Academic literature on the topic 'Gold compounds'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Gold compounds.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Gold compounds"
Parish, R. V., and Stephanie M. Cottrill. "Medicinal gold compounds." Gold Bulletin 20, no. 1-2 (March 1987): 3–12. http://dx.doi.org/10.1007/bf03214653.
Full textSteggerda, J. J. "Platinum-Gold Cluster Compounds." Comments on Inorganic Chemistry 11, no. 2-3 (December 1990): 113–29. http://dx.doi.org/10.1080/02603599008035821.
Full textBaukova, T. V., L. G. Kuz'mina, A. V. Churakov, N. A. Oleinikova, and P. V. Petrovskii. "Hypercoordinated gold (i) compounds." Russian Chemical Bulletin 47, no. 2 (February 1998): 343–48. http://dx.doi.org/10.1007/bf02498963.
Full textRapson, W. S. "Intermetallic compounds of gold." Gold Bulletin 29, no. 4 (December 1996): 141–42. http://dx.doi.org/10.1007/bf03214750.
Full textBaukova, T. V., L. G. Kuzmina, and A. V. Churakov. "Hypercoordinated gold(I) compounds." Russian Chemical Bulletin 46, no. 12 (December 1997): 2127–29. http://dx.doi.org/10.1007/bf02495267.
Full textBaukova, T. V., L. G. Kuz'mina, N. A. Oleinikova, and D. A. Lemenovskii. "Hypercoordinated gold(i) compounds." Russian Chemical Bulletin 44, no. 10 (October 1995): 1952–54. http://dx.doi.org/10.1007/bf00707234.
Full textFackler, John P., Zerihun Assefa, Jennifer M. Forward, and Richard J. Staples. "Excited States of Gold(I) Compounds, Luminescence and Gold-Gold Bonding." Metal-Based Drugs 1, no. 5-6 (January 1, 1994): 459–66. http://dx.doi.org/10.1155/mbd.1994.459.
Full textSutton, Blaine M. "Gold compounds for rheumatoid arthritis." Gold Bulletin 19, no. 1 (March 1986): 15–16. http://dx.doi.org/10.1007/bf03214639.
Full textJONES, G., and P. M. BROOKS. "INJECTABLE GOLD COMPOUNDS: AN OVERVIEW." Rheumatology 35, no. 11 (November 1, 1995): 1154–58. http://dx.doi.org/10.1093/rheumatology/35.11.1154.
Full textBaukova, T. V., N. A. Oleinikova, D. A. Lemenovskii, and L. G. Kuz'mina. "Hypercoordinated compounds of gold(I)." Russian Chemical Bulletin 43, no. 4 (April 1994): 681–88. http://dx.doi.org/10.1007/bf00699848.
Full textDissertations / Theses on the topic "Gold compounds"
Coetzee, Karolien. "Gold complexes obtained from gold ylide preparations." Thesis, Stellenbosch : Stellenbosch University, 2005. http://hdl.handle.net/10019.1/21206.
Full textENGLISH ABSTRACT: This investigation comprised the synthesis and characterisation of new Au(I) phosphonium ylide complexes and other compounds formed during coordination reactions. These complexes could exploit the synergism between two pharmacologically active substances (gold complex unit and phosphorus ylide) to furnish an even more active substance. Four phosphonium salts were prepared, [C6H5CH2PPh3]Br (1), [Ph3P(CH2)3PPh3]Br2 (2a), p-[{Ph3PCH2}2C6H4]Br2 (3a) and m- [{Ph3PCH2}2C6H4]Br2 (4a), by reacting PPh3 with the corresponding alkylbromides. The 13C and 1H NMR spectra of the compounds 1 – 4a indicated that many of the nuclei are magnetically inequivalent. The aromatic units in PPh3 are normally identical, but multiple, overlapping signals proved that the corresponding ortho, meta and para carbon and proton nuclei are in magnetically different environments from each other. Single crystal structures of salts 3a and 4a were determined. Different methods were followed to deprotonate the phosphonium salts to afford the corresponding ylides and to coordinate the ylides to gold precursor compounds. Most of the reactions yielded inseparable mixtures of products and pure compounds could not be isolated in large enough quantities for characterisation by all physical methods. Sufficient crystals for structure determination by X-ray diffraction were obtained. The product mixtures were characterised by 1H, 13C and 31P NMR spectroscopy and mass spectrometry. Characteristic downfield chemical shift changes after coordination of the ylides to Au(I) were observed for the carbon and phosphorus nuclei, while the protons displayed upfield shifts. Reaction of (C6F5)Au(tht) with the salts 1 – 4a, and subsequent deprotonation yielded the gold(I) ylide complexes [C6H5CH(AuC6F5)PPh3] (5), [{Ph3PCH(AuC6F5)}2CH2] (6), p-[{Ph3PCH(AuC6F5)}2C6H4] (8), and m- [{Ph3PCH(AuC6F5)}2C6H4] (9). The crystal and molecular structures of compounds 5 and 9 were determined. Deprotonation of 4a with n-BuLi, followed by reaction with (C6F5)Au(tht) yielded complexes 9 and [{Ph3PCH2}2C6H4][BrAuC6F5]2 (10). The crystal structure of compound 10 was determined. Two aurocyclic compounds, [μ- {(Ph3PCH)2CH2}2Au2][BF4]2 (12) and [μ–{(Ph3PCH)2C6H4}2Au2][BF4]2 (13) were synthesised by deprotonating salts 2b and 3b with n-BuLi and subsequently reacting the corresponding bisylides with ClAu(tht). Reaction procedures in which Ag2O was used as deprotonating agent for the phosphonium salts 2a, 3a and 4a, yielded mixtures of products. Single crystals of complexes m-[Ph3PCH(AuC6F5)C6H4CH3] (14), [C6F5Au(tht)] (15) and [(C6F5)2Au][(Ph3PCH2)2C6H4] (16) were isolated from the reaction mixtures and subjected to X-ray crystal structure determination. The molecular structure of 15 exhibited unusual aurophilic interactions and represents the first example of a linear gold chain in which the gold···gold distances systematically alternate between 3.13Å, 3.31Å and 3.20Å. Salt 2b was reacted with Ph3PAu(acac) to afford the desired compound, [{Ph3PCH(AuPPh3)}2CH2](BF4)2 (19), along with [CH3C(O)C(AuPPh3)2C(O)CH3] (17) and some byproducts. Compound 17 was characterised by single crystal Xray diffraction. The fluorobiphenylgold(I) complexes, 4,4’-[(AuPPh3)2C12F8] (21) and 2,2’- [(AuPPh3)2C12F8] (22) were synthesised by reaction of ClAuPPh3 with the lithiated 2,2’-dibromooctafluorobiphenyl and 4,4’-dibromooctafluorobiphenyl respectively. The molecular structure of 21 revealed that one of the C–Au–P bond angles deviates from linearity by 12.5°, probably as a result of π-stacking of the tetrafluorophenyl rings and steric requirements of the bulky PPh3 units. The other C–Au–P bond angle is linear [177.9(3)°].
AFRIKAANSE OPSOMMING: Hierdie studie behels die sintese en karakterisering van nuwe fosfoniumylied goud(I)-komplekse en ander verbindings wat gedurende koördinasiereaksies vorm. Sulke komplekse kan sinergisme tussen twee farmakologies-aktiewe entiteite (goud(I) en fosfoniumylied) om ʼn meer aktiewe verbinding te vorm meebring. Vier fosfoniumsoute is berei, [C6H5CH2PPh3]Br (1), [Ph3P(CH2)3PPh3]Br2 (2a), p- [{Ph3PCH2}2C6H4]Br2 (3a) en m-[{Ph3PCH2}2C6H4]Br2 (4a), deur PPh3 met die ooreenstemmende alkielbromiedes te reageer. Die 13C- en 1H- KMR-spektra van dié verbindings toon dat ʼn aantal kerne in aromatiese ringe magneties onekwivalent is. Normaalweg is die koolstowwe in PPh3-eenhede ekwivalent, maar meervoudige, oorvleuelende pieke het nou getoon dat die ooreenstemmende orto-, meta- en para-koolstof sowel as die ooreenstemmende protonkerne in verskillende magnetiese omgewings voorkom. Die kristalstrukture van die soute 3a en 4a hierbo is met behulp van X-straal tegnieke bepaal. Verskillende metodes is gevolg om die fosfoniumsoute te deprotoneer na die ooreenstemmende yliede en om die yliede dan aan goud-bevattende uitgangstowwe te probeer koördineer. Die meeste reaksies het nie-skeibare mengsels gevorm en enkelprodukte kon nie in groot genoeg konsentrasies geïsoleer word om hulle afsonderlik te karakteriseer nie. Kristalle vir X-straal kristalstruktuur bepalings is verkry. Die produkmengsels is gekarakteriseer met behulp van 1H-, 13C- en 31P- KMR-spektroskopie en massaspektrometrie. Karakteristieke veranderinge in chemiese verskuiwings na laer veldsterktes vir die koolstof en fosfor kerne is waargeneem na koördinasie van die yliede aan Au(I), terwyl die protone na höer veldsterktes verskuif het. Die reaksie tussen (C6F5)Au(tht) (tetrahidrotiofeen) en soute 1 – 4a gevolg deur deprotonering, vorm die goud-yliedkomplekse [C6H5CH(AuC6F5)PPh3] (5), [{Ph3PCH(AuC6F5)}2CH2] (6), p-[{Ph3PCH(AuC6F5)}2C6H4] (8), en m- [{Ph3PCH(AuC6F5)}2C6H4] (9). Die kristalstrukture van komplekse 5 en 9 het al die molekulêre interaksies daarin blootgelê. Deprotonering van 4a met n-BuLi, gevolg deur reaksie met (C6F5)Au(tht) lewer komplekse 9 en [{Ph3PCH2}2C6H4][BrAuC6F5]2 (10). Die kristal- en molekulêre struktuuur van kompleks 10 is bepaal. Twee aurosikliese verbindings, [μ- {(Ph3PCH)2CH2}2Au2][BF4]2 (12) en [μ–{(Ph3PCH)2C6H4}2Au2][BF4]2 (13) is gesintetiseer deur gedeprotoneerde bisyliede verkry van 2b en 3b met substitusie van tht aan die ClAu-eenheid te koördineer. Reaksieprosedures waarin Ag2O vir deprotonering van die fosfoniumsoute 2a, 3a en 4a gebruik is, het tot mengsels van produkte aanleiding gegee. Enkelkristalle van komplekse [Ph3PCH(AuC6F5)C6H4CH3] (14), [C6F5Au(tht)] (15) en [(C6F5)2Au][(Ph3PCH2)2C6H4] (16) is geïsoleer uit die reaksies en kristalstruktuurbepalings is uitgevoer. Die molekulere struktuur van 15 toon ongewone aurofiliese interaksies en verteenwoordig die eerste voorbeeld van ʼn linieêre goudketting; met goud···goud afstande wat sistematies varieër tussen 3.13Å, 3.31Å en 3.20Å. Sout 2b is met Ph3PAu(acac) gereageer om die gewenste produk, [{Ph3PCH(AuPPh3)}2CH2](BF4)2 (19), saam met [CH3C(O)C(AuPPh3)2C(O)CH3] (17) en ander byprodukte te vorm. Verbinding 17 is as enkelkristalle Xstraalkristallografies gekarakteriseer. Die fluorobifeniel goud(I)-komplekse, 4,4’-[(AuPPh3)2C12F8] (21) en 2,2’- [(AuPPh3)2C12F8] (22), is gesintetiseer deur koördinasie van AuPPh3 aan die gelitieërde 2,2’-dibromooktafluorobifeniel en 4,4’-dibromooktafluorobifeniel respektiewelik. Die molekulere struktuur van 21 het getoon dat een van die C-Au- P bindingshoeke met 12.5º afwyk van 180º, waarskynlik as gevolg van π- interaksie van die tetrafluorofenielringe en die steriese vereistes van die groot PPh3-eenhede. Die ander C-Au-P bindingshoek is linieêr [177.9(3)°].
Yang, Yi. "Gold(I) oxo, imido, hydrazido complexes and gold clusters /." free to MU campus, to others for purchase, 1996. http://wwwlib.umi.com/cr/mo/fullcit?p9841362.
Full textCoetzee, Jacorien. "New developments in the coordination chemistry of gold(1), gold(II) and gold(III) with C-, N-, P-and S-Donor ligands /." Link to the online version, 2007. http://hdl.handle.net/10019/412.
Full textYau, John. "The chemistry of gold(I) compounds." Thesis, Imperial College London, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.338901.
Full textHaggitt, Jane Louise. "Cluster compounds of platinum and gold." Thesis, University of Oxford, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.334859.
Full textElsome, Amanda Maria. "Some biological interactions of gold compounds." Thesis, King's College London (University of London), 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.283198.
Full textLeBlanc, Daren James. "Thiol complexes of gold(I) : structure and chemistry of the gold based anti-arthritis drugs /." *McMaster only, 1996.
Find full textChiffey, Andrew Francis. "Bimetallic compounds of palladium, platinum and gold." Thesis, University of Southampton, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.294602.
Full text肖紅 and Hong Xiao. "Photochemical, photophysical properties and structures of polynuclear gold(I) clusters and organometallic gold(I) complexes." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1996. http://hub.hku.hk/bib/B31235438.
Full textXiao, Hong. "Photochemical, photophysical properties and structures of polynuclear gold(I) clusters and organometallic gold(I) complexes /." Hong Kong : University of Hong Kong, 1996. http://sunzi.lib.hku.hk/hkuto/record.jsp?B19669471.
Full textBooks on the topic "Gold compounds"
Saul, Patai, and Rappoport Zvi, eds. The chemistry of organic derivatives of gold and silver. New York: Wiley, 1999.
Find full textAntonio, Laguna, ed. Modern supramolecular gold chemistry: Gold-metal interactions and applications. Weinheim: Wiley-VCH, 2008.
Find full textSimpozium "Nanogeokhimii︠a︡ zolota" (2008 Vladivostok, Russia). Nanogeokhimii︠a︡ zolota: Trudy simpoziuma, Vladivostok, 17-18 apreli︠a︡ 2008 g.. Vladivostok: Dalʹnauka, 2008.
Find full textSimpozium "Nanogeokhimii︠a︡ zolota" (2008 Vladivostok, Russia). Nanogeokhimii︠a︡ zolota: Trudy simpoziuma, Vladivostok, 17-18 apreli︠a︡ 2008 g.. Vladivostok: Dalʹnauka, 2008.
Find full text1915-, Dirkse T. P., Michalowski T, Akaiwa H, and Izumi F, eds. Copper, silver, gold and zinc, cadmium, mercury, oxides and hydroxides. Oxford: Pergamon, 1986.
Find full textWatterson, John R. A pyrolysis-gas chromatographic study of organic matter from Snake River flake-type placer gold particles. [Denver, CO]: U.S. Geological Survey, 1995.
Find full textS, Leventhal Joel, and Geological Survey (U.S.), eds. A pyrolysis-gas chromatographic study of organic matter from Snake River flake-type placer gold particles. [Reston, Va.]: U.S. Dept. of the Interior, U.S. Geological Survey, 1995.
Find full textS, Leventhal Joel, and Geological Survey (U.S.), eds. A pyrolysis-gas chromatographic study of organic matter from Snake River flake-type placer gold particles. [Reston, Va.]: U.S. Dept. of the Interior, U.S. Geological Survey, 1995.
Find full textS, Leventhal Joel, and Geological Survey (U.S.), eds. A pyrolysis-gas chromatographic study of organic matter from Snake River flake-type placer gold particles. [Reston, Va.]: U.S. Dept. of the Interior, U.S. Geological Survey, 1995.
Find full textS, Leventhal Joel, and Geological Survey (U.S.), eds. A pyrolysis-gas chromatographic study of organic matter from Snake River flake-type placer gold particles. [Reston, Va.]: U.S. Dept. of the Interior, U.S. Geological Survey, 1995.
Find full textBook chapters on the topic "Gold compounds"
Chipperfield, J. R. "Compounds of Gold." In Inorganic Reactions and Methods, 360. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145289.ch144.
Full textBerners-Price, Susan J., and Peter J. Barnard. "Therapeutic Gold Compounds." In Ligand Design in Medicinal Inorganic Chemistry, 227–56. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118697191.ch9.
Full textShaw, C. Frank. "Gold." In Metal Compounds in Cancer Therapy, 46–64. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1252-9_3.
Full textMacintyre, J. E. "Au Gold." In Dictionary of Organometallic Compounds, 42–45. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4615-6847-6_4.
Full textMacIntyre, Jane E. "Au Gold." In Dictionary of Organometallic Compounds, 20–26. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4899-6848-7_4.
Full textMacintyre, J. E., F. M. Daniel, D. J. Cardin, S. A. Cotton, R. J. Cross, A. G. Davies, R. S. Edmundson, et al. "Au Gold." In Dictionary of Organometallic Compounds, 15–17. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4757-4966-3_4.
Full textNagy, Zoltán. "Au—Gold." In Electrochemical Synthesis of Inorganic Compounds, 17–18. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4899-0545-1_5.
Full textBarker, M. G. "Of Alkali-Metal-Gold Compounds." In Inorganic Reactions and Methods, 310. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145289.ch101.
Full textHu, Di, Chun-Nam Lok, and Chi-Ming Che. "CHAPTER 5. Anticancer Gold Compounds." In Metal-based Anticancer Agents, 120–42. Cambridge: Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/9781788016452-00120.
Full textMueting, A. M., B. D. Alexander, P. D. Boyle, A. L. Casalnuovo, L. N. Ito, B. J. Johnson, L. H. Pignolet, et al. "Mixed-Metal-Gold Phosphine Cluster Compounds." In Inorganic Syntheses, 279–98. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470132609.ch63.
Full textConference papers on the topic "Gold compounds"
Dyussembayeva, Kulyash. "THE INTERMETALLIC COMPOUNDS OF GOLD WITH LEAD." In 13th SGEM GeoConference on SCIENCE AND TECHNOLOGIES IN GEOLOGY, EXPLORATION AND MINING. Stef92 Technology, 2013. http://dx.doi.org/10.5593/sgem2013/ba1.v2/s04.016.
Full textBisheng, Wang, Liao Jinzhi Lois, and Li Xiaomin. "Characterization of interfacial intermetallic compounds in gold wire bonding with copper pad." In 2018 IEEE 20th Electronics Packaging Technology Conference (EPTC). IEEE, 2018. http://dx.doi.org/10.1109/eptc.2018.8654394.
Full textVertyanov, Denis V., Igor A. Belyakov, Sergey P. Timoshenkov, Anna V. Borisova, and Vitaly N. Sidorenko. "Effects of Gold-aluminum Intermetallic Compounds on Chip Wire Bonding Interconnections Reliability." In 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). IEEE, 2020. http://dx.doi.org/10.1109/eiconrus49466.2020.9039518.
Full textChang, C. Y., C. Y. Kuo, P. K. Huang, W. C. Tian, and C. J. Lu. "Volatile organic compounds sensor with stacked interdigitated electrodes coated with monolayer-protected gold nanoclusters." In 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII). IEEE, 2013. http://dx.doi.org/10.1109/transducers.2013.6626981.
Full textAntonijevic, Marko, Jelena Đorovic Jovanovic, Ana Kesic, Dejan Milenkovic, and Zoran Markovic. "КOMPLEKSI ZLATA KAO POTENCIJALNI SUPLEMENTI SA ANTIKANCEROGENIM I ANTIVIRUSNIM DELOVANJEM." In XXVI savetovanje o biotehnologiji sa međunarodnim učešćem. University of Kragujevac, Faculty of Agronomy, 2021. http://dx.doi.org/10.46793/sbt26.429a.
Full textRapa, M., G. Vinci, S. Ciano, S. Cerra, and I. Fratoddi. "Gold nanoparticles-based extraction of phenolic compounds from olive mill wastewater: A rapid and sustainable method." In INTERNATIONAL CONFERENCE ON TRENDS IN MATERIAL SCIENCE AND INVENTIVE MATERIALS: ICTMIM 2020. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0023606.
