Academic literature on the topic 'Gold-Nanoparticle'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Gold-Nanoparticle.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Gold-Nanoparticle"

1

Devi, J. Meena. "Simulation Studies on the Interaction of Graphene and Gold Nanoparticle." International Journal of Nanoscience 17, no. 03 (May 21, 2018): 1760043. http://dx.doi.org/10.1142/s0219581x17600432.

Full text
Abstract:
In this computational study, the interaction between a single layer graphene sheet and a gold nanoparticle is investigated employing molecular dynamics (MD) simulation at room temperature. The interactions between the graphene and gold nanoparticle were explored for three different types of gold nanoparticle, namely, bare gold nanoparticle, methyl terminated alkane thiol-coated gold nanoparticle and hydroxy terminated alkane thiol-coated gold nanoparticle. The interactions between the graphene and gold nanoparticle have resulted in the adsorption of gold nanoparticle on the surface of graphene. The structural properties of the graphene–gold hybrid nanostructures were found to be influenced by the capping layer of the gold nanoparticle.
APA, Harvard, Vancouver, ISO, and other styles
2

Prasad, B. L. V., C. M. Sorensen, and Kenneth J. Klabunde. "Gold nanoparticle superlattices." Chemical Society Reviews 37, no. 9 (2008): 1871. http://dx.doi.org/10.1039/b712175j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Graydon, Oliver. "Gold nanoparticle source." Nature Photonics 10, no. 12 (November 29, 2016): 751. http://dx.doi.org/10.1038/nphoton.2016.243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, Zhenxin, and Lina Ma. "Gold nanoparticle probes." Coordination Chemistry Reviews 253, no. 11-12 (June 2009): 1607–18. http://dx.doi.org/10.1016/j.ccr.2009.01.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shuai Yuan, Shuai Yuan, Lirong Wang Lirong Wang, Fengjiang Liu Fengjiang Liu, Fengquan Zhou Fengquan Zhou, Min Li Min Li, Hui Xu Hui Xu, Yuan Nie Yuan Nie, Junyi Nan Junyi Nan, and Heping Zeng Heping Zeng. "Enhanced nonlinearity for filamentation in gold-nanoparticle-doped water." Chinese Optics Letters 17, no. 3 (2019): 032601. http://dx.doi.org/10.3788/col201917.032601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Huynh, Ngoc Han, and James C. L. Chow. "DNA Dosimetry with Gold Nanoparticle Irradiated by Proton Beams: A Monte Carlo Study on Dose Enhancement." Applied Sciences 11, no. 22 (November 17, 2021): 10856. http://dx.doi.org/10.3390/app112210856.

Full text
Abstract:
Heavy atom nanoparticles, such as gold nanoparticles, are proven effective radiosensitizers in radiotherapy to enhance the dose delivery for cancer treatment. This study investigated the effectiveness of cancer cell killing, involving gold nanoparticle in proton radiation, by changing the nanoparticle size, proton beam energy, and distance between the nanoparticle and DNA. Monte Carlo (MC) simulation (Geant4-DNA code) was used to determine the dose enhancement in terms of dose enhancement ratio (DER), when a gold nanoparticle is present with the DNA. With varying nanoparticle size (radius = 15–50 nm), distance between the gold nanoparticle and DNA (30–130 nm), as well as proton beam energy (0.5–25 MeV) based on the simulation model, our results showed that the DER value increases with a decrease of distance between the gold nanoparticle and DNA and a decrease of proton beam energy. The maximum DER (1.83) is achieved with a 25 nm-radius gold nanoparticle, irradiated by a 0.5 MeV proton beam and 30 nm away from the DNA.
APA, Harvard, Vancouver, ISO, and other styles
7

Cong, Vu Thanh, Erdene-Ochir Ganbold, Joyanta K. Saha, Joonkyung Jang, Junhong Min, Jaebum Choo, Sehun Kim, et al. "Gold Nanoparticle Silica Nanopeapods." Journal of the American Chemical Society 136, no. 10 (February 25, 2014): 3833–41. http://dx.doi.org/10.1021/ja411034q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Malachosky, Edward W., and Philippe Guyot-Sionnest. "Gold Bipyramid Nanoparticle Dimers." Journal of Physical Chemistry C 118, no. 12 (March 14, 2014): 6405–12. http://dx.doi.org/10.1021/jp412409u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ung, Thearith, Luis M. Liz-Marzán, and Paul Mulvaney. "Gold nanoparticle thin films." Colloids and Surfaces A: Physicochemical and Engineering Aspects 202, no. 2-3 (April 2002): 119–26. http://dx.doi.org/10.1016/s0927-7757(01)01083-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Yuanyuang, Hermann J. Schluesener, and Shunqing Xu. "Gold nanoparticle-based biosensors." Gold Bulletin 43, no. 1 (March 2010): 29–41. http://dx.doi.org/10.1007/bf03214964.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Gold-Nanoparticle"

1

Derrien, Thomas. "Gold nanoparticle-lipid bilayer interactions." Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=86727.

Full text
Abstract:
The interactions of ligand-capped gold nanoparticles with lipid bilayers are investigated. The properties determining the mechanism of nanoparticle interaction using synthetic membrane models are explored. First, a specific interaction, incorporation of nanoparticles into the bilayers, is examined using novel imaging and nanoparticle synthesis techniques. Mixed ligand capped gold nanoparticles are synthesized with assorted ligand arrangements in order to relate ligand composition and structure to interaction mechanism using a dye leakage assay. Finally, in vivo experiments are conducted using peptide labeled fluorescent gold nanoparticles in live HeLa cells. It was found that gold nanoparticles are capable of crossing lipid bilayers, implying energy-independent cellular uptake mechanisms may occur. It is concluded that the structure and composition of the protecting ligands are critical in determining the magnitude of bilayer disruption.
L'interaction des nanoparticules d'or avec les bicouches lipidiques est présentée dans ce mémoire. Les facteurs influençant cette interaction ont été explorés en utilisant des bicouches lipidiques synthétiques. L'interaction due à l'incorporation des nanoparticules au sein des bicouches a été étudiée par des techniques d'imagerie. Un test de fuite de fluorophore a été employé afin de déterminer l'influence de la composition et de la structure des ligands protégeant les nanoparticules sur leur incorporation dans les bicouches de lipides. Pour cela, nous avons développer une synthèse de nanoparticules protégées par deux types de ligands. Des expériences in vivo ont été réalises avec des nanoparticules d'or fonctionnalisées avec des peptides ainsi que des fluorophores, mis en contact avec des cellules vivantes de type HeLa. Nous avons constaté que les nanoparticules d'or sont capables de franchir les bicouches lipidiques en utilisant des mécanismes indépendants d'énergie. Nous concluons que la structure et la composition des ligands protégeant les nanoparticules ont une grande influence sur la perturbation qu'elles induisent dans la structure des bicouches lipidiques.
APA, Harvard, Vancouver, ISO, and other styles
2

Manohar, Nivedh Harshan. "Quantitative imaging of gold nanoparticle distribution for preclinical studies of gold nanoparticle-aided radiation therapy." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/54877.

Full text
Abstract:
Gold nanoparticles (GNPs) have recently attracted considerable interest for use in radiation therapy due to their unique physical and biological properties. Of interest, GNPs (and other high-atomic-number materials) have been used to enhance radiation dose in tumors by taking advantage of increased photoelectric absorption. This physical phenomenon is well-understood on a macroscopic scale. However, biological outcomes often depend on the intratumoral and even intracellular distribution of GNPs, among other factors. Therefore, there exists a need to precisely visualize and accurately quantify GNP distributions. By virtue of the photoelectric effect, x-ray fluorescence (XRF) photons (characteristic x-rays) from gold can be induced and detected, not only allowing the distribution of GNPs within biological samples to be determined but also providing a unique molecular imaging option in conjunction with bioconjugated GNPs. This work proposes the use of this imaging modality, known as XRF imaging, to develop experimental imaging techniques for detecting and quantifying sparse distributions of GNPs in preclinical settings, such as within small-animal-sized objects, tissue samples, and superficial tumors. By imaging realistic GNP distributions, computational methods can then be used to understand radiation dose enhancement on an intratumoral scale and perhaps even down to the nanoscopic, subcellular realm, elucidating observed biological outcomes (e.g., radiosensitization of tumors) from the bottom-up. Ultimately, this work will result in experimental and computational tools for developing a better understanding of GNP-mediated dose enhancement and associated radiosensitization within the scope of GNP-aided radiation therapy.
APA, Harvard, Vancouver, ISO, and other styles
3

