Academic literature on the topic 'GM1'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'GM1.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "GM1"
Langman, L. J., A. B. Leichtman, W. F. Weitzel, and R. W. Yatscoff. "Steady-state concentration of cyclosporin G (OG37-325) and its metabolites in renal transplant recipients." Clinical Chemistry 40, no. 4 (April 1, 1994): 613–16. http://dx.doi.org/10.1093/clinchem/40.4.613.
Full textYamazaki, Yasuhiro, Yasuhiro Horibata, Yasuko Nagatsuka, Yoshio Hirabayashi, and Tsutomu Hashikawa. "Fucoganglioside α-fucosyl(α-galactosyl)-GM1: a novel member of lipid membrane microdomain components involved in PC12 cell neuritogenesis." Biochemical Journal 407, no. 1 (September 12, 2007): 31–40. http://dx.doi.org/10.1042/bj20070090.
Full textAlrebdi, Haifa I., and Thabit Barakat. "The Radiative Δ(1600) → γN Decay in the Light-Cone QCD Sum Rules." Universe 7, no. 8 (July 21, 2021): 255. http://dx.doi.org/10.3390/universe7080255.
Full textIWAMORI, Masao, and Steven E. DOMINO. "Tissue-specific loss of fucosylated glycolipids in mice with targeted deletion of alpha(1,2)fucosyltransferase genes." Biochemical Journal 380, no. 1 (May 15, 2004): 75–81. http://dx.doi.org/10.1042/bj20031668.
Full textBisel, Blaine, Francesco S. Pavone, and Martino Calamai. "GM1 and GM2 gangliosides: recent developments." BioMolecular Concepts 5, no. 1 (March 1, 2014): 87–93. http://dx.doi.org/10.1515/bmc-2013-0039.
Full text&NA;. "GM1." Inpharma Weekly &NA;, no. 839 (May 1992): 11. http://dx.doi.org/10.2165/00128413-199208390-00017.
Full textSugimoto, Mamoru, Masaaki Numata, Katsuya Koike, Yoshiaki Nakahara, and Tomoya Ogawa. "Total synthesis of gangliosides GM1 and GM2." Carbohydrate Research 156 (November 1986): C1—C5. http://dx.doi.org/10.1016/s0008-6215(00)90125-3.
Full textPark, Hyun Jung, Gil-Ja Jhon, Seong Jun Han, and Young Kee Kang. "Conformational study of asialo-GM1 (GA1) ganglioside." Biopolymers 42, no. 1 (July 1997): 19–35. http://dx.doi.org/10.1002/(sici)1097-0282(199707)42:1<19::aid-bip3>3.0.co;2-4.
Full textLI, Su-Chen, Yu-Teh LI, Setsuko MORIYA, and Taeko MIYAGI. "Degradation of GM1 and GM2 by mammalian sialidases." Biochemical Journal 360, no. 1 (November 8, 2001): 233–37. http://dx.doi.org/10.1042/bj3600233.
Full textSanti, P. A., P. Mancini, and C. Barnes. "Identification and localization of the GM1 ganglioside in the cochlea using thin-layer chromatography and cholera toxin." Journal of Histochemistry & Cytochemistry 42, no. 6 (June 1994): 705–16. http://dx.doi.org/10.1177/42.6.8189033.
Full textDissertations / Theses on the topic "GM1"
Arthur, Julian. "Novel Therapies and Biochemical Insights for the GM1 and GM2 Gangliosidoses." Thesis, Boston College, 2011. http://hdl.handle.net/2345/3855.