Full textWhetten, Robert L., M. M. Alvarez, T. Bigioni, J. T. Khoury, B. E. Salisbury, T. G. Schaaff, Marat N. Shafigullin, and I. Vezmar. "Giant gold-cluster compounds—gaps in optical and charging spectra, and an electronic origin of abundance anomalies." In The 12th international winterschool on electronic properties of novel materials: progress in molecular nanostructures. AIP, 1998. http://dx.doi.org/10.1063/1.56482.
Full textAsrar, Nausha. "Lead-Free Solder/Gold Metallization Interdiffusion in Electronic Interconnects – Challenges and their Control." In ISTFA 2008. ASM International, 2008. http://dx.doi.org/10.31399/asm.cp.istfa2008p0053.
Full textNichols, R., G. Ramos, R. Taylor, P. Schreier, and S. Heinemann. "The influence of intermetallic compounds on high speed shear testing with a specific interest in Electroless Palladium and Autocatalytic Gold." In 2017 IEEE CPMT Symposium Japan (ICSJ). IEEE, 2017. http://dx.doi.org/10.1109/icsj.2017.8240056.
Full textSyed, Yasir I., Chris O. Phillips, Juan J. Rodriguez, Neil Mac Parthalain, Ludmila I. Kuncheva, Reyer Zwiggelaar, Tim C. Claypole, and Keir E. Lewis. "Correlation Between Breath Profiles Of Exhaled Volatile Organic Compounds (eVOCs) And Global Initiative For Obstructive Lung Disease (GOLD) COPD Stage." In American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California. American Thoracic Society, 2012. http://dx.doi.org/10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a4518.
Full textReports on the topic "Gold compounds"
Nyongesa, Benjamin Simiyu. Management of a severely curved canal with Proglider and WaveOne gold compounded with a separated instrument. Science Repository OU, January 2019. http://dx.doi.org/10.31487/j.ord.2018.01.003.
Full textSisler, Edward C., Raphael Goren, and Akiva Apelbaum. Controlling Ethylene Responses in Horticultural Crops at the Receptor Level. United States Department of Agriculture, October 2001. http://dx.doi.org/10.32747/2001.7580668.bard.
Full textAnnunziato, Dominick. HPLC Sample Prep and Extraction SOP v1.3 for Fungi. MagicMyco, August 2023. http://dx.doi.org/10.61073/sopv1.3.08.11.2023.
Full textWilson, D., Chris Pettit, Vladimir Ostashev, and Matthew Kamrath. Signal power distributions for simulated outdoor sound propagation in varying refractive conditions. Engineer Research and Development Center (U.S.), July 2024. http://dx.doi.org/10.21079/11681/48774.
Full textWilson, D., Matthew Kamrath, Caitlin Haedrich, Daniel Breton, and Carl Hart. Urban noise distributions and the influence of geometric spreading on skewness. Engineer Research and Development Center (U.S.), November 2021. http://dx.doi.org/10.21079/11681/42483.
Full textPichersky, Eran, Alexander Vainstein, and Natalia Dudareva. Scent biosynthesis in petunia flowers under normal and adverse environmental conditions. United States Department of Agriculture, January 2014. http://dx.doi.org/10.32747/2014.7699859.bard.
Full textBano, Masooda. Curricula that Respond to Local Needs: Analysing Community Support for Islamic and Quranic Schools in Northern Nigeria. Research on Improving Systems of Education (RISE), August 2022. http://dx.doi.org/10.35489/bsg-rise-wp_2022/103.
Full textBano, Masooda. Curricula that Respond to Local Needs: Analysing Community Support for Islamic and Quranic Schools in Northern Nigeria. Research on Improving Systems of Education (RISE), August 2022. http://dx.doi.org/10.35489/bsg-rise-wp_2022/103.
Full textKwesiga, Victoria, Zita Ekeocha, Stephen Robert Byrn, and Kari L. Clase. Compliance to GMP guidelines for Herbal Manufacturers in East Africa: A Position Paper. Purdue University, November 2021. http://dx.doi.org/10.5703/1288284317428.
Full textBrydie, Dr James, Dr Alireza Jafari, and Stephanie Trottier. PR-487-143727-R01 Modelling and Simulation of Subsurface Fluid Migration from Small Pipeline Leaks. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), May 2017. http://dx.doi.org/10.55274/r0011025.
Full text