Academic literature on the topic 'GPS accuracy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'GPS accuracy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "GPS accuracy"

1

Jefferies, J. J. "GPS Accuracy Limitations." Photogrammetric Record 13, no. 75 (August 26, 2006): 482. http://dx.doi.org/10.1111/j.1477-9730.1990.tb00707.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Komarovskiy, Yuriy A. "GPS RECEIVER’S ACCURACY DEGRADATION NEAR TALL OBJECTS." Scholarly Notes of Komsomolsk-na-Amure State Technical University 1, no. 12 (December 30, 2012): 28–35. http://dx.doi.org/10.17084/2012.iv-1(12).5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

BROWN, KENNETH, WILLIAM MATHON, ARTHUR DORSEY, and MARGARET LAREZOS. "Dynamic Uploading for GPS Accuracy*." Navigation 45, no. 1 (March 1998): 17–30. http://dx.doi.org/10.1002/j.2161-4296.1998.tb02368.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gao, Yang, James F. McLellan, and Mohamed A. Abousalem. "Single-Point GPS Positioning Accuracy Using Precise GPS Data." Australian Surveyor 42, no. 4 (December 1997): 185–92. http://dx.doi.org/10.1080/00050345.1997.10558707.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gordeev, V. A., and O. S. Raeva. "Preliminary estimation of the accuracy of GPS-schemes project." izvestiya vysshikh uchebnykh zavedenii gornyi zhurnal 7 (November 9, 2017): 57–62. http://dx.doi.org/10.21440/0536-1028-2017-7-57-62.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lass, Lawrence W., and Robert H. Callihan. "GPS and GIS for Weed Surveys and Management." Weed Technology 7, no. 1 (March 1993): 249–54. http://dx.doi.org/10.1017/s0890037x00037222.

Full text
Abstract:
Global positioning systems (GPS) technology, developed by the Department of Defense, enable accurate documentation of Cartesian coordinates anywhere on the earth's surface. Surveying, mapping, positioning, and subsequent management of weed infestations can be expedited with this technology. Positions and boundaries of infestation may be located with 10-m or better accuracy while the GPS receiver is continuously moving, and with 2-m or better accuracy with brief stops for repeated sampling. GPS data agreed closely with U.S. Geological Survey data. Coordinates for a weed infestation may be relocated for treatment, evaluation or other purposes. Basic geographic information systems (GIS) map features from Digital Line Graph (DLG), Topologically Integrated Encoding and Reference Systems (TIGER) and other sources of information may be used to fully integrate delimiting survey results from GPS readings in order to develop weed management plans.
APA, Harvard, Vancouver, ISO, and other styles
7

Ma, Lihua, and Shangli Zhou. "Positional Accuracy of Gps Satellite Almanac." Artificial Satellites 49, no. 4 (December 1, 2014): 225–31. http://dx.doi.org/10.2478/arsa-2014-0017.

Full text
Abstract:
ABSTRACT How to accelerate signal acquisition and shorten starting time are key problems in the Global Positioning System (GPS). GPS satellite almanac plays an important role in signal reception period. Almanac accuracy directly affects the speed of GPS signal acquisition, the start time of the receiver, and even the system performance to some extent. Combined with precise ephemeris products released by the International GNSS Service (IGS), the authors analyse GPS satellite almanac from the first day to the third day in the 1805th GPS week (from August 11 to 13, 2014 in the Gregorian calendar). The results show that mean of position errors in three-dimensional coordinate system varies from about 1 kilometer to 3 kilometers, which can satisfy the needs of common users.
APA, Harvard, Vancouver, ISO, and other styles
8

Zaigraeva, Anna, and Leonid Zaigraev. "The Accuracy Assessment of GPS-positioning in Geobotanic Research." Chornomorski Botanical Journal 4, no. 2 (October 1, 2008): 273–76. http://dx.doi.org/10.14255/2308-9628/08.42/15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Berber, Mustafa, Aydin Ustun, and Mevlut Yetkin. "Comparison of accuracy of GPS techniques." Measurement 45, no. 7 (August 2012): 1742–46. http://dx.doi.org/10.1016/j.measurement.2012.04.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

KITANO, Isamu, and Keiji SUZUKI. "Research of Accuracy on Indoor GPS." Proceedings of the JSME annual meeting 2004.5 (2004): 293–94. http://dx.doi.org/10.1299/jsmemecjo.2004.5.0_293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "GPS accuracy"

1

Vodhanel, Michael Thomas. "Problems in GPS Accuracy." Scholarship @ Claremont, 2011. http://scholarship.claremont.edu/cgu_etd/22.

Full text
Abstract:
Improving and predicting the accuracy of positioning estimates derived from the global positioning system (GPS) continues to be a problem of great interest. Dependable and accurate positioning is especially important for navigation applications such as the landing of commercial aircraft. This subject gives rise to many interesting and challenging mathematical problems. This dissertation investigates two such problems. The first problem involves the study of the relationship between positioning accuracy and satellite geometry configurations relative to a user's position. In this work, accuracy is measured by so-called dilution of precision (DOP) terms. The DOP terms arise from the linear regression model used to estimate user position from GPS observables, and are directly related to user position errors. An analysis of the statistical properties explaining the behavior of the DOP terms is presented. The most accurate satellite geometries and worst configurations are given for some cases. The second problem involves finding methods for detecting and repairing cycle-slips in range delay data between a satellite and a receiver. The distance between a satellite and a receiver can be estimated by measuring the difference in the carrier frequency phase shift experienced between the satellite and receiver oscillators. Cycle-slips are discontinuities in the integer number of complete cycles in these data, and are caused by interruptions or degradations in the signal such as low signal to noise ratio, software failures, or physical obstruction of the signals. These slips propagate to errors in user positioning. Cycle-slip detection and repair are crucial to maintaining accurate positioning. Linear regression models and sequential hypothesis testing are used to model, detect, and repair cycle-slips. The effectiveness of these methods is studied using data obtained from ground-station receivers.
APA, Harvard, Vancouver, ISO, and other styles
2

Grinker, Barry. "Accuracy of shipborne kinematic GPS surveying." Thesis, Monterey, California. Naval Postgraduate School, 1991. http://hdl.handle.net/10945/26341.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Heselton, Robert Reid. "Elevation Effects on GPS Positional Accuracy." Thesis, Virginia Tech, 1998. http://hdl.handle.net/10919/36763.

Full text
Abstract:

Data from a Coarse Acquisition (C/A) Global Positing System (GPS) map-grade receiver were evaluated to assess the accuracy of differentially corrected points. Many studies have focused on the accuracy of GPS units under ideal data collection conditions. Ideal conditions allow the collection of data with four satellites (3D mode), yet field data conditions are often less than ideal. Four satellites may not always be in view because of mountainous topography, heavy forest cover, or other obstructions which block satellite signals from the receiver. This study examines GPS accuracy when four satellites are not available, instead collecting data with only three satellites (2D mode).

3D GPS points compute four unknowns: x, y , z, and clock error. In comparison, 2D GPS points are less accurate as only three unknowns are calculated: x, y, and clock error. Elevation (or z) is not computed for 2D points, causing increased error in the horizontal (x, y) measurement. The effect of elevation was evaluated on 234 2D GPS data points. These points were collected and corrected at elevation intervals of true elevation, +-25 meters, +- 50 meters, and +-75 meters. These 2D points were then compared to surveyed points to measure the effect vertical error has on horizontal accuracy. In general, the more error in the vertical estimate during correction, the greater the horizontal error.


Master of Science
APA, Harvard, Vancouver, ISO, and other styles
4

Eriksson, Love, and Thomas Pettersson. "Improving GPS Position Accuracy Using Particle Filtering." Thesis, KTH, Skolan för elektro- och systemteknik (EES), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-200539.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kalyanaraman, Sai K. "High Accuracy GPS Phase Tracking Under Signal Distortion." Ohio University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1251221460.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Trehn, Erik. "GPS Precise Point PositioningAn Investigation in Reachable Accuracy." Thesis, KTH, Geodesi och satellitpositionering, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-199865.

Full text
Abstract:
Accurate positioning is very important in many various applications. Today one of the mostused methods for this is DGPS, i.e. relative positioning. DGPS can be extended to aWADGPS (Wide Area DGPS) which consists of a network of reference stations which covera whole region, country or continent. This implies that you are dependent on other factors outof control of the user, and that a connection to the reference stations is needed.Precise point positioning, PPP, is an absolute positioning method where no reference stationsare involved. Ordinary single point positioning is based on broadcast ephemeris, and theaccuracy is on the 15m level. Per definition PPP is based on precise ephemeris, with muchhigher accuracy in the orbital parameters and in the satellite clock information. The resultshould therefore be more accurate. Precise ephemeris are available in different levels ofaccuracies (final, rapid and ultra-rapid) and can be downloaded from the internet for free.Precise clock files are not available as ultra-rapid and therefore it is not possible to getaccurate PPP-solutions in real-time.In Sweden there are several networks for relative positioning, e.g. through SWEPOS orEPOS. This might not be the case in other areas. As accurate PPP-solutions are not availablein real-time, PPP could be used to establish a reference station for DGPS/RTK for real-timemeasurements in those areasThe objective of this research is to evaluate precise point positioning regarding accuracy.Observation files from both IGS and SWEPOS-stations have been used in order to find out ifyou can expect the same accuracy wherever you are on earth. A couple of points have alsobeen measured only for this investigation in order to find out if the result will be the sameunder ordinary conditions. Coordinates of each point are determined with different duration ofobservation times and different level of accuracy of the ephemeris (final, rapid and ultrarapid).Bernese 5.0 and Auto-Gipsy have been used to compute the PPP-solutions and thenthe result is compared with the true position. The self-measured points are also determinedwith a WADGPS (Omnistar) in order to easily be able to compare PPP with a traditionalmethod.As expected the result becomes better for longer observation times and with higher accuracyof the ephemeris. The difference in accuracy between using rapid and final ephemeris is sosmall that it can be neglected in most applications. In almost all cases the accuracy is betterthan 10cm after only one hour of observations with rapid ephemeris. The investigation doesnot indicate significantly differences in accuracy depending on latitude and differencesbetween the self-measured points and IGS- and SWEPOS-stations can also be neglected.Using rapid or final ephemeris, the PPP-derived coordinates are much more accurate than theones obtained with Omnistar.
Noggrann positionsbestämning med hjälp av GPS har flera olika tillämpningar. En utav depopuläraste metoderna idag är DGPS, dvs. relativ positionering. WADGPS (Wide AreaDGPS) är ett nätverk av referensstationer som täcker ett större område så som ett land eller enkontinent. Detta innebär att en användare är beroende av faktorer som ligger utanför hanskontroll och av att det finns en kommunikationslänk till referensstationerna.Precise point positioning, PPP, är en absolut positioneringsmetod där inga referensstationerdeltar i beräkningarna. Vanlig enkelpunktsbestämning bygger på de bandata som kommermed satellitmeddelandet och noggrannheten ligger i allmänhet omkring 15m. PPP baseras perdefinition på precis efemerider med mycket bättre noggrannhet i bandata och satelliternasklockinformation. Resultatet bör därför bli avsevärt mycket bättre. