Academic literature on the topic 'Gold-Nanoparticle'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Gold-Nanoparticle.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Gold-Nanoparticle"
Devi, J. Meena. "Simulation Studies on the Interaction of Graphene and Gold Nanoparticle." International Journal of Nanoscience 17, no. 03 (May 21, 2018): 1760043. http://dx.doi.org/10.1142/s0219581x17600432.
Full textPrasad, B. L. V., C. M. Sorensen, and Kenneth J. Klabunde. "Gold nanoparticle superlattices." Chemical Society Reviews 37, no. 9 (2008): 1871. http://dx.doi.org/10.1039/b712175j.
Full textGraydon, Oliver. "Gold nanoparticle source." Nature Photonics 10, no. 12 (November 29, 2016): 751. http://dx.doi.org/10.1038/nphoton.2016.243.
Full textWang, Zhenxin, and Lina Ma. "Gold nanoparticle probes." Coordination Chemistry Reviews 253, no. 11-12 (June 2009): 1607–18. http://dx.doi.org/10.1016/j.ccr.2009.01.005.
Full textShuai Yuan, Shuai Yuan, Lirong Wang Lirong Wang, Fengjiang Liu Fengjiang Liu, Fengquan Zhou Fengquan Zhou, Min Li Min Li, Hui Xu Hui Xu, Yuan Nie Yuan Nie, Junyi Nan Junyi Nan, and Heping Zeng Heping Zeng. "Enhanced nonlinearity for filamentation in gold-nanoparticle-doped water." Chinese Optics Letters 17, no. 3 (2019): 032601. http://dx.doi.org/10.3788/col201917.032601.
Full textHuynh, Ngoc Han, and James C. L. Chow. "DNA Dosimetry with Gold Nanoparticle Irradiated by Proton Beams: A Monte Carlo Study on Dose Enhancement." Applied Sciences 11, no. 22 (November 17, 2021): 10856. http://dx.doi.org/10.3390/app112210856.
Full textCong, Vu Thanh, Erdene-Ochir Ganbold, Joyanta K. Saha, Joonkyung Jang, Junhong Min, Jaebum Choo, Sehun Kim, et al. "Gold Nanoparticle Silica Nanopeapods." Journal of the American Chemical Society 136, no. 10 (February 25, 2014): 3833–41. http://dx.doi.org/10.1021/ja411034q.
Full textMalachosky, Edward W., and Philippe Guyot-Sionnest. "Gold Bipyramid Nanoparticle Dimers." Journal of Physical Chemistry C 118, no. 12 (March 14, 2014): 6405–12. http://dx.doi.org/10.1021/jp412409u.
Full textUng, Thearith, Luis M. Liz-Marzán, and Paul Mulvaney. "Gold nanoparticle thin films." Colloids and Surfaces A: Physicochemical and Engineering Aspects 202, no. 2-3 (April 2002): 119–26. http://dx.doi.org/10.1016/s0927-7757(01)01083-4.
Full textLi, Yuanyuang, Hermann J. Schluesener, and Shunqing Xu. "Gold nanoparticle-based biosensors." Gold Bulletin 43, no. 1 (March 2010): 29–41. http://dx.doi.org/10.1007/bf03214964.
Full textDissertations / Theses on the topic "Gold-Nanoparticle"
Derrien, Thomas. "Gold nanoparticle-lipid bilayer interactions." Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=86727.
Full textL'interaction des nanoparticules d'or avec les bicouches lipidiques est présentée dans ce mémoire. Les facteurs influençant cette interaction ont été explorés en utilisant des bicouches lipidiques synthétiques. L'interaction due à l'incorporation des nanoparticules au sein des bicouches a été étudiée par des techniques d'imagerie. Un test de fuite de fluorophore a été employé afin de déterminer l'influence de la composition et de la structure des ligands protégeant les nanoparticules sur leur incorporation dans les bicouches de lipides. Pour cela, nous avons développer une synthèse de nanoparticules protégées par deux types de ligands. Des expériences in vivo ont été réalises avec des nanoparticules d'or fonctionnalisées avec des peptides ainsi que des fluorophores, mis en contact avec des cellules vivantes de type HeLa. Nous avons constaté que les nanoparticules d'or sont capables de franchir les bicouches lipidiques en utilisant des mécanismes indépendants d'énergie. Nous concluons que la structure et la composition des ligands protégeant les nanoparticules ont une grande influence sur la perturbation qu'elles induisent dans la structure des bicouches lipidiques.
Manohar, Nivedh Harshan. "Quantitative imaging of gold nanoparticle distribution for preclinical studies of gold nanoparticle-aided radiation therapy." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/54877.
Full textKanaras, Antonios G. "Enzymatic manipulation of DNA/gold nanoparticle assemblies." Thesis, University of Liverpool, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.402259.
Full textBennett, Samantha E. "Fabrication of water-soluble gold nanoparticle aggregates." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/35074.
Full textIncludes bibliographical references (leaves 23-24).
Mixed monolayer protected gold nanoparticles were linked using octanedithiol to form aggregates containing hundreds of nanoparticles. These aggregates are an interesting material, posing potential applications in the fields of chemistry, biology and materials science. This study examined the dependence of aggregate size and morphology on temperature of formation, using AFM and TEM imaging. The aggregates formed at 70°C averaged 105nm in width, as compared to 70nm for the room temperature aggregates. The TEM images showed increased density for the 70°C aggregates. In a further study, the room temperature aggregates were functionalized through a place exchange reaction with 1 -mercapto-undecane- l-sodiumsulfonate (MUS), a thiolated ligand with a polar head group. A two-phase test of the water-solubility indicated that the aggregates were fully soluble. TEM images showed a slight increase in size, though similar morphology to the insoluble aggregates. The ability to induce water solubility in the aggregates opens up many potential applications in the field of bionanomaterials.
by Samantha E. Bennett.
S.B.
Zarate-Triviño, D. G., Acosta E. M. Valenzuela, E. Prokhorov, G. Luna-Bárcenas, Padilla C. Rodríguez, and Molina M. A. Franco. "Chitosan-Gold Nanoparticle Composites for Biomedical Application." Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35404.
Full textGarcía, Fernández Lorena. "Introducing gold nanoparticle bioconjugates within the biological machinery." Doctoral thesis, Universitat Autònoma de Barcelona, 2013. http://hdl.handle.net/10803/120221.
Full textThe rapid development in Nanotechnology during the past few decades offers wide prospects in using micro- and nanoscale materials in different areas of industry, technology and medicine. However, their safe and efficient use and implementation in such areas require much greater control over their physicochemical properties and their related molecular interactions in living systems. Current knowledge in the scientific community agrees that a considerable gap exists in our understanding of such “Nano-Bio” interface. As a step forward in this direction, this Thesis work aimed to provide insights into the formation of rationally designed gold nanoparticle (Au NP) bioconjugate architectures to modulate and understand cellular interactions and processes. In such a context, the first part of this Thesis is focused on the synthesis of cationic Au NPs and their interactions with cells. A first strategy was developed in which the synthesis of positively charged Au NPs was performed by using simultaneously a weak and a strong reducer. It is shown that both reducers act sequentially in a one-pot synthesis to yield monodisperse cationic Au NPs with sizes comprised between 10.3 nm and 19.7 nm. A two-step seeding growth method is also described in which preformed Au NPs are grown larger (up to ~28 nm in size) by addition of fresh precursor solution and a weak reducer. A second strategy faces the rising demand of cationic Au NPs of different sizes and ligands by employing an organic-aqueous phase transfer methodology. Important benefits resulted from the combination of organic and aqueous synthetic methods. This strategy was optimized to prepare cationic Au NPs of 4.6, 8.9 and 13.4 nm in diameter using a positively charged alkanethiolate ligand. In addition, its practical application was demonstrated by producing ~ 13-nm-in-size cationic and anionic peptide-Au NP bioconjugates. The physicochemical properties of these bioconjugates in cell culture media as well as their uptake and toxicity on human fibroblast cells are discussed. The second part of this Thesis is focused on the rational functionalization of Au NPs with antibodies and investigating their interactions with cellular receptors. A site-directed chemistry was explored to prepare Antibody-Au NP bioconjugates with controlled ratio and orientation of bioconjugation. The formation of well-defined bioconjugates made possible the creation of novel NP-based assemblies using antibody-antigen cross-links. This strategy was also explored for the conjugation of a biologically relevant antibody (Cetuximab) with Au NPs. Cetuximab-Au NP bioconjugates of controlled configuration and multivalency were used to examine their interaction with the cell surface receptor EGFR (epidermal growth factor receptor), a receptor tyrosine kinase overexpressed in a large number of cancers.
Tombe, Sekai Lana. "Characterization and application of phthalocyanine-gold nanoparticle conjugates." Thesis, Rhodes University, 2013. http://hdl.handle.net/10962/d1004517.
Full textMicrosoft� Word 2010
Adobe Acrobat 9.53 Paper Capture Plug-in
Mthethwa, Thandekile Phakamisiwe. "Metallophthalocyanine-gold nanoparticle conjugates for photodynamic antimicrobial chemotherapy." Thesis, Rhodes University, 2015. http://hdl.handle.net/10962/d1017923.
Full textNgomane, Nokuthula. "Gold nanoparticle–based colorimetric probes for dopamine detection." Thesis, Rhodes University, 2016. http://hdl.handle.net/10962/d1021261.
Full textWardlow, Nathan. "Role of local enhancement effects in gold nanoparticle therapy." Thesis, Queen's University Belfast, 2017. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.728684.
Full textBooks on the topic "Gold-Nanoparticle"
Kapil, Nidhi. Stable Supported Gold Nanoparticle Catalyst for Environmentally Responsible Propylene Epoxidation. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15066-1.
Full textStable Supported Gold Nanoparticle Catalyst for Environmentally Responsible Propylene Epoxidation. Springer International Publishing AG, 2023.
Find full textKapil, Nidhi. Stable Supported Gold Nanoparticle Catalyst for Environmentally Responsible Propylene Epoxidation. Springer International Publishing AG, 2022.
Find full textDockendorf, Cedric P. R. On maskless gold nanoparticle and carbon nanotube deposition and processing for device nanomanufacturing. 2007.
Find full textEscorcia, Alioska Giselle. Electrochemical properties of ferrocenylalkane dithiol-gold nanoparticle films prepared by layer-by-layer self-assembly. 2006.
Find full textBook chapters on the topic "Gold-Nanoparticle"
Thaxton, C. Shad, and Chad A. Mirkin. "DNA-Gold-Nanoparticle Conjugates." In Nanobiotechnology, 288–307. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527602453.ch19.
Full textXue, Chenming, and Quan Li. "Liquid Crystal-Gold Nanoparticle Hybrid Materials." In Nanoscience with Liquid Crystals, 101–34. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04867-3_4.
Full textManuchehrabadi, Navid, and Liang Zhu. "Gold Nanoparticle-Based Laser Photothermal Therapy." In Handbook of Thermal Science and Engineering, 2455–87. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-26695-4_69.
Full textSengupta, Jayeeta, Sourav Ghosh, and Antony Gomes. "Anti-Arthritic Potential of Gold Nanoparticle." In 21st Century Nanoscience – A Handbook, 9–1. Boca Raton, Florida : CRC Press, [2020]: CRC Press, 2020. http://dx.doi.org/10.1201/9780429351587-9.
Full textManuchehrabadi, Navid, and Liang Zhu. "Gold Nanoparticle-Based Laser Photothermal Therapy." In Handbook of Thermal Science and Engineering, 1–33. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-32003-8_69-1.
Full textBecker, Jan. "Single Gold Nanoparticle Growth Monitored in situ." In Springer Theses, 71–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31241-0_6.
Full textWang, Zhiguo, and Baofeng Yang. "Gold Nanoparticle Probe Method for miRNA Quantification." In MicroRNA Expression Detection Methods, 217–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04928-6_14.
Full textSimpson, Carrie A., Brian J. Huffman, and David E. Cliffel. "In Vivo Testing for Gold Nanoparticle Toxicity." In Methods in Molecular Biology, 175–86. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-468-5_14.
Full textWijeratne, Sithara S., Jay M. Patel, and Ching-Hwa Kiang. "Melting Transitions of DNA-Capped Gold Nanoparticle Assemblies." In Reviews in Plasmonics, 269–82. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0884-0_10.
Full textHuang, Shuyan, Yingbo Zu, and Shengnian Wang. "Gold Nanoparticle-Enhanced Electroporation for Leukemia Cell Transfection." In Methods in Molecular Biology, 69–77. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-9632-8_6.
Full textConference papers on the topic "Gold-Nanoparticle"
Eunhye Jeong, Kihoon Kim, Younggeun Park, Yeonho Choi, Hyunjoo Lee, and Taewook Kang. "Controlled overgrowth of gold on gold/PS dimeric nanoparticle." In 2011 IEEE Nanotechnology Materials and Devices Conference (NMDC 2011). IEEE, 2011. http://dx.doi.org/10.1109/nmdc.2011.6155331.
Full textChung, Jaewon, Seunghwan Ko, Nicole R. Bieri, Costas P. Grigoropoulos, and Dimos Poulikakos. "Laser Curing of Gold Nanoparticle Inks." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-41650.
Full textCovington, Elizabeth L., Richard W. Turner, Cagliyan Kurdak, Michael P. Rowe, Chao Xu, and Edward T. Zellers. "Electrical noise in gold nanoparticle chemiresistors." In 2008 IEEE Sensors. IEEE, 2008. http://dx.doi.org/10.1109/icsens.2008.4716393.
Full textGerasimov, Y. S., V. V. Shorokhov, E. S. Soldatov, and O. V. Snigirev. "Gold nanoparticle single-electron transistor simulation." In International Conference on Micro-and Nano-Electronics 2012, edited by Alexander A. Orlikovsky. SPIE, 2013. http://dx.doi.org/10.1117/12.2017078.
