and N. Marczin. "Inhibitors of Glutathione-S-Transferase (GST) Induce Cell Death in Lung Epithelial Cells." In American Thoracic Society 2009 International Conference, May 15-20, 2009 • San Diego, California. American Thoracic Society, 2009. http://dx.doi.org/10.1164/ajrccm-conference.2009.179.1_meetingabstracts.a1983.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Glutathion transferase"

1

Woldegiorgis, S., R. C. Ahmed, Y. Zhen, C. A. Erdmann, M. L. Russell, and R. Goth-Goldstein. Genetic polymorphism in three glutathione s-transferase genes and breast cancer risk. Office of Scientific and Technical Information (OSTI), April 2002. http://dx.doi.org/10.2172/799602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mauzy, Camilla A., Nathan H. Johnson, Jason J. Jacobsen, Adam G. Quade, Jeremiah N. Betz, Jeanette S. Frey, Amanda Hanes, and David Kaziska. Correlation Between Iron and alpha and pi Glutathione-S-Transferase Levels in Humans. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada580919.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ross, Jeffrey S. Development of an Assay for Prostate Cancer Based on Methylation Status of Glutathione S-Transferase (p). Fort Belvoir, VA: Defense Technical Information Center, March 2001. http://dx.doi.org/10.21236/ada395450.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ross, Jeffrey S. Development of an Assay for Prostate Cancer Based on Methylation Status of Glutathione S-Transferase-pi. Fort Belvoir, VA: Defense Technical Information Center, March 2000. http://dx.doi.org/10.21236/ada392285.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Alanyalı, Filiz Susuz. Effects of Sodium Sulphate on Catalase and Glutathione-S-Transferase Enzyme Activities in Tubifex tubifex (Müller, 1774) (Oligochaeta:Tubificidae). "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, December 2021. http://dx.doi.org/10.7546/crabs.2021.11.05.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Haynes, Robin L., and Alan J. Townsend. Glutathione Transferases and the Multidrug Resistance - Associated Protein in Prevention of Potentially Carcinogenic Oxidant Stress in Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, June 2001. http://dx.doi.org/10.21236/ada398035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gershoni, Jonathan M., David E. Swayne, Tal Pupko, Shimon Perk, Alexander Panshin, Avishai Lublin, and Natalia Golander. Discovery and reconstitution of cross-reactive vaccine targets for H5 and H9 avian influenza. United States Department of Agriculture, January 2015. http://dx.doi.org/10.32747/2015.7699854.bard.

Full text
Abstract:
Research objectives: Identification of highly conserved B-cell epitopes common to either H5 or H9 subtypes of AI Reconstruction of conserved epitopes from (1) as recombinantimmunogens, and testing their suitability to be used as universal vaccine components by measuring their binding to Influenza vaccinated sera of birds Vaccination of chickens with reconstituted epitopes and evaluation of successful vaccination, clinical protection and viral replication Development of a platform to investigate the dynamics of immune response towards infection or an epitope based vaccine Estimate our ability to focus the immune response towards an epitope-based vaccine using the tool we have developed in (D) Summary: This study is a multi-disciplinary study of four-way collaboration; The SERPL, USDA, Kimron-Israel, and two groups at TAU with the purpose of evaluating the production and implementation of epitope based vaccines against avian influenza (AI). Systematic analysis of the influenza viral spike led to the production of a highly conserved epitope situated at the hinge of the HA antigen designated “cluster 300” (c300). This epitope consists of a total of 31 residues and was initially expressed as a fusion protein of the Protein 8 major protein of the bacteriophagefd. Two versions of the c300 were produced to correspond to the H5 and H9 antigens respectively as well as scrambled versions that were identical with regard to amino acid composition yet with varied linear sequence (these served as negative controls). The recombinantimmunogens were produced first as phage fusions and then subsequently as fusions with maltose binding protein (MBP) or glutathioneS-transferase (GST). The latter were used to immunize and boost chickens at SERPL and Kimron. Furthermore, vaccinated and control chickens were challenged with concordant influenza strains at Kimron and SEPRL. Polyclonal sera were obtained for further analyses at TAU and computational bioinformatics analyses in collaboration with Prof. Pupko. Moreover, the degree of protection afforded by the vaccination was determined. Unfortunately, no protection could be demonstrated. In parallel to the main theme of the study, the TAU team (Gershoni and Pupko) designed and developed a novel methodology for the systematic analysis of the antibody composition of polyclonal sera (Deep Panning) which is essential for the analyses of the humoral response towards vaccination and challenge. Deep Panning is currently being used to monitor the polyclonal sera derived from the vaccination studies conducted at the SEPRL and Kimron.
APA, Harvard, Vancouver, ISO, and other styles
8

Or, Etti, David Galbraith, and Anne Fennell. Exploring mechanisms involved in grape bud dormancy: Large-scale analysis of expression reprogramming following controlled dormancy induction and dormancy release. United States Department of Agriculture, December 2002. http://dx.doi.org/10.32747/2002.7587232.bard.

Full text
Abstract:
The timing of dormancy induction and release is very important to the economic production of table grape. Advances in manipulation of dormancy induction and dormancy release are dependent on the establishment of a comprehensive understanding of biological mechanisms involved in bud dormancy. To gain insight into these mechanisms we initiated the research that had two main objectives: A. Analyzing the expression profiles of large subsets of genes, following controlled dormancy induction and dormancy release, and assessing the role of known metabolic pathways, known regulatory genes and novel sequences involved in these processes B. Comparing expression profiles following the perception of various artificial as well as natural signals known to induce dormancy release, and searching for gene showing similar expression patterns, as candidates for further study of pathways having potential to play a central role in dormancy release. We first created targeted EST collections from V. vinifera and V. riparia mature buds. Clones were randomly selected from cDNA libraries prepared following controlled dormancy release and controlled dormancy induction and from respective controls. The entire collection (7920 vinifera and 1194 riparia clones) was sequenced and subjected to bioinformatics analysis, including clustering, annotations and GO classifications. PCR products from the entire collection were used for printing of cDNA microarrays. Bud tissue in general, and the dormant bud in particular, are under-represented within the grape EST database. Accordingly, 59% of the our vinifera EST collection, composed of 5516 unigenes, are not included within the current Vitis TIGR collection and about 22% of these transcripts bear no resemblance to any known plant transcript, corroborating the current need for our targeted EST collection and the bud specific cDNA array. Analysis of the V. riparia sequences yielded 814 unigenes, of which 140 are unique (keilin et al., manuscript, Appendix B). Results from computational expression profiling of the vinifera collection suggest that oxidative stress, calcium signaling, intracellular vesicle trafficking and anaerobic mode of carbohydrate metabolism play a role in the regulation and execution of grape-bud dormancy release. A comprehensive analysis confirmed the induction of transcription from several calcium–signaling related genes following HC treatment, and detected an inhibiting effect of calcium channel blocker and calcium chelator on HC-induced and chilling-induced bud break. It also detected the existence of HC-induced and calcium dependent protein phosphorylation activity. These data suggest, for the first time, that calcium signaling is involved in the mechanism of dormancy release (Pang et al., in preparation). We compared the effects of heat shock (HS) to those detected in buds following HC application and found that HS lead to earlier and higher bud break. We also demonstrated similar temporary reduction in catalase expression and temporary induction of ascorbate peroxidase, glutathione reductase, thioredoxin and glutathione S transferase expression following both treatments. These findings further support the assumption that temporary oxidative stress is part of the mechanism leading to bud break. The temporary induction of sucrose syntase, pyruvate decarboxylase and alcohol dehydrogenase indicate that temporary respiratory stress is developed and suggest that mitochondrial function may be of central importance for that mechanism. These finding, suggesting triggering of identical mechanisms by HS and HC, justified the comparison of expression profiles of HC and HS treated buds, as a tool for the identification of pathways with a central role in dormancy release (Halaly et al., in preparation). RNA samples from buds treated with HS, HC and water were hybridized with the cDNA arrays in an interconnected loop design. Differentially expressed genes from the were selected using R-language package from Bioconductor project called LIMMA and clones showing a significant change following both HS and HC treatments, compared to control, were selected for further analysis. A total of 1541 clones show significant induction, of which 37% have no hit or unknown function and the rest represent 661 genes with identified function. Similarly, out of 1452 clones showing significant reduction, only 53% of the clones have identified function and they represent 573 genes. The 661 induced genes are involved in 445 different molecular functions. About 90% of those functions were classified to 20 categories based on careful survey of the literature. Among other things, it appears that carbohydrate metabolism and mitochondrial function may be of central importance in the mechanism of dormancy release and studies in this direction are ongoing. Analysis of the reduced function is ongoing (Appendix A). A second set of hybridizations was carried out with RNA samples from buds exposed to short photoperiod, leading to induction of bud dormancy, and long photoperiod treatment, as control. Analysis indicated that 42 genes were significant difference between LD and SD and 11 of these were unique.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography