Academic literature on the topic 'Glycogène'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Glycogène.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Glycogène"
Jimenez, Liliana. "Régime hyperlipidique et glycogène musculaire." Science & Sports 14, no. 3 (May 1999): 157. http://dx.doi.org/10.1016/s0765-1597(99)80061-6.
Full textPéronnet, François, Bruce Jacks, Guy Thibault, Hélène Perrault, and Daniel Cousineau. "Contrôle de l'activité du système sympathique à l'exercice prolongé : rôle de la glycémie." STAPS 6, no. 11 (1985): 47–56. http://dx.doi.org/10.3406/staps.1985.1429.
Full textMayeuf-Louchart, Alicia, and Hélène Duez. "Du glycogène à la gouttelette lipidique." médecine/sciences 36, no. 6-7 (June 2020): 577–79. http://dx.doi.org/10.1051/medsci/2020102.
Full textHickner, RC, JS Fischer, and PA Hansen. "Resynthèse du glycogène musculaire chez le sportif." Science & Sports 13, no. 2 (January 1998): 98. http://dx.doi.org/10.1016/s0765-1597(97)86911-0.
Full textChiasson, JL, P. Dupuis, and AK Srivastava. "Métabolisme anormal du glycogène musculaire dans le diabète." médecine/sciences 7, no. 4 (1991): 368. http://dx.doi.org/10.4267/10608/4362.
Full textC., M. "Neurones : la synthèse du glycogène est strictement inhibée." Revue Médicale Suisse 3, no. 131 (2007): 2510. http://dx.doi.org/10.53738/revmed.2007.3.131.2510_2.
Full textHOCQUETTE, J. F., I. ORTIGUES-MARTY, M. DAMON, P. HERPIN, and Y. GEAY. "Métabolisme énergétique des muscles squelettiques chez les animaux producteurs de viande." INRAE Productions Animales 13, no. 3 (June 18, 2000): 185–200. http://dx.doi.org/10.20870/productions-animales.2000.13.3.3780.
Full textBurlet-Godinot, Sophie, Pierre Magistretti, and Jean-Marie Petit. "Glycogène cérébral et sommeil : une régulation à sens unique ?" Médecine du Sommeil 13, no. 1 (January 2016): 48–49. http://dx.doi.org/10.1016/j.msom.2016.01.045.
Full textLARZUL, C., P. E ROY, G. MONIN, and P. SELLIER. "Variabilité génétique du potentiel glycolytique du muscle chez le porc." INRAE Productions Animales 11, no. 3 (June 3, 1998): 183–97. http://dx.doi.org/10.20870/productions-animales.1998.11.3.3937.
Full textPérés, Gilbert. "Approche biologique : la récupération des réserves de glycogène après l'exercice d'endurance." Les Cahiers de l'INSEP 14, no. 1 (1996): 67–73. http://dx.doi.org/10.3406/insep.1996.1166.
Full textDissertations / Theses on the topic "Glycogène"
Traore, Souleymane. "Caractérisation biochimique de muscles de porc riches en glycogène : relation avec les phénomènes d'oxydation." Thesis, Clermont-Ferrand 2, 2011. http://www.theses.fr/2011CLF22207.
Full textWe aimed to better understand the mechanisms underlying sensorial and technological meat qualities. The experimental design put into relief the important role of protein oxidation in meat quality. As a consequence of oxidation, structural changes of proteins demonstrated also their implication in water holding capacity. Heating enhanced the oxidative process in which myosin and actin can be considered as favoured protein target. Moreover these proteins are implicated in aggregation /polymerization. Finally, glycogen as a catalyst of protein oxidation was demonstrated
Nagy, Véronika. "Synthèse d'inhibiteurs de glycogène phosphorylase." Lyon 1, 2003. http://www.theses.fr/2003LYO10212.
Full textMathieu, Cécile. "Structure et régulation de la glycogène phosphorylase cérébrale." Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCC159/document.
Full textGlycogen phosphorylase (GP) is the key enzyme for glycogen mobilization in cells. I human, this enzyme is found as three isoforms : liver GP (lGP), muscle GP (mGP) and brain GP (bGP). These three enzymes are allosteric enzymes, regulated by both the binding of allosteric effectors and phosphorylation. However, despite GPs are highly similar, bGP display distinguishing features. In addition, highly reactive cysteine residues are found in the primary sequence of bGP, suggesting that this enzyme might be regulated by reactive oxygen species (ROS). As a consequence, we investigated the molecular and cellular regulation of the bGP. First, we determined the crystal structure of this enzyme, so far unknown. These data revealed the structural bases of bGP regulation by its allosteric effectors, leading to the activation and the inactivation of the enzyme. We then focused on the regulation of bGP by H2O2, a model of ROS. Using biochemical and cellular approaches, we showed that H2O2 induces the formation of an intramolecular disulfide bond in the AMP binding site of the enzyme, avoiding its regulation by the allosteric effectors, without affecting its regulation by phosphorylation. Under oxidative condition, this regulation, unique to the brain form of GP, allows a control of the glycogenolysis through phosphorylation only. Finally, we demonstrated that electrophilic compounds from the environment (pesticides) might divert the redox regulation of bGP, leading to the alteration of glycogen metabolism which could participate to the development of neurodegenerative diseases
Gehre, Lena. "Chlamydia Trachomatis hijacks energy stores from the host and accumulates glycogen in the inclusion lumen through a dual pathway." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066306/document.
Full textThe human pathogen Chlamydia trachomatis is an obligate intracellular bacterium, which develops in a parasitophorous compartment called inclusion. The inclusion membrane serves as a barrier to host defense mechanisms, but limits access to nutrients. One essential nutrient for C. trachomatis is glucose, and its polymer, glycogen, is highly abundant in the inclusion lumen. This work aimed to reconstitute the glucose flow in C. trachomatis infected cells and to understand the mechanisms for glycogen accumulation. In summary, our work demonstrates that glycogen storage in C. trachomatis inclusions is the result of two different strategies, bulk acquisition of host glycogen through invagination of the inclusion membrane, and de novo synthesis of glycogen within the inclusion lumen. The latter mechanism implicates the import of host UDP-glucose through a host transporter that is recruited to the inclusion membrane, and the secretion of bacterial glycogen enzymes into the inclusion lumen. These processes allow the bacteria to build an energy store within the inclusion lumen, out of reach for the host
Koubi, Harry. "Influence du jeûne sur l'utilisation des réserves énergétiques, l'activité spontanée et l'adaptation métabolique à l'exercice prolongé chez le rat." Lyon 1, 1993. http://www.theses.fr/1993LYO10001.
Full textGruyer, Sébastien. "Etude de la biosynthèse de l'endopolysaccharide de réserve accumulé par l'euryarchaeote hyperthermophile Thermococcus hydrothermalis." Reims, 2003. http://www.theses.fr/2003REIMS019.
Full text" T. Hydrothermalis " produces a polysaccharide during the log phase, which is similar to glycogen, and hydrolyzes it quickly during the stationnary one. The elongation activity (42 kDa) is optimal at 80ʿC/pH 5,5 and is able to use ADP-glucose and UDP-glucose with the same affinity, but the Vmax is 10 fold better with ADP-glucose suggesting that is might be the physiological substrate. The branching activity appeared unstable, then avoiding further enzymatic studies. Moreover, an original structure with long chains and branched at 7,5 % was purified from the archaeon at the end of the log phase. At the beginning of the stationnary phase, hydrolases are able to degrade quickly this kind of polymer and more slowly these similar to glycogen. The structural change then appears as a way, for these degradative enzymes, to get an easier access to the glucose stores, and to allow an optimal ATP production, and it may involve the glycogen-synthase and a glucanotransferase activity
Dinadayala, Premkumar. "Analyse structurale et étude des voies de biosynthèse de l'α-D-glucane de mycobactéries." Toulouse 3, 2004. http://www.theses.fr/2004TOU30040.
Full textIbrahim, Nada. "Conception et synthèses régiospécifiques de purines di- et trisubstituées comme inhibiteurs de la glycogène synthase kinase-3." Paris 11, 2010. http://www.theses.fr/2010PA112006.
Full textThe purin core is privileged scaffold in medicinal chemistry which is frequently used in the preparation of combinatorial libraries. Its seven peripheral atoms may be considered as seven potential points of structural diversity. A wide variety of interesting inhibitors, such as kinases inhibitors, and modulators of key biological targets have been found among derivatives bearing various combinations of substituents at these centers. In the aim to discover new glycogen synthase kinase inhibitors which is an enzyme involved in many pathological processes such as type 2 diabete and Alzheimer desease, we developed regiospecific and efficient methods for the synthesis of 6,7,8, 6,8,9, 2 , 6 and 6,8-purines, via a copper and palladium catalyzed amidation reaction and SNaAr reaction to give access to polysubstituted purine library bearing aryl groups at C8 position, amines, ethers and amides groups at C6 and finally methyl at N7 or N9 positions. The molecules have provided promising redults as Glycogen synthase kinase inhibitors. In addition, the binding mode of the most active molecules were elucidated by docking in the active site of GSK-3
Picard, Mélanie. "Régulation du métabolisme du glycogène cérébral sous l'effet de la méthionine sulfoximine." Orléans, 2008. http://www.theses.fr/2008ORLE2011.
Full textEnjalbert, Brice. "Régulation transcriptionnelle de Gsy2p, glycogène synthase majeure de la levure Saccharomyces cerevisiae." Toulouse, INSA, 2001. http://www.theses.fr/2001ISAT0003.
Full textThe Yeast Saccharomyces cerevisiae, like most of the living organisms, has to cope with stress and environmental constraints to ensure its survival and proliferation. One of this adaptive response is the synthesis of glycogen during a nutritional limitation. We have demonstrated that the whole group of genes allowing the glycogen synthesis or degradation is induced at the same time, before the end of the exponential phase of growth on glucose. Most of these genes possess STREs (STress Response Elements) in their promoter which are responsible for their increase in expression due to a stress but not to the disappearance of glucose. This induction requires at least two elements in the promoter of the GSY2 gene, encoding the major glycogen synthase. Study of the main mutations affecting GSY2 expression has led to the unraveling of a fine regulation system implicating three nutritional signaling pathways. The elements regulating the GSY2 transcription have been localized and the cAMP/PKA has been demonstrated to be the main pathway controlling the gene expression and induction. Moreover, our work on the linkage between glycogen biosynthesis and respiratory requirement have allowed to precise the production and consumption kinetics of glycogen and its function as a sugar storage
Books on the topic "Glycogène"
DiNuzzo, Mauro, and Arne Schousboe, eds. Brain Glycogen Metabolism. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-27480-1.
Full textR, Acharya K., ed. Glycogen phosphorylase b: Description of the protein structure. Singapore: World Scientific, 1991.
Find full textMartinez, Ana, Ana Castro, and Miguel Medina, eds. Glycogen Synthase Kinase 3 (GSK-3) and Its Inhibitors. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006. http://dx.doi.org/10.1002/0470052171.
Full textAjit, Varki, ed. Essentials of glycobiology. 2nd ed. Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratory Press, 2008.
Find full textPlomp, Peter. Autophagy in hepatocytes: Energy dependence and relation to glycogen synthesis. Amsterdam: Univ., 1989.
Find full textlibrary, Wiley online, ed. Glycogen synthase kinase 3 (GSK-3) and its inhibitors: Drug discovery and development. Hoboken, N.J: Wiley-Interscience, 2006.
Find full textPatel, Mona D. Abnormalities in glycogen storage and metabolism in patients with liver-related diseases. Roehampton: University of Surrey Roehampton, 2002.
Find full textClement, Nichole S. The effects of the neurotoxin tetrodotoxin on glycogen content in rat soleus muscles. Sudbury, Ont: Laurentian University, 1993.
Find full textSeal, Leonard Henry. Studies on glycogen in the nervous systems of Haemopis Sanguisuga and Planorbis Corneus. Salford: University of Salford, 1986.
Find full textBook chapters on the topic "Glycogène"
Peck, Stewart B., Carol C. Mapes, Netta Dorchin, John B. Heppner, Eileen A. Buss, Gustavo Moya-Raygoza, Marjorie A. Hoy, et al. "Glycogen." In Encyclopedia of Entomology, 1630. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6359-6_1122.
Full textPavelka, Margit, and Jürgen Roth. "Glycogen." In Functional Ultrastructure, 140. Vienna: Springer Vienna, 2010. http://dx.doi.org/10.1007/978-3-211-99390-3_73.
Full textWagner, Peter, Frank C. Mooren, Hidde J. Haisma, Stephen H. Day, Alun G. Williams, Julius Bogomolovas, Henk Granzier, et al. "Glycogen." In Encyclopedia of Exercise Medicine in Health and Disease, 374. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-29807-6_2449.
Full textBährle-Rapp, Marina. "Glycogen." In Springer Lexikon Kosmetik und Körperpflege, 230. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71095-0_4411.
Full textMadsen, Neil B. "Glycogen Phosphorylase and Glycogen Synthetase." In A Study of Enzymes, Volume II, 139–58. Boca Raton: CRC Press, 2024. https://doi.org/10.1201/9781003575023-7.
Full textWagner, Peter, Frank C. Mooren, Hidde J. Haisma, Stephen H. Day, Alun G. Williams, Julius Bogomolovas, Henk Granzier, et al. "Glycogen Depletion." In Encyclopedia of Exercise Medicine in Health and Disease, 375. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-29807-6_2447.
Full textWagner, Peter, Frank C. Mooren, Hidde J. Haisma, Stephen H. Day, Alun G. Williams, Julius Bogomolovas, Henk Granzier, et al. "Glycogen Synthase." In Encyclopedia of Exercise Medicine in Health and Disease, 375. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-29807-6_2448.
Full textMeigs, Thomas E., Alex Lyakhovich, Hoon Shim, Ching-Kang Chen, Denis J. Dupré, Terence E. Hébert, Joe B. Blumer, et al. "Glycogen Synthase." In Encyclopedia of Signaling Molecules, 799. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0461-4_100544.
Full textWagner, Peter, Frank C. Mooren, Hidde J. Haisma, Stephen H. Day, Alun G. Williams, Julius Bogomolovas, Henk Granzier, et al. "Glycogen Loading." In Encyclopedia of Exercise Medicine in Health and Disease, 375. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-29807-6_4246.
Full textCavaglieri, Cláudia Regina, Carlos Alberto da Silva, and Celene Fernandes Bernardes. "Glycogen Measurement." In Basic Protocols in Foods and Nutrition, 129–43. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2345-9_9.
Full textConference papers on the topic "Glycogène"
Tretyakova, A. M., and N. A. Vakhnina. "Application of the phenol-sulfuric acid method for the determination of glycogen in skeletal muscles and liver of rats." In VIII Vserossijskaja konferencija s mezhdunarodnym uchastiem «Mediko-fiziologicheskie problemy jekologii cheloveka». Publishing center of Ulyanovsk State University, 2021. http://dx.doi.org/10.34014/mpphe.2021-189-191.
Full textChen, Yen-Hsieh, and Yuh-Shan Jou. "OncoDB. Glycogene: An integrated cancer genomic database for glycosylation-related genes." In 2017 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS). IEEE, 2017. http://dx.doi.org/10.1109/iciibms.2017.8279701.
Full textBarnes, J. W., C. Sesler, E. S. Helton, M. Mazur, R. Denson, R. Zaharias, A. Adewale, S. M. Rowe, and S. Krick. "A Precision Approach to Analyzing Inflammatory-Induced Glycogene Changes in Cystic Fibrosis." In American Thoracic Society 2019 International Conference, May 17-22, 2019 - Dallas, TX. American Thoracic Society, 2019. http://dx.doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a6193.
Full textAlvarenga, F. A. P., I. J. Lean, and P. McGilchrist. "Impact of dietary potassium levels on muscle glycogen concentration." In 6th EAAP International Symposium on Energy and Protein Metabolism and Nutrition. The Netherlands: Wageningen Academic Publishers, 2019. http://dx.doi.org/10.3920/978-90-8686-891-9_117.
Full textSchumacher, A., C. Metzendorf, S. Ribback, and F. Dombrowski. "Investigation of the glycogen-associated proteome via proximity-biotinylation." In 36. Jahrestagung der Deutschen Arbeitsgemeinschaft zum Studium der Leber. Georg Thieme Verlag KG, 2020. http://dx.doi.org/10.1055/s-0039-3402193.
Full text"Expression of glycogen synthase kinase 3β in nephrotic syndrome." In Bioinformatics of Genome Regulation and Structure/ Systems Biology. institute of cytology and genetics siberian branch of the russian academy of science, Novosibirsk State University, 2020. http://dx.doi.org/10.18699/bgrs/sb-2020-343.
Full textParker, K. J., T. A. Tuthill, and R. B. Baggs. "Ultrasound Attenuation of Glycogen: In Vitro and In Vivo Results." In IEEE 1987 Ultrasonics Symposium. IEEE, 1987. http://dx.doi.org/10.1109/ultsym.1987.199107.
Full textAltemus, Megan Ann, Joel A. Yates, ZhiFen Wu, LiWei Bao, and Sofia D. Merajver. "Abstract 1446: Glycogen accumulation in aggressive breast cancers under hypoxia." In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-1446.
Full textWieloch, Judith, Mandy Lemme, Janin Henkel, and GerhardP Püschel. "Direct impact of fructose on hepatic lipid and glycogen metabolism." In 38. Jahrestagung der Deutsche Arbeitsgemeinschaft zum Studium der Leber. Georg Thieme Verlag, 2022. http://dx.doi.org/10.1055/s-0041-1740655.
Full textAltemus, Megan, Joel Yates, ZhiFen Wu, LiWei Bao, and Sofia Merajver. "Abstract 433: Glycogen accumulation in aggressive breast cancers during hypoxic exposure." In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-433.
Full textReports on the topic "Glycogène"
Wolgamott, D. Storage and use of glycogen by juvenile Carcinonemertes errans. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.2966.
Full textUni, Zehava, and Peter Ferket. Enhancement of development of broilers and poults by in ovo feeding. United States Department of Agriculture, May 2006. http://dx.doi.org/10.32747/2006.7695878.bard.
Full textOsman, Mohamed, Portia Allen, Nimer Mehyar, Gerd Bobe, Johann Coetzee, and Donald C. Beitz. Acute Effects of Postpartal Subcutaneous Injection of Glucagon and/or Oral Administration of Glycerol on Blood Metabolites and Hormones and Liver Lipids and Glycogen of Holstein Dairy Cows Induced with Fatty Liver Disease. Ames (Iowa): Iowa State University, January 2007. http://dx.doi.org/10.31274/ans_air-180814-754.
Full text