Full textWu, Wei, Lei Li, Xiaoqiang Zhu, and Yi Yang. "Gold nanoparticle sorting based on optofluidics." In International Conference on Optoelectronics and Microelectronics Technology and Application, edited by Yikai Su, Chongjin Xie, Shaohua Yu, Chao Zhang, Wei Lu, Jose Capmany, Yi Luo, et al. SPIE, 2017. http://dx.doi.org/10.1117/12.2267202.
Full textSchade, Marco, Paul M. Donaldson, Alessandro Moretto, Claudio Toniolo, and Peter Hamm. "A Peptide Capping Layer over Gold Nanoparticle." In International Conference on Ultrafast Phenomena. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/up.2010.tue9.
Full textForster, Robert J., Lynn Dennany, Michael Seery, and Tia E. Keyes. "Luminescence properties of metallopolymer-gold nanoparticle composites." In OPTO-Ireland, edited by John G. McInerney, Gerard Farrell, David M. Denieffe, Liam P. Barry, Harold S. Gamble, Padraig J. Hughes, and Alan Moore. SPIE, 2005. http://dx.doi.org/10.1117/12.606155.
Full textIeva, E., K. Buchholt, L. Colaianni, N. Cioffi, I. D. van der Werf, A. Lloyd Spetz, P. O. Kall, and L. Torsi. "Gold nanoparticle sensors for environmental pollutant monitoring." In 2nd IEEE International Workshop on Advances in Sensors and Interfaces, IWASI 2007. IEEE, 2007. http://dx.doi.org/10.1109/iwasi.2007.4420006.
Full textYang, Y. C., C. H. Wang, T. Y. Yang, Y. Hwu, C. H. Chen, J. H. Je, and G. Margaritondo. "Synchrotron X-Ray Induced Gold Nanoparticle Formation." In SYNCHROTRON RADIATION INSTRUMENTATION: Ninth International Conference on Synchrotron Radiation Instrumentation. AIP, 2007. http://dx.doi.org/10.1063/1.2436333.
Full textvon Plessen, Gero, Stefan Fischer, Florian Hallermann, Deepu Kumar, Alexander Sprafke, and Jan Christoph Goldschmidt. "Gold Nanoparticle-enhanced Upconversion in Erbium Ions." In Optical Nanostructures and Advanced Materials for Photovoltaics. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/pv.2012.pw2b.2.
Full textReports on the topic "Gold-Nanoparticle"
Krantz, Kelsie E., Jonathan H. Christian, Kaitlin Coopersmith, Aaron L. Washington, II, and Simona H. Murph. Gold Nanoparticle Microwave Synthesis. Office of Scientific and Technical Information (OSTI), July 2016. http://dx.doi.org/10.2172/1281776.
Full textSrivastava, Ishan, Brandon L. Peters, James Matthew Doyle Lane, Hongyou Fan, Gary S. Grest, and Michael K. Salerno. Mechanics of Gold Nanoparticle Superlattices at High Hydrostatic Pressure. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1476165.
Full textChavez, Jorge L., Grant M. Slusher, Joshua A. Hagen, Nancy Kelley-Loughnane, Juliann Leny, and Suzanne Witt. Plasmonic Aptamer-Gold Nanoparticle Sensors for Small Molecule Fingerprint Identification. Fort Belvoir, VA: Defense Technical Information Center, August 2014. http://dx.doi.org/10.21236/ada612730.
Full textHarrison, Ian. Investigation of the Origin of Catalytic Activity in Oxide-Supported Nanoparticle Gold. Office of Scientific and Technical Information (OSTI), May 2017. http://dx.doi.org/10.2172/1358579.
Full textKarunamuni, Roshan. Targeted Gold Nanoparticle Contrast Agent for Digital Breast Tomosynthesis and Computed Tomography. Fort Belvoir, VA: Defense Technical Information Center, March 2010. http://dx.doi.org/10.21236/ada524517.
Full textKarunamuni, Roshan. Targeted Gold Nanoparticle Contrast Agent for Digital Breast Tomosynthesis and Computed Tomography. Fort Belvoir, VA: Defense Technical Information Center, March 2012. http://dx.doi.org/10.21236/ada559268.
Full textChavez, Jorge L., Nancy Kelley-Loughnane, Morley O. Stone, and Robert I. MacCuspie. Colorimetric Detection with Aptamer-Gold Nanoparticle Conjugates: Effect of Aptamer Length on Response. Fort Belvoir, VA: Defense Technical Information Center, November 2012. http://dx.doi.org/10.21236/ada576582.
Full textFaiz, Nadhirah, Vinay Sivasamy, and Suresh Venugopal. The Effect of Gold Nanoparticle Coated Dental Implants On Osseointegration - A Systematic Review. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, October 2023. http://dx.doi.org/10.37766/inplasy2023.10.0024.
Full text