Full textGangliosides are glycosphingolipids (GSLs) containing sialic acids that play numerous roles in neuronal maturation, apoptotic signaling, angiogenesis, and cell surface receptor activity. The GM1 and GM2 gangliosidoses are a series of autosomal recessive lysosomal storage disorders (LSDs) characterized by an inability to degrade these lipid molecules. GM1 gangliosidosis is caused by a mutation in the lysosomal hydrolase β-galactosidase, resulting in neuronal storage of ganglioside GM1 and asialo GA1. Tay-Sachs (TS) and Sandhoff Disease (SD) are GM2 gangliosidoses caused by mutations in either the α or β subunits, respectively, of the heterodimeric protein β- hexosaminidase A, resulting in the storage of ganglioside GM2 and asialo GA2. The accumulation of excess ganglioside in the central nervous system leads to abnormal intracellular vacuoles, neuronal loss, demyelination, ataxia, dementia, and premature death. In my studies, I have shown that accumulation of GM1 ganglioside may not coincide with secondary storage of cholesterol, by providing evidence that cholesterol-binding fluorescent molecule filipin reacted to GM1 ganglioside in the absence of cholesterol. In an effort to combat the early-onset gangliosidoses, I have explored the effects of combining Neural Stem Cells (NSCs) with Substrate Reduction Therapy (SRT) in juvenile Sandhoff mice. The analysis showed that SRT was more effective than NSCs in reducing stored GM2 and GA2 in young mice, and no synergy was observed. In adult GM1 gangliosidosis, Tay- Sachs, and Sandhoff mice, Adeno-Associated Viral (AAV) vector gene therapy was used to restore therapeutic levels of wild-type enzyme to the CNS. AAV therapy corrected ganglioside storage and ameliorated myelin-associated lipid loss in all tissues assayed, increasing motor performance and life in effected animals. Lastly, AAV therapy was also successful in a feline model of Sandhoff disease. These results in juvenile and adult model systems point the way towards multiple effective clinical therapies in the near future
Thesis (PhD) — Boston College, 2011
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Biology
Elliot-Smith, Elena. "GM1 gangliosidosis : therapy and pathogenesis." Thesis, University of Oxford, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.425028.
Full textDI, BIASE ERIKA. "GM1 OLIGOSACCHARIDE ACCOUNTS FOR GM1 ROLE IN ENHANCING NEURONAL DEVELOPMENT ACTING ON TRKA-MAPK PATHWAY." Doctoral thesis, Università degli Studi di Milano, 2019. http://hdl.handle.net/2434/692335.
Full textThe GM1 ganglioside is a mono-sialylated glycosphingolipid present in the outer layer of the cell plasma membrane and abundant in neurons. Numerous in vitro and in vivo studies highlight the role of GM1 not only as a structural component but also as a functional regulator. Indeed, GM1 enrichment in membrane microdomains promotes neuronal differentiation and protection, and the GM1 content is essential for neuronal survival and maintenance. Despite many lines of evidence on the GM1-mediated neuronotrophic effects, our knowledge on the underlying mechanism of action is scant. Recently, the oligosaccharide chain of GM1 (oligoGM1) has been identified as responsible for the neuritogenic properties of the GM1 ganglioside in neuroblastoma cells. The oligoGM1-mediated effects depend on its binding to the NGF specific receptor TrkA, thus resulting in the TrkA-MAPK pathway activation. In this context, my PhD work aimed to confirm the role of the oligoGM1, as the bioactive portion of the entire GM1 ganglioside, capable of enhancing the differentiation and maturation processes of mouse cerebellar granule neurons. First, we performed time course morphological analyses on mouse primary neurons plated in the presence or absence of exogenously administered gangliosides GM1 or GD1a (direct GM1 catabolic precursor). We found that both gangliosides increased neuron clustering and arborization, however only oligoGM1 and not oligoGD1a induced the same effects in prompting neuron migration. This result suggests the importance of the specific GM1 saccharide structure in mediating neuronotrophic effects. Then we characterized biochemically the oligoGM1-mediated effect in mouse primary neurons, and we observed a higher phosphorylation rate of FAK and Src proteins which are the intracellular key regulators of neuronal motility. Moreover, in the presence of oligoGM1 cerebellar granule neurons showed increased level of specific neuronal markers (e.g., β3-Tubulin, Tau, Neuroglycan C, Synapsin), suggesting an advanced stage of maturation compared to controls. In addition, we found that the oligoGM1 accelerates the expression of the typical ganglioside pattern of mature neurons which is characterized by high levels of complex gangliosides (i.e., GM1, GD1a, GD1b, and GT1b) and low level of the simplest one, the GM3 ganglioside. To study the mechanism of action of the oligoGM1, we used its tritium labeled derivative and we found that the oligoGM1 interacts with the cell surface without entering the cells. This finding suggests the presence of a biological target at the neuronal plasma membrane. Interestingly, we observed the TrkA-MAP kinase pathway activation as an early event underlying oligoGM1 effects in neurons. Our data reveal that the effects of GM1 ganglioside on neuronal differentiation and maturation are mediated by its oligosaccharide portion. Indeed, oligoGM1 interacts with the cell surface, thus triggering the activation of intracellular biochemical pathways that are responsible for neuronal migration, dendrites emission and axon growth. Overall, our results point out the importance of oligoGM1 as a new promising neurotrophic player.
Kannebley, João Stein 1971. "Aspectos clínicos, radiológicos e neuroimagem em 12 pacientes com Gangliosidose GM1, formas juvenil e crônica." [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/312528.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Ciências Médicas
Made available in DSpace on 2018-08-26T23:18:35Z (GMT). No. of bitstreams: 1 Kannebley_JoaoStein_M.pdf: 9118721 bytes, checksum: 33988e2512a8c525b91c3d93a783a368 (MD5) Previous issue date: 2015
Resumo: A gangliosidose GM1 é uma doença rara causada pela deficiência da enzima ?-galactosidase, decorrente de mutações no gene GLB1, acarretando o acúmulo de gangliosídeos, principalmente o GM1. É classificada em três formas dependendo da idade de início dos sintomas. Em todas ocorrem alterações esqueléticas e deterioração neurológica, sendo que na forma adulta predominam sinais extrapiramidais como distonia. No presente estudo descrevemos as características de 12 pacientes com gangliosidose GM1 nas formas juvenil e crônica de 10 famílias não aparentadas provenientes da região de Campinas, SP, e do sul do estado de Minas Gerais. Foram detalhados a história clínica e o exame físico, em especial o neurológico, bem como de aspectos radiológicos, ultrassonográficos, ecocardiográficos e de neuroimagem. Metade dos casos iniciou com queixas ósteo-articulares e outra metade com sintomas neurológicos, porém com a evolução todos apresentaram uma combinação de disostose múltipla e neurodegeneração. Opacificação de córnea e angioqueratomas foram vistos em um caso, cada. Outros sinais comumente associados às doenças de depósito lisossômico não foram vistos nesta casuística. Todos apresentaram baixa estatura, disostose múltipla, disartria e prejuízo nas atividades de vida diária, 10 tinham distonia e disfagia, nove atrofia muscular e oito sinais piramidais e alterações da movimentação ocular. Barra óssea e os odontoideum foram vistos em dois casos, sendo alterações previamente não descritas nessa condição. Exames de neuroimagem mostraram aumento do sistema ventricular e hipointensidade de sinal em globos pálidos em todos, além de deformidades vertebrais, hiperintensidade de sinal de putâmen e atrofia cortical na maioria. Alterações em tálamo, substância branca ou atrofia cerebelar não foram identificadas nessa série
Abstract: GM1 gangliosidosis is a rare disorder caused by deficiency in ?-galactosidase activity due to mutations in the GLB1 gene, leading to acumulation of gangliosides in multiple organs. Three main clinical forms have been described according to the age of onset. All present with skeletal deformities and neurologic deterioration, and in the adult form extrapyramidal signs including dystonia are frequent. In the present study we describe 12 subjects of 10 unrelated families from the region of Campinas and the southern state of Minas Gerais. Clinical information included detailed history, full neurologic examination, radiologic, ultrasonographic, echocardiographic, and neuroimaging description. Half of subjects presented initially with skeletal deformities, while the remaining opened clinical presentation with neurologic features. However, over time all presented dysostosis multiplex and neurodegeneration. Corneal clouding and angiokeratomas were seen in one individual each. Other features commonly described in lysosomal storage disorders were not found in this series. All subjects presented with short stature, dysostosis multiplex, dysarthria, and impairment of activities of daily living, 10 had extrapyramidal signs, nine had muscular atrophy, and eight had pyramidal signs and mild oculomotor abnormalities. A vertebral bone bar and os odontoideum were found in two patients, being previously undescribed in this condition. Neuroimaging revealed enlargement of the ventricular system and hypointensity of globus pallidus in all, besides vertebral deformities, putaminal hyperintensity, and cortical atrophy in most patients. Thalamic changes, abnormal white matter or cerebellar atrophy were not seen in this series
Mestrado
Genetica Medica
Mestre em Ciências Médicas
Fink, Erin Nicole. "GM1 signaling through the GDNF receptor complex." Columbus, Ohio : Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1198013799.
Full textBaptista, Marcella Bergamini de 1988. "Análise de mutações no gene GLB1 em pacientes com gangliosidose GM1 formas juvenil e crônica." [s.n.], 2013. http://repositorio.unicamp.br/jspui/handle/REPOSIP/308543.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Ciências Médicas
Made available in DSpace on 2018-08-23T05:21:25Z (GMT). No. of bitstreams: 1 Baptista_MarcellaBergaminide_M.pdf: 1959777 bytes, checksum: 5e9549a5e21a411c116468e665693472 (MD5) Previous issue date: 2013
Resumo: Gangliosidose GM1 é uma doença autossômica recessiva rara, classificada em três formas clínicas de acordo com a idade de apresentação dos sintomas e a gravidade, provocada pela deficiência da enzima lisossômica ?-galactosidase que leva ao acúmulo, principalmente, do gangliosídeo GM1. A forma juvenil geralmente apresenta início entre sete meses e três anos de idade, com progressão lenta dos sinais neurológicos, dimorfismos menos graves que na forma infantil e deformidades ósseas. A forma crônica é caracterizada por apresentações clínicas mais leves e sintomas extrapiramidais. O gene codificador da enzima é o GLB1, no qual mais de 130 mutações foram descritas. No presente estudo foi realizada a caracterização molecular de 10 indivíduos de nove famílias não relacionadas diagnosticados com gangliosidose GM1, nas formas juvenil e crônica. Todas as famílias são originárias do interior do estado de São Paulo ou do sul do estado de Minas Gerais. Para a análise realizada foi possível identificar a mutação anteriormente descrita p.T500A, em sete das nove famílias estudadas, a inserção c.1717- 1722insG e a mutação p.R59H foram encontradas em duas famílias (a última segregou juntamente com o polimorfismo descrito IVS12+8T>C). As demais mutações descritas (p.F107L, p.L173P, p.R201H, p.G311R) foram encontradas em uma família cada. Uma alteração neutra (p.P152P) e duas mutações (p.I354S e p.T384S) são inéditas. Foi possível identificar a ocorrência de uma mutação de novo em uma família. Todas as mutações foram encontradas em heterozigose
Abstract: GM1 gangliosidosis is a rare autosomal recessive, classified in three clinical types according to age of onset and severity. The disease is caused by the deficiency of lysosomal enzyme ?-galactosidase that leads to the accumulation of GM1 ganglioside. The juvenile form usually shows an onset between seven months and three years of age, with slowly progressive neurological signs, less severe dysmorphisms than the infantile form and skeletal changes. The adult form is specified by a milder clinical manifestations and extrapyramidal signs. The lysossomal enzyme is coded by the GLB1 gene which more than 130 mutations have been decribed. In the present study it was genotyped 10 individuals of nine unrelated families originated from the States of São Paulo and Minas Gerais diagnosed with the juvenile and chronic forms of the disease. It was possible to find the previously described mutations p.T500A in seven of the nine families, c.1717-1722insG and p.R59H in two alleles (the latter also segregating with IVS12+8T>C), and p.F107L, p.L173P, p.R201H, and p.G311R in one familie each. One neutral alteration (p.P152P) and two mutations (p.I354S and p.T384S) are described for the first time. The occurrence of a de novo mutation was seen in one family. All patients presented as heterozygous compound
Mestrado
Ciencias Biomedicas
Mestra em Ciências Médicas
Maggioni, M. "GM1-MEDIATED NEURODIFFERENTIATION IS PROMOTED BY OLIGOGM1-TRKA INTERACTION." Doctoral thesis, Università degli Studi di Milano, 2018. http://hdl.handle.net/2434/543684.
Full textFATO, PAMELA. "EVALUATION OF THE GM1 OLIGOSACCHARIDE ROLE IN NEURONAL DIFFERENTIATION." Doctoral thesis, Università degli Studi di Milano, 2020. http://hdl.handle.net/2434/796885.
Full textLUNGHI, GIULIA. "GM1 OLIGOSACCHARIDE MODULATION OF CALCIUM SIGNALLING IN NEURONAL FUNCTIONS." Doctoral thesis, Università degli Studi di Milano, 2020. http://hdl.handle.net/2434/792078.
Full textKreutzer, Robert. "Charakterisierung des genetischen Defektes der GM1-Gangliosidose beim Alaskan Husky." Wettenberg : VVB Laufersweiler, 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=976072424.
Full textBooks on the topic "GM1"
Vogel, Patric U. B. GMP-Risikoanalysen. Wiesbaden: Springer Fachmedien Wiesbaden, 2021. http://dx.doi.org/10.1007/978-3-658-35208-0.
Full textKim, Cheorl-Ho. GM3 Signaling. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5652-4.
Full textUnited States. Navy Dept. Bureau of Medicine and Surgery., ed. GMO manual. Washington, DC: Bureau of Medicine and Surgery, 1995.
Find full textParekh, Sarad R., ed. The GMO Handbook. Totowa, NJ: Humana Press, 2004. http://dx.doi.org/10.1007/978-1-59259-801-4.
Full textPriewe, Jesko, and Daniel Tümmers, eds. Kompendium Vorklinik - GK1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-32878-0.
Full textReig, Candid, Susana Cardoso, and Subhas Chandra Mukhopadhyay. Giant Magnetoresistance (GMR) Sensors. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37172-1.
Full textSauer, Karin, ed. c-di-GMP Signaling. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7240-1.
Full textBook chapters on the topic "GM1"
Valk, Jacob, and Marjo S. van der Knaap. "GM1 Gangliosidosis." In Magnetic Resonance of Myelin, Myelination, and Myelin Disorders, 88–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-662-02568-0_11.
Full textvan der Knaap, Marjo S., and Jacob Valk. "GM1 Gangliosidosis." In Magnetic Resonance of Myelin, Myelination, and Myelin Disorders, 76–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-03078-3_9.
Full textSenarathne, Udara D., Neluwa-Liyanage R. Indika, Eresha Jasinge, and Karolina M. Stepien. "GM1 Gangliosidosis." In Genetic Syndromes, 1–7. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-319-66816-1_1752-1.
Full textCharria-Ortiz, Gustavo. "The GM1 Gangliosidoses." In Lysosomal Storage Disorders, 217–28. Boston, MA: Springer US, 2007. http://dx.doi.org/10.1007/978-0-387-70909-3_15.
Full textFurukawa, Koichi. "β3-Galactosyltransferase-IV (GM1 Synthase)." In Handbook of Glycosyltransferases and Related Genes, 33–36. Tokyo: Springer Japan, 2002. http://dx.doi.org/10.1007/978-4-431-67877-9_5.
Full textIssakainen, J., R. Gitzelmann, A. Giedion, and E. Boltshauser. "GM1-Gangliosidose Typ II (juvenile Form)." In Aktuelle Neuropädiatrie 1989, 105–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-93411-7_17.
Full textScarpino, O., C. Martinazzo, M. Magi, and R. Bruno. "GM1 Ganglioside Therapy in Acute Ischemic Stroke." In Cerebral Ischemia and Dementia, 435–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76208-6_54.
Full textSeren, M. S., A. Lazzaro, M. C. Comelli, R. Canella, R. Zanoni, D. Guidolin, and H. Manev. "Monosialoganglioside GM1 in Experimental Models of Stroke." In Cerebral Ischemia and Basic Mechanisms, 125–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-78151-3_13.
Full textBassi, S., M. G. Albizzati, M. Sbacchi, L. Frattola, and M. Massarotti. "Subacute Phase of Stroke Treated with Ganglioside GM1." In Gangliosides and Neuronal Plasticity, 461–63. New York, NY: Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4757-5309-7_38.
Full textToffano, G., L. Cavicchioli, S. Calzolari, A. Zanotti, K. Fuxe, and L. F. Agnati. "GM1 Ganglioside Treatment Affects the Plasticity of Striatal Dopamine Receptors." In Dopaminergic Systems and their Regulation, 423–24. London: Palgrave Macmillan UK, 1986. http://dx.doi.org/10.1007/978-1-349-07431-0_50.
Full textConference papers on the topic "GM1"
Bernardi, Anna, and Laura Raimondi. "Conformational analysis of GM1 oligosaccharide in water solution." In The first European conference on computational chemistry (E.C.C.C.1). AIP, 1995. http://dx.doi.org/10.1063/1.47679.
Full textTurnbull, W. Bruce, Bernie L. Precious, Rick E. Randall, and Steve W. Homans. "DISSECTING THE E. COLI HEAT-LABILE TOXIN-GM1 INTERACTION." In XXIst International Carbohydrate Symposium 2002. TheScientificWorld Ltd, 2002. http://dx.doi.org/10.1100/tsw.2002.567.
Full textDanolic, D., M. Heffer, J. Wagner, I. Skrlec, I. Alvir, I. Mamic, L. Susnjar, L. Marcelic, T. Becejac, and M. Puljiz. "EP280 Role of ganglioside GM1 expression in T lymphocytes membranes in cervical cancer development." In ESGO Annual Meeting Abstracts. BMJ Publishing Group Ltd, 2019. http://dx.doi.org/10.1136/ijgc-2019-esgo.341.
Full textZdora, I., B. Huang, N. de Buhr, D. Eikelberg, W. Baumgärtner, and E. Leitzen. "Satellitengliazellen in einem Mausmodell der GM1-Gangliosidose: Aktivierung von Gliazellen und Expression eines Progenitorzellmarkers." In 65. Jahrestagung der Fachgruppe Pathologie der Deutschen Veterinärmedizinischen Gesellschaft. Georg Thieme Verlag, 2022. http://dx.doi.org/10.1055/s-0042-1750007.
Full textEikelberg, D., A. Lehmbecker, G. Brogden, W. Tongtako, K. Hahn, A. Habierski, J. B. Hennermann, et al. "Axonopathie und Reduktion des Membran-widerstands: Hauptmerkmale in einem neuen Mausmodell für die humane GM1 Gangliosidose." In 63. Jahrestagung der Fachgruppe Pathologie der Deutschen Veterinärmedizinischen Gesellschaft. © Georg Thieme Verlag KG, 2020. http://dx.doi.org/10.1055/s-0040-1712562.
Full textNguyen, Khoa, Yuanqing Yan, Chandra Bartholomeusz, Naoto Ueno, Kim-Anh Do, Michael Andreeff, and V. Lokesh Battula. "Abstract 2875: Knockout of ST8SIA1 inhibits tumorigenesis in triple negative breast cancer by inducing PTEN and ganglioside GM1 mediated tumor growth arrest." In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-2875.
Full textFuentes, Daniela E., and Peter J. Butler. "Dynamics of Membrane Rafts, Talin, and Actin at Nascent and Mechanically Perturbed Focal Adhesions." In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-54027.
Full textZhu, Yuchuan, and Xulei Yang. "Dynamical Model Research on Energy-Conversion Process of Giant Magnetstrictive Materials-Based Electrohydrostatic Actuator." In ASME/BATH 2015 Symposium on Fluid Power and Motion Control. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/fpmc2015-9559.
Full textFolly, Julia Carvalho, Lara Emanuelle Silva Reis, and Stella Maris Lins Terrena. "Guillain-Barré Syndrome due to Covid-19: A Review." In XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.553.
Full textChen, Bing, Chin Pan, Paul Ponath, Miho Oyasu, Daniel Menezes, and Pina Cardarelli. "Abstract LB-237: BMS-986012, a fully human anti-fucosyl-GM1 antibody has potent in vitro and in vivo antitumor activity in preclinical models of small cell lung cancer." In Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-lb-237.
Full textReports on the topic "GM1"
Kolyovska, Vera, and Sonya Ivanova. Neurodegenerative Changes and Demyelination in Serum IgG Antibodies to GM1, GD1a and GM3 Gangliosides in Patients with Secondary Progressive Multiple Sclerosis – Preliminary Results. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, February 2019. http://dx.doi.org/10.7546/crabs.2019.01.15.
Full textGunay, Selim, Fan Hu, Khalid Mosalam, Arpit Nema, Jose Restrepo, Adam Zsarnoczay, and Jack Baker. Blind Prediction of Shaking Table Tests of a New Bridge Bent Design. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, November 2020. http://dx.doi.org/10.55461/svks9397.
Full textHarris, James, Kelly Lechtenberg, and Nikin Patel. GMS Configuration Guide. Office of Scientific and Technical Information (OSTI), December 2021. http://dx.doi.org/10.2172/1835245.
Full textMate, Adam. The Carrington GMD project. Office of Scientific and Technical Information (OSTI), October 2019. http://dx.doi.org/10.2172/1571580.
Full textClement, T. P., and N. L. Jones. RT3D tutorials for GMS users. Office of Scientific and Technical Information (OSTI), February 1998. http://dx.doi.org/10.2172/585058.
Full textBrown, Judith Alice, and Kevin Nicholas Long. Modeling the Effect of Glass Microballoon (GMB) Volume Fraction on Behavior of Sylgard/GMB Composites. Office of Scientific and Technical Information (OSTI), May 2017. http://dx.doi.org/10.2172/1367414.
Full textShiihi, Solomon, U. G. Okafor, Zita Ekeocha, Stephen Robert Byrn, and Kari L. Clase. Improving the Outcome of GMP Inspections by Improving Proficiency of Inspectors through Consistent GMP Trainings. Purdue University, November 2021. http://dx.doi.org/10.5703/1288284317433.
Full textWoodroffe, Jesse R., and Lisa Marie Winter. Update on LANL GMD Research Tasks. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1469512.
Full textZuehlke, A. C. GMS/DACS interface acceptance test report. Office of Scientific and Technical Information (OSTI), October 1994. http://dx.doi.org/10.2172/10192320.
Full textZuehlke, A. C. GMS/DACS interface acceptance test procedure. Office of Scientific and Technical Information (OSTI), September 1994. http://dx.doi.org/10.2172/10185766.
Full text