Academic literature on the topic 'Gnn'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Gnn.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Gnn"
Yilmaz, Fatih, Aybüke Ertaş, and Seda Yamaç Akbiyik. "Determinants of circulant matrices with Gaussian nickel Fibonacci numbers." Filomat 37, no. 25 (2023): 8683–92. http://dx.doi.org/10.2298/fil2325683y.
Full textStanimirović, Predrag S., Nataša Tešić, Dimitrios Gerontitis, Gradimir V. Milovanović, Milena J. Petrović, Vladimir L. Kazakovtsev, and Vladislav Stasiuk. "Application of Gradient Optimization Methods in Defining Neural Dynamics." Axioms 13, no. 1 (January 14, 2024): 49. http://dx.doi.org/10.3390/axioms13010049.
Full textLong, Juan. "Exploration of Cross-Border Language Planning Using the Graph Neural Network for Internet of Things-Native Data." Mobile Information Systems 2022 (September 23, 2022): 1–12. http://dx.doi.org/10.1155/2022/7807878.
Full textZhao, Qingchao, Long Li, Yan Chu, Zhen Yang, Zhengkui Wang, and Wen Shan. "Efficient Supervised Image Clustering Based on Density Division and Graph Neural Networks." Remote Sensing 14, no. 15 (August 5, 2022): 3768. http://dx.doi.org/10.3390/rs14153768.
Full textShanthamallu, Uday Shankar, Jayaraman J. Thiagarajan, and Andreas Spanias. "Uncertainty-Matching Graph Neural Networks to Defend Against Poisoning Attacks." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 11 (May 18, 2021): 9524–32. http://dx.doi.org/10.1609/aaai.v35i11.17147.
Full textGe, Kao, Jian-Qiang Zhao, and Yan-Yong Zhao. "GR-GNN: Gated Recursion-Based Graph Neural Network Algorithm." Mathematics 10, no. 7 (April 4, 2022): 1171. http://dx.doi.org/10.3390/math10071171.
Full textGholami, Fatemeh, Zahed Rahmati, Alireza Mofidi, and Mostafa Abbaszadeh. "On Enhancement of Text Classification and Analysis of Text Emotions Using Graph Machine Learning and Ensemble Learning Methods on Non-English Datasets." Algorithms 16, no. 10 (October 4, 2023): 470. http://dx.doi.org/10.3390/a16100470.
Full textEnnadir, Sofiane, Yassine Abbahaddou, Johannes F. Lutzeyer, Michalis Vazirgiannis, and Henrik Boström. "A Simple and Yet Fairly Effective Defense for Graph Neural Networks." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 19 (March 24, 2024): 21063–71. http://dx.doi.org/10.1609/aaai.v38i19.30098.
Full textWu, Qingle, Benjamin K. Ng, Chan-Tong Lam, Xiangyu Cen, Yuanhui Liang, and Yan Ma. "Shared Graph Neural Network for Channel Decoding." Applied Sciences 13, no. 23 (November 24, 2023): 12657. http://dx.doi.org/10.3390/app132312657.
Full textKim, Cheolhyeong, Haeseong Moon, and Hyung Ju Hwang. "NEAR: Neighborhood Edge AggregatoR for Graph Classification." ACM Transactions on Intelligent Systems and Technology 13, no. 3 (June 30, 2022): 1–17. http://dx.doi.org/10.1145/3506714.
Full textDissertations / Theses on the topic "Gnn"
Nastorg, Matthieu. "Scalable GNN Solutions for CFD Simulations." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASG020.
Full textComputational Fluid Dynamics (CFD) plays an essential role in predicting various physical phenomena, such as climate, aerodynamics, or blood flow. At the core of CFD lie the Navier-Stokes equations governing the motion of fluids. However, solving these equations at scale remains daunting, especially when dealing with Incompressible Navier-Stokes equations. Indeed, the well-known splitting schemes require the costly resolution of a Pressure Poisson problem that guarantees the incompressibility constraint. Nowadays, Deep Learning methods have opened new perspectives for enhancing numerical simulations. Among existing approaches, Graph Neural Networks (GNNs), designed to handle graph data like meshes, have proven to be promising. This thesis is dedicated to exploring the use of GNNs to enhance the resolution of the Pressure Poisson problem. One significant contribution involves introducing a novel physics-informed GNN-based model that inherently respects boundary conditions while leveraging the Implicit Layer theory to automatically adjust the number of GNN layers required for convergence. This results in a model with enhanced generalization capabilities, effectively handling Poisson problems of various sizes and shapes. Nevertheless, its current limitations restrict it to small-scale problems, insufficient for industrial applications that often require thousands of nodes. To scale up these models, this thesis further explores combining GNNs with Domain Decomposition methods, taking advantage of batch parallel computing on GPU to produce more efficient engineering solutions
Amanzadi, Amirhossein. "Predicting safe drug combinations with Graph Neural Networks (GNN)." Thesis, Uppsala universitet, Institutionen för farmaceutisk biovetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-446691.
Full textPappone, Francesco. "Graph neural networks: theory and applications." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23893/.
Full textAndersson, Mikael. "Gamma-ray racking using graph neural networks." Thesis, KTH, Fysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-298610.
Full textTrots att det existerar en mängd metoder för rekonstruktion av spår i specialiserade detektorer som AGATA är det av naturligt intresse att diversifiera och undersöka nya verktyg för uppgiften. I denna studie undersöktes några möjligheter inom maskininlärning, närmare bestämt inom området neurala grafnätverk. Under projektets gång simulerades data av fotoner i en ihålig, sfärisk geometri av germanium i Geant4. Den simulerade datan är begränsad till energier under parproduktion så datan består av reaktioner genom den fotoelektriska effekten och comptonspridning. Den variabla storleken på denna data och dess spridning i detektorns geometri lämpar sig för ett grafformat med nod och länkstruktur. Ett neuralt grafnätverk (GNN) implementerades och tränades på data med gamma av variabel multiplicitet och energi och evaluerades på ett urval prestandaparametrar och dess förmåga att generera ett användbart spektra. Slutresultatet involverade en länkklassificerings modell tränat på data med 10^6 spår sammanslagna till händelser. Nätverket återkallade 95 procent av positiva länkar för ett val av tröskelvärde i fallet med oändlig upplösning med ett peak-to-total på 68 procent för packad data behandlad med osäkerhet i energi och position motsvarande fallet med begränsad upplösning.
Andersson, Mikael. "Gamma-ray tracking using graph neural networks." Thesis, KTH, Fysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-298610.
Full textTrots att det existerar en mängd metoder för rekonstruktion av spår i specialiserade detektorer som AGATA är det av naturligt intresse att diversifiera och undersöka nya verktyg för uppgiften. I denna studie undersöktes några möjligheter inom maskininlärning, närmare bestämt inom området neurala grafnätverk. Under projektets gång simulerades data av fotoner i en ihålig, sfärisk geometri av germanium i Geant4. Den simulerade datan är begränsad till energier under parproduktion så datan består av reaktioner genom den fotoelektriska effekten och comptonspridning. Den variabla storleken på denna data och dess spridning i detektorns geometri lämpar sig för ett grafformat med nod och länkstruktur. Ett neuralt grafnätverk (GNN) implementerades och tränades på data med gamma av variabel multiplicitet och energi och evaluerades på ett urval prestandaparametrar och dess förmåga att generera ett användbart spektra. Slutresultatet involverade en länkklassificerings modell tränat på data med 10^6 spår sammanslagna till händelser. Nätverket återkallade 95 procent av positiva länkar för ett val av tröskelvärde i fallet med oändlig upplösning med ett peak-to-total på 68 procent för packad data behandlad med osäkerhet i energi och position motsvarande fallet med begränsad upplösning.
Gunnarsson, Robin, and Alexander Åkermark. "Approaching sustainable mobility utilizing graph neural networks." Thesis, Högskolan i Halmstad, Akademin för informationsteknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-45191.
Full textBoszorád, Matej. "Segmentace obrazových dat pomocí grafových neuronových sítí." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2020. http://www.nusl.cz/ntk/nusl-412987.
Full textZhou, Rongyan. "Exploration of opportunities and challenges brought by Industry 4.0 to the global supply chains and the macroeconomy by integrating Artificial Intelligence and more traditional methods." Electronic Thesis or Diss., université Paris-Saclay, 2021. http://www.theses.fr/2021UPAST037.
Full textIndustry 4.0 is a significant shift and a tremendous challenge for every industrial segment, especially for the manufacturing industry that gave birth to the new industrial revolution. The research first uses literature analysis to sort out the literature, and focuses on the use of “core literature extension method” to enumerate the development direction and application status of different fields, which devotes to showing a leading role for theory and practice of industry 4.0. The research then explores the main trend of multi-tier supply in Industry 4.0 by combining machine learning and traditional methods. Next, the research investigates the relationship of industry 4.0 investment and employment to look into the inter-regional dependence of industry 4.0 so as to present a reasonable clustering based on different criteria and make suggestions and analysis of the global supply chain for enterprises and organizations. Furthermore, our analysis system takes a glance at the macroeconomy. The combination of natural language processing in machine learning to classify research topics and traditional literature review to investigate the multi-tier supply chain significantly improves the study's objectivity and lays a solid foundation for further research. Using complex networks and econometrics to analyze the global supply chain and macroeconomic issues enriches the research methodology at the macro and policy level. This research provides analysis and references to researchers, decision-makers, and companies for their strategic decision-making
Liberatore, Lorenzo. "Introduction to geometric deep learning and graph neural networks." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amslaurea.unibo.it/25339/.
Full textFrancis, Smita. "Optimisation of doping profiles for mm-wave GaAs and GaN gunn diodes." Thesis, Cape Peninsula University of Technology, 2017. http://hdl.handle.net/20.500.11838/2568.
Full textGunn diodes play a prominent role in the development of low-cost and reliable solid-state oscillators for diverse applications, such as in the military, security, automotive and consumer electronics industries. The primary focus of the research presented here is the optimisation of GaAs and GaN Gunn diodes for mm-wave operations, through rigorous Monte Carlo particle simulations. A novel, empirical technique to determine the upper operational frequency limit of devices based on the transferred electron mechanism is presented. This method exploits the hysteresis of the dynamic velocity-field curves of semiconductors to establish the upper frequency limit of the transferred electron mechanism in bulk material that supports this mechanism. The method can be applied to any bulk material exhibiting negative differential resistance. The simulations show that the upper frequency limits of the fundamental mode of operation for GaAs Gunn diodes are between 80 GHz and 100 GHz, and for GaN Gunn diodes between 250 GHz and 300 GHz, depending on the operating conditions. These results, based on the simulated bulk material characteristics, are confirmed by the simulated mm-wave performance of the GaAs and GaN Gunn devices. GaAs diodes are shown to exhibit a fundamental frequency limit of 90 GHz, but with harmonic power available up to 186_GHz. Simulated GaN diodes are capable of generating appreciable output power at operational frequencies up to 250 GHz in the fundamental mode, with harmonic output power available up to 525 GHz. The research furthermore establishes optimised doping profiles for two-domain GaAs Gunn diodes and single- and two-domain GaN Gunn diodes. The relevant design parameters that have been optimised, are the dimensions and doping profile of the transit regions, the width of the doping notches and buffer region (for two-domain devices), and the bias voltage. In the case of GaAs diodes, hot electron injection has also been implemented to improve the efficiency and output power of the devices. Multi-domain operation has been explored for both GaAs and GaN devices and found to be an effective way of increasing the output power. However, it is the opinion of the author that a maximum number of two domains is feasible for both GaAs and GaN diodes due to the significant increase in thermal heating associated with an increase in the number of transit regions. It has also been found that increasing the doping concentration of the transit region exponentially over the last 25% towards the anode by a factor of 1.5 above the nominal doping level enhances the output power of the diodes.
Books on the topic "Gnn"
Shui lai gen wo gan bei. Taibei Shi: Feng yun shi dai chu ban gu fen you xian gong si, 2008.
Find full textshi, Zhong gong Jiujiang Shi wei Dang shi zi liao zheng ji ban gong. Gan bei Min Shan gen ju di. [Jiangxi]: Zhong gong Jiangxi Sheng wei dang shi zi liao zheng ji wei yuan hui, 1988.
Find full textAi yao gen zhe gan jue zou. Taibei Xian Xindian Shi: Wan sheng chu ban you xian gong si, 2001.
Find full textHuo, Haidan. Shan Gan bian gen ju di yan jiu. Beijing: Zhong gong dang shi chu ban she, 2011.
Find full textXiang E Gan ge ming gen ju di. Beijing: Zhong gong dang shi zi liao chu ban she, 1991.
Find full text1960-, Huang Huiyun, and Ouyang Xiaohua, eds. Xiang Gan ge ming gen ju di quan shi. Nanchang Shi: Jiangxi ren min chu ban she, 2007.
Find full textMin Zhe Gan gen ju di di jin rong. Shanghai: Shanghai she hui ke xue yuan chu ban she, 1998.
Find full textBook chapters on the topic "Gnn"
Zhang, Sen, and Baokui Li. "GNN-MRC: Machine Reading Comprehension Based on GNN Augmentation." In Artificial Neural Networks and Machine Learning – ICANN 2023, 398–409. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-44216-2_33.
Full textChen, Hongyu, Zhejiang Ran, Keshi Ge, Zhiquan Lai, Jingfei Jiang, and Dongsheng Li. "Auto-Divide GNN: Accelerating GNN Training with Subgraph Division." In Euro-Par 2023: Parallel Processing, 367–82. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-39698-4_25.
Full textDin, Aafaq Mohi Ud, Shaima Qureshi, and Javaid Iqbal. "GNN Approach for Software Reliability." In System Reliability and Security, 1–13. New York: Auerbach Publications, 2023. http://dx.doi.org/10.1201/9781032624983-1.
Full textWang, Yu, An Liu, Junhua Fang, Jianfeng Qu, and Lei Zhao. "ADQ-GNN: Next POI Recommendation by Fusing GNN and Area Division with Quadtree." In Web Information Systems Engineering – WISE 2021, 177–92. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-91560-5_13.
Full textLi, Mingkai, Peter Kok-Yiu Wong, Cong Huang, and Jack C. P. Cheng. "Indoor Trajectory Reconstruction Using Building Information Modeling and Graph Neural Networks." In CONVR 2023 - Proceedings of the 23rd International Conference on Construction Applications of Virtual Reality, 895–906. Florence: Firenze University Press, 2023. http://dx.doi.org/10.36253/10.36253/979-12-215-0289-3.89.
Full textLi, Mingkai, Peter Kok-Yiu Wong, Cong Huang, and Jack C. P. Cheng. "Indoor Trajectory Reconstruction Using Building Information Modeling and Graph Neural Networks." In CONVR 2023 - Proceedings of the 23rd International Conference on Construction Applications of Virtual Reality, 895–906. Florence: Firenze University Press, 2023. http://dx.doi.org/10.36253/979-12-215-0289-3.89.
Full textLi, Xu, and Yongsheng Chen. "Multi-Augmentation Contrastive Learning as Multi-Objective Optimization for Graph Neural Networks." In Advances in Knowledge Discovery and Data Mining, 495–507. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-33377-4_38.
Full textMoriyama, Sota, Koji Watanabe, and Katsumi Inoue. "GNN Based Extraction of Minimal Unsatisfiable Subsets." In Inductive Logic Programming, 77–92. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-49299-0_6.
Full textBegga, Ahmed, Miguel Ángel Lozano, and Francisco Escolano. "HEX-GNN: Hierarchical EXpanders for Node Classification." In Advances in Artificial Intelligence, 233–42. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-62799-6_24.
Full textZhang, Jun, Tong Zhang, and Ying Wang. "GNN-Based Structural Dynamics Simulation for Modular Buildings." In Pattern Recognition and Computer Vision, 245–58. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-18913-5_19.
Full textConference papers on the topic "Gnn"
Veyrin-Forrer, Luca, Ataollah Kamal, Stefan Duffner, Marc Plantevit, and Céline Robardet. "What Does My GNN Really Capture? On Exploring Internal GNN Representations." In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/105.
Full textChen, Yuzhao, Yatao Bian, Xi Xiao, Yu Rong, Tingyang Xu, and Junzhou Huang. "On Self-Distilling Graph Neural Network." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/314.
Full textRosenbluth, Eran, Jan Tönshoff, and Martin Grohe. "Some Might Say All You Need Is Sum." In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/464.
Full textPeng, Jingshu, Zhao Chen, Yingxia Shao, Yanyan Shen, Lei Chen, and Jiannong Cao. "Sancus: Staleness-Aware Communication-Avoiding Full-Graph Decentralized Training in Large-Scale Graph Neural Networks (Extended Abstract)." In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/724.
Full textZhu, Hongmin, Fuli Feng, Xiangnan He, Xiang Wang, Yan Li, Kai Zheng, and Yongdong Zhang. "Bilinear Graph Neural Network with Neighbor Interactions." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/202.
Full textTena Cucala, David, Bernardo Cuenca Grau, Boris Motik, and Egor V. Kostylev. "On the Correspondence Between Monotonic Max-Sum GNNs and Datalog." In 20th International Conference on Principles of Knowledge Representation and Reasoning {KR-2023}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/kr.2023/64.
Full textHu, Ziniu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. "GPT-GNN." In KDD '20: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3394486.3403237.
Full textWang, Shuo, Yanran Li, Jiang Zhang, Qingye Meng, Lingwei Meng, and Fei Gao. "PM2.5-GNN." In SIGSPATIAL '20: 28th International Conference on Advances in Geographic Information Systems. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3397536.3422208.
Full textLi, Zekun, Zeyu Cui, Shu Wu, Xiaoyu Zhang, and Liang Wang. "Fi-GNN." In CIKM '19: The 28th ACM International Conference on Information and Knowledge Management. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3357384.3357951.
Full textZhou, Fan, Chengtai Cao, Kunpeng Zhang, Goce Trajcevski, Ting Zhong, and Ji Geng. "Meta-GNN." In CIKM '19: The 28th ACM International Conference on Information and Knowledge Management. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3357384.3358106.
Full textReports on the topic "Gnn"
Fox, James, Bo Zhao, Sivasankaran Rajamanickam, Rampi Ramprasad, and Le Song. Concentric Spherical GNN for 3D Representation Learning. Office of Scientific and Technical Information (OSTI), March 2021. http://dx.doi.org/10.2172/1772205.
Full textJha, Sonal, Ayan Biswas, and Terece Turton. Graph Neural Network (GNN) - assisted Sampling for Cosmological Simulations. Office of Scientific and Technical Information (OSTI), August 2022. http://dx.doi.org/10.2172/1884741.
Full textGarg, Raveesh, Eric Qin, Francisco Martinez, Robert Guirado, Akshay Jain, Sergi Abadal, Jose Abellan, et al. A Taxonomy for Classification and Comparison of Dataflows for GNN Accelerators. Office of Scientific and Technical Information (OSTI), March 2021. http://dx.doi.org/10.2172/1817326.
Full textCFA Institute. Gen Z and Investing: Social Media, Crypto, FOMO, and Family. CFA Institute, May 2023. http://dx.doi.org/10.56227/23.1.15.
Full textPavlidis, Dimitris. GaN MISFETs. Fort Belvoir, VA: Defense Technical Information Center, June 2000. http://dx.doi.org/10.21236/ada391089.
Full textHirshfield, Jay L. Bimodal Electron Gun. Office of Scientific and Technical Information (OSTI), December 2016. http://dx.doi.org/10.2172/1374056.
Full textCBL CORP REDWOOD CITY CA. Engineered GaN Substrates. Fort Belvoir, VA: Defense Technical Information Center, September 1996. http://dx.doi.org/10.21236/ada324733.
Full textCook, Philip, Jens Ludwig, Sudhir Venkatesh, and Anthony Braga. Underground Gun Markets. Cambridge, MA: National Bureau of Economic Research, November 2005. http://dx.doi.org/10.3386/w11737.
Full textCushing, Peter W. AAAV Gun & AMMO Update NDIA Gun and AMMO Symposium. Fort Belvoir, VA: Defense Technical Information Center, April 2001. http://dx.doi.org/10.21236/ada386173.
Full textLong, CL, A. Del Genio, M. Deng, X. Fu, W. Gustafson, R. Houze, C. Jakob, et al. ARM MJO Investigation Experiment on Gan Island (AMIE-Gan) Science Plan. Office of Scientific and Technical Information (OSTI), April 2011. http://dx.doi.org/10.2172/1010958.
Full text