Kanaras, Antonios G. "Enzymatic manipulation of DNA/gold nanoparticle assemblies." Thesis, University of Liverpool, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.402259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bennett, Samantha E. "Fabrication of water-soluble gold nanoparticle aggregates." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/35074.

Full text
Abstract:
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2006.
Includes bibliographical references (leaves 23-24).
Mixed monolayer protected gold nanoparticles were linked using octanedithiol to form aggregates containing hundreds of nanoparticles. These aggregates are an interesting material, posing potential applications in the fields of chemistry, biology and materials science. This study examined the dependence of aggregate size and morphology on temperature of formation, using AFM and TEM imaging. The aggregates formed at 70°C averaged 105nm in width, as compared to 70nm for the room temperature aggregates. The TEM images showed increased density for the 70°C aggregates. In a further study, the room temperature aggregates were functionalized through a place exchange reaction with 1 -mercapto-undecane- l-sodiumsulfonate (MUS), a thiolated ligand with a polar head group. A two-phase test of the water-solubility indicated that the aggregates were fully soluble. TEM images showed a slight increase in size, though similar morphology to the insoluble aggregates. The ability to induce water solubility in the aggregates opens up many potential applications in the field of bionanomaterials.
by Samantha E. Bennett.
S.B.
APA, Harvard, Vancouver, ISO, and other styles
5

Zarate-Triviño, D. G., Acosta E. M. Valenzuela, E. Prokhorov, G. Luna-Bárcenas, Padilla C. Rodríguez, and Molina M. A. Franco. "Chitosan-Gold Nanoparticle Composites for Biomedical Application." Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35404.

Full text
Abstract:
The aim of this work is to synthesize chitosan-gold nanoparticles films by direct chemical reduction of HAuCl4 in a chitosan solution and to investigate the influence of gold nanoparticles concentration on the structure of films, conductivity and healing effect on mice skin after surgery. Results obtained have shown that new chitosan-gold nanoparticle-collagen bionananocomposites demonstrated better healing effect on the mice skin after surgery than control performed on commercial TheraFormTM material. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/35404
APA, Harvard, Vancouver, ISO, and other styles
6

García, Fernández Lorena. "Introducing gold nanoparticle bioconjugates within the biological machinery." Doctoral thesis, Universitat Autònoma de Barcelona, 2013. http://hdl.handle.net/10803/120221.

Full text
Abstract:
El rápido desarrollo de la Nanotecnología durante las últimas décadas ofrece amplias perspectivas en el uso de materiales a micro- y nanoescala en diferentes áreas de la industria, tecnología y medicina. Sin embargo, su uso y aplicación segura y eficaz en estas áreas requieren un control mucho mayor sobre sus propiedades físico-químicas y sus interacciones moleculares relacionadas con los seres vivos. El conocimiento actual de la comunidad científica está de acuerdo en que existe una brecha considerable en la comprensión de este tipo de interfaz "Nano-Bio". Dando un paso adelante en esta dirección, este trabajo de Tesis ha tenido como objetivo proporcionar conocimientos sobre la formación racional de bioconjugados de nanopartículas de oro para modular y comprender sus interacciones y los procesos celulares. En este contexto, la primera parte de esta Tesis se centra en la síntesis de nanopartículas de oro catiónicas y sus interacciones con células. La primera estrategia desarrollada para la síntesis de nanopartículas de oro cargadas positivamente se llevó a cabo mediante el uso simultáneo de un reductor débil y uno fuerte. Se ha demostrado que los dos reductores actúan de forma secuencial en el proceso sintético para producir nanopartículas de oro catiónicas monodispersas, con tamaños comprendidos entre 10.3 nm y 19.7 nm. Se describe también un método de crecimiento de nanopartículas de oro, en el que se obtienen nanopartículas monodispersas de mayor tamaño (de hasta ~ 28 nm) a partir de nanopartículas de oro previamente sintetizadas, mediante la adición de precursor y un reductor débil. La segunda estrategia desarrollada hace frente a la creciente demanda de nanopartículas de oro catiónicas de diferentes tamaños y ligandos, mediante el empleo de una metodología de transferencia de fase de medio orgánico a acuoso. Esta combinación de métodos de síntesis orgánica y acuosa da como resultado importantes beneficios. Esta estrategia se ha optimizado para preparar nanopartículas de oro catiónicas de 4.6, 8.9 y 13.4 nm de diámetro, usando un ligando alquílico tiolado con carga positiva. Además, su aplicación práctica se demostró mediante la producción de bioconjugados de oro de 13 nm con un péptido catiónico y otro aniónico. Las propiedades físico-químicas de estos bioconjugados en medios de cultivo celular, así como su internalización y toxicidad en fibroblastos humanos han sido estudiados. La segunda parte de esta Tesis se centra en la funcionalización racional de nanopartículas de oro con anticuerpos y la investigación de su interacción específica con receptores celulares. La formación de bioconjugados de oro con anticuerpos se ha estudiado utilizando una química selectiva, que ha permitido controlar el número de anticuerpos y su orientación en la nanopartícula. La obtención de bioconjugados bien definidos hizo posible la creación de nuevos autoensamblajes de nanopartículas mediante reconocimiento anticuerpo-antígeno. Esta estrategia también se exploró para la conjugación de un anticuerpo biológicamente relevante (Cetuximab) con nanopartículas de oro. Bioconjugados de oro con Cetuximab de configuración y multivalencia controlada se han utilizado para examinar su interacción con el receptor de superficie celular EGFR (receptor del factor de crecimiento epidérmico), un receptor de tirosina quinasa que es sobreexpresado en un gran número de cánceres.
The rapid development in Nanotechnology during the past few decades offers wide prospects in using micro- and nanoscale materials in different areas of industry, technology and medicine. However, their safe and efficient use and implementation in such areas require much greater control over their physicochemical properties and their related molecular interactions in living systems. Current knowledge in the scientific community agrees that a considerable gap exists in our understanding of such “Nano-Bio” interface. As a step forward in this direction, this Thesis work aimed to provide insights into the formation of rationally designed gold nanoparticle (Au NP) bioconjugate architectures to modulate and understand cellular interactions and processes. In such a context, the first part of this Thesis is focused on the synthesis of cationic Au NPs and their interactions with cells. A first strategy was developed in which the synthesis of positively charged Au NPs was performed by using simultaneously a weak and a strong reducer. It is shown that both reducers act sequentially in a one-pot synthesis to yield monodisperse cationic Au NPs with sizes comprised between 10.3 nm and 19.7 nm. A two-step seeding growth method is also described in which preformed Au NPs are grown larger (up to ~28 nm in size) by addition of fresh precursor solution and a weak reducer. A second strategy faces the rising demand of cationic Au NPs of different sizes and ligands by employing an organic-aqueous phase transfer methodology. Important benefits resulted from the combination of organic and aqueous synthetic methods. This strategy was optimized to prepare cationic Au NPs of 4.6, 8.9 and 13.4 nm in diameter using a positively charged alkanethiolate ligand. In addition, its practical application was demonstrated by producing ~ 13-nm-in-size cationic and anionic peptide-Au NP bioconjugates. The physicochemical properties of these bioconjugates in cell culture media as well as their uptake and toxicity on human fibroblast cells are discussed. The second part of this Thesis is focused on the rational functionalization of Au NPs with antibodies and investigating their interactions with cellular receptors. A site-directed chemistry was explored to prepare Antibody-Au NP bioconjugates with controlled ratio and orientation of bioconjugation. The formation of well-defined bioconjugates made possible the creation of novel NP-based assemblies using antibody-antigen cross-links. This strategy was also explored for the conjugation of a biologically relevant antibody (Cetuximab) with Au NPs. Cetuximab-Au NP bioconjugates of controlled configuration and multivalency were used to examine their interaction with the cell surface receptor EGFR (epidermal growth factor receptor), a receptor tyrosine kinase overexpressed in a large number of cancers.
APA, Harvard, Vancouver, ISO, and other styles
7

Tombe, Sekai Lana. "Characterization and application of phthalocyanine-gold nanoparticle conjugates." Thesis, Rhodes University, 2013. http://hdl.handle.net/10962/d1004517.

Full text
Abstract:
This work presents the syntheses, photophysical and photochemical characterization of arylthio zinc phthalocyanines and their gold nanoparticle conjugates. Spectroscopic and microscopic studies confirmed the formation of the phthalocyanine-gold nanoparticle conjugates which exhibited enhanced photophysicochemical properties in comparison to the phthalocyanines. The studies showed that the presence of gold nanoparticles significantly lowered fluorescence quantum yields and lifetimes. However, this interaction did not restrict the formation of excited singlet and triplet states and hence the formation of singlet oxygen required for photocatalysis. The conjugates showed significantly higher singlet oxygen quantum yields and therefore enhanced photocatalytic activity compared to the phthalocyanines. The zinc phthalocyanines and their gold nanoparticle conjugates were successfully incorporated into electrospun polymer fibers. Spectral characteristics of the functionalized electrospun fibers indicated that the phthalocyanines and phthalocyanine-gold nanoparticle conjugates were bound and their integrity was maintained within the polymeric fiber matrices. The photophysical and photochemical properties of the complexes were equally maintained within the electrospun fibers. The functionalized fibers were applied for the photoconversion of 4-chlorophenol and Orange G as model organic pollutants.
Microsoft� Word 2010
Adobe Acrobat 9.53 Paper Capture Plug-in
APA, Harvard, Vancouver, ISO, and other styles
8

Mthethwa, Thandekile Phakamisiwe. "Metallophthalocyanine-gold nanoparticle conjugates for photodynamic antimicrobial chemotherapy." Thesis, Rhodes University, 2015. http://hdl.handle.net/10962/d1017923.

Full text
Abstract:
This thesis presents the synthesis of neutral and cationic metallophthalocyanines and their gold nanoparticles conjugates. The spectroscopic characterization of these compounds is presented herein. The studies presented in this work shows that the conjugation of gold nanoparticles influenced both photophysical and photochemical properties. Gold nanoparticles were found to enhance the singlet oxygen quantum yield while lowering the fluorescence quantum yields. This work also looks at the effect of anisotropic gold nanoparticles such as nanorods and bipyramids on the photophysical behaviour of the metallophthalocyanines. The effect of the size of the gold nanorods was investigated herein. The results show that photophysical and photochemical properties can be influenced by both size and shape of the nanoparticles. Physical characterization about the loading of nanoparticles was also looked into. Parameters such as the surface area, the number of surface atoms, the number of atoms as well as the number of nanoparticles loaded on the surface of the phthalocyanines were studied. The self-assembled monolayers formed by phthalocyanines on gold surfaces were studied using the X-ray photoelectron spectroscopy (XPS). The gold nanoparticles synthesized herein include both organic and water soluble, different capping agents (citrate, tetraammonium bromide (TAOBr) and cetrimethylammonium bromide (CTAB). The concentration of the gold nanoparticles was measured on the inductively coupled plasma (ICP) and their size and shape were obtained from the transmission electron microscopy (TEM) images. A cationic aluminium phthalocyanine and its conjugates were used for photoinactivation of bacteria and fungi. The results show significant reduction and higher activity in the presence of gold nanoparticles, especially nanorods. A small chapter in this work presents an attempted work on the binding of metallothionein protein with protophorphyrin (IX). The pH and concentration dependent binding studies were investigated
APA, Harvard, Vancouver, ISO, and other styles
9

Ngomane, Nokuthula. "Gold nanoparticle–based colorimetric probes for dopamine detection." Thesis, Rhodes University, 2016. http://hdl.handle.net/10962/d1021261.

Full text
Abstract:
Colorimetric probes have become important tools in analysis and biomedical technology. This thesis reports on the development of such probes for the detection of dopamine (DA). Liquid and different solid state probes were developed utilizing un–functionalized gold nanoparticles (UF–AuNPs). The liquid state probe is based on the growth and aggregation of the UF–AuNPs in the presence of DA. Upon addition of the UF–AuNPs to various concentrations of DA, the shape, size and colour change results in spectral shifts from lower to higher wavelengths. The analyte can be easily monitored by the naked eye from 5.0 nM DA with a calculated limit of detection of 2.5 nM (3σ) under optimal pH. Ascorbic acid (AA) has a potential to interfere with DA detection in solution since it is often present in biological fluids, but in this case the interference was limited to solutions where its concentration was beyond 200 times greater than that of DA. Since most of the previously reported colorimetric probes, especially those for DA are solution based, the main focus of the thesis was in the development of a solid state based colorimetric probe in the form of nanofibre mats. To overcome the interference challenges experienced in the solution studies (the interference by high concentrations of AA), the suitability of molecularly imprinted polymers (MIPs) for the selective detection of DA was investigated. The results showed that the MIPs produced did not play a significant role in enhancing the selectivity towards DA. A probe composed of just the UF–AuNPs and Nylon–6 (UF–AuNPs + N6) was also developed. The UF–AuNPs were synthesized following an in situ reduction method. The probe was only selective to DA and insensitive to other catecholamines at physiological pH. Thus, the probe did not require any addition functionalities to achieve selectivity and sensitive to DA. The liquid state probe and the composite UF–AuNPs + N6 nanofibre probe were successfully applied to a whole blood sample and showed good selectivity towards DA. The simple, sensitive and selective probe could be an excellent alternative for on–site and immediate detection of DA without the use of instrumentation. For quantification of DA using the solid state probe, open–source software imageJ was used to assist in the analysis of the nanofibre colours. It was observed that the intensity of the colour increased with the increase in concentration of DA in a linear fashion. The use of imageJ can also be a great alternative where the colour changes are not so clear or for visually impaired people. The solid state probe developed can detect DA qualitatively and quantitatively. The work also forms a good foundation for development of such probes for other analyte.
APA, Harvard, Vancouver, ISO, and other styles
10

Wardlow, Nathan. "Role of local enhancement effects in gold nanoparticle therapy." Thesis, Queen's University Belfast, 2017. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.728684.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Gold-Nanoparticle"

1

Kapil, Nidhi. Stable Supported Gold Nanoparticle Catalyst for Environmentally Responsible Propylene Epoxidation. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15066-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Stable Supported Gold Nanoparticle Catalyst for Environmentally Responsible Propylene Epoxidation. Springer International Publishing AG, 2023.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kapil, Nidhi. Stable Supported Gold Nanoparticle Catalyst for Environmentally Responsible Propylene Epoxidation. Springer International Publishing AG, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dockendorf, Cedric P. R. On maskless gold nanoparticle and carbon nanotube deposition and processing for device nanomanufacturing. 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Escorcia, Alioska Giselle. Electrochemical properties of ferrocenylalkane dithiol-gold nanoparticle films prepared by layer-by-layer self-assembly. 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Gold-Nanoparticle"

1

Thaxton, C. Shad, and Chad A. Mirkin. "DNA-Gold-Nanoparticle Conjugates." In Nanobiotechnology, 288–307. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527602453.ch19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Xue, Chenming, and Quan Li. "Liquid Crystal-Gold Nanoparticle Hybrid Materials." In Nanoscience with Liquid Crystals, 101–34. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04867-3_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Manuchehrabadi, Navid, and Liang Zhu. "Gold Nanoparticle-Based Laser Photothermal Therapy." In Handbook of Thermal Science and Engineering, 2455–87. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-26695-4_69.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sengupta, Jayeeta, Sourav Ghosh, and Antony Gomes. "Anti-Arthritic Potential of Gold Nanoparticle." In 21st Century Nanoscience – A Handbook, 9–1. Boca Raton, Florida : CRC Press, [2020]: CRC Press, 2020. http://dx.doi.org/10.1201/9780429351587-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Manuchehrabadi, Navid, and Liang Zhu. "Gold Nanoparticle-Based Laser Photothermal Therapy." In Handbook of Thermal Science and Engineering, 1–33. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-32003-8_69-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Becker, Jan. "Single Gold Nanoparticle Growth Monitored in situ." In Springer Theses, 71–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31241-0_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Zhiguo, and Baofeng Yang. "Gold Nanoparticle Probe Method for miRNA Quantification." In MicroRNA Expression Detection Methods, 217–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04928-6_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Simpson, Carrie A., Brian J. Huffman, and David E. Cliffel. "In Vivo Testing for Gold Nanoparticle Toxicity." In Methods in Molecular Biology, 175–86. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-468-5_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wijeratne, Sithara S., Jay M. Patel, and Ching-Hwa Kiang. "Melting Transitions of DNA-Capped Gold Nanoparticle Assemblies." In Reviews in Plasmonics, 269–82. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0884-0_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Huang, Shuyan, Yingbo Zu, and Shengnian Wang. "Gold Nanoparticle-Enhanced Electroporation for Leukemia Cell Transfection." In Methods in Molecular Biology, 69–77. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-9632-8_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Gold-Nanoparticle"

1

Eunhye Jeong, Kihoon Kim, Younggeun Park, Yeonho Choi, Hyunjoo Lee, and Taewook Kang. "Controlled overgrowth of gold on gold/PS dimeric nanoparticle." In 2011 IEEE Nanotechnology Materials and Devices Conference (NMDC 2011). IEEE, 2011. http://dx.doi.org/10.1109/nmdc.2011.6155331.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chung, Jaewon, Seunghwan Ko, Nicole R. Bieri, Costas P. Grigoropoulos, and Dimos Poulikakos. "Laser Curing of Gold Nanoparticle Inks." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-41650.

Full text
Abstract:
The concept of effective laser curing of nanoparticle suspensions (NPS) with a laser beam is presented in this paper. A toluene solvent is employed as the carrier of gold nanoparticles possessing a lower melting temperature than that of bulk gold. Using a modified drop-on-demand jetting system, the gold nanoparticle suspended solution is printed on a glass substrate and cured with laser irradiation. The laser energy coupling to the nanoparticles in conjunction with thermocapillary effects and the evaporation of the solvent are critical to the quality of the electrically conductive gold microlines. By employing a intensity-modulated double laser beam processing scheme, to optimize the curing process, it is demonstrated for the first time, that the gold nanoparticles could be sintered on a glass substrate to form a gold line of resistivity close to that of bulk gold. This is a noticeable result, compared to recently published microconductor manufacturing with nanoparticle suspensions with oven [1] or low power single laser beam [2] curing reporting resistivities four to five times higher than that of bulk gold. As a consequence, in addition to their scientific value, the current results demonstrate the potential of laser printing for use in the microelectronics manufacturing for the first time. It was also shown that the morphology of the gold line could be modified by appropriate design of the shape of the processing laser beam.
APA, Harvard, Vancouver, ISO, and other styles
3

Covington, Elizabeth L., Richard W. Turner, Cagliyan Kurdak, Michael P. Rowe, Chao Xu, and Edward T. Zellers. "Electrical noise in gold nanoparticle chemiresistors." In 2008 IEEE Sensors. IEEE, 2008. http://dx.doi.org/10.1109/icsens.2008.4716393.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gerasimov, Y. S., V. V. Shorokhov, E. S. Soldatov, and O. V. Snigirev. "Gold nanoparticle single-electron transistor simulation." In International Conference on Micro-and Nano-Electronics 2012, edited by Alexander A. Orlikovsky. SPIE, 2013. http://dx.doi.org/10.1117/12.2017078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wu, Wei, Lei Li, Xiaoqiang Zhu, and Yi Yang. "Gold nanoparticle sorting based on optofluidics." In International Conference on Optoelectronics and Microelectronics Technology and Application, edited by Yikai Su, Chongjin Xie, Shaohua Yu, Chao Zhang, Wei Lu, Jose Capmany, Yi Luo, et al. SPIE, 2017. http://dx.doi.org/10.1117/12.2267202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Schade, Marco, Paul M. Donaldson, Alessandro Moretto, Claudio Toniolo, and Peter Hamm. "A Peptide Capping Layer over Gold Nanoparticle." In International Conference on Ultrafast Phenomena. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/up.2010.tue9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Forster, Robert J., Lynn Dennany, Michael Seery, and Tia E. Keyes. "Luminescence properties of metallopolymer-gold nanoparticle composites." In OPTO-Ireland, edited by John G. McInerney, Gerard Farrell, David M. Denieffe, Liam P. Barry, Harold S. Gamble, Padraig J. Hughes, and Alan Moore. SPIE, 2005. http://dx.doi.org/10.1117/12.606155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ieva, E., K. Buchholt, L. Colaianni, N. Cioffi, I. D. van der Werf, A. Lloyd Spetz, P. O. Kall, and L. Torsi. "Gold nanoparticle sensors for environmental pollutant monitoring." In 2nd IEEE International Workshop on Advances in Sensors and Interfaces, IWASI 2007. IEEE, 2007. http://dx.doi.org/10.1109/iwasi.2007.4420006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yang, Y. C., C. H. Wang, T. Y. Yang, Y. Hwu, C. H. Chen, J. H. Je, and G. Margaritondo. "Synchrotron X-Ray Induced Gold Nanoparticle Formation." In SYNCHROTRON RADIATION INSTRUMENTATION: Ninth International Conference on Synchrotron Radiation Instrumentation. AIP, 2007. http://dx.doi.org/10.1063/1.2436333.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

von Plessen, Gero, Stefan Fischer, Florian Hallermann, Deepu Kumar, Alexander Sprafke, and Jan Christoph Goldschmidt. "Gold Nanoparticle-enhanced Upconversion in Erbium Ions." In Optical Nanostructures and Advanced Materials for Photovoltaics. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/pv.2012.pw2b.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Gold-Nanoparticle"

1

Krantz, Kelsie E., Jonathan H. Christian, Kaitlin Coopersmith, Aaron L. Washington, II, and Simona H. Murph. Gold Nanoparticle Microwave Synthesis. Office of Scientific and Technical Information (OSTI), July 2016. http://dx.doi.org/10.2172/1281776.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Srivastava, Ishan, Brandon L. Peters, James Matthew Doyle Lane, Hongyou Fan, Gary S. Grest, and Michael K. Salerno. Mechanics of Gold Nanoparticle Superlattices at High Hydrostatic Pressure. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1476165.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chavez, Jorge L., Grant M. Slusher, Joshua A. Hagen, Nancy Kelley-Loughnane, Juliann Leny, and Suzanne Witt. Plasmonic Aptamer-Gold Nanoparticle Sensors for Small Molecule Fingerprint Identification. Fort Belvoir, VA: Defense Technical Information Center, August 2014. http://dx.doi.org/10.21236/ada612730.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Harrison, Ian. Investigation of the Origin of Catalytic Activity in Oxide-Supported Nanoparticle Gold. Office of Scientific and Technical Information (OSTI), May 2017. http://dx.doi.org/10.2172/1358579.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Karunamuni, Roshan. Targeted Gold Nanoparticle Contrast Agent for Digital Breast Tomosynthesis and Computed Tomography. Fort Belvoir, VA: Defense Technical Information Center, March 2010. http://dx.doi.org/10.21236/ada524517.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Karunamuni, Roshan. Targeted Gold Nanoparticle Contrast Agent for Digital Breast Tomosynthesis and Computed Tomography. Fort Belvoir, VA: Defense Technical Information Center, March 2012. http://dx.doi.org/10.21236/ada559268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chavez, Jorge L., Nancy Kelley-Loughnane, Morley O. Stone, and Robert I. MacCuspie. Colorimetric Detection with Aptamer-Gold Nanoparticle Conjugates: Effect of Aptamer Length on Response. Fort Belvoir, VA: Defense Technical Information Center, November 2012. http://dx.doi.org/10.21236/ada576582.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Faiz, Nadhirah, Vinay Sivasamy, and Suresh Venugopal. The Effect of Gold Nanoparticle Coated Dental Implants On Osseointegration - A Systematic Review. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, October 2023. http://dx.doi.org/10.37766/inplasy2023.10.0024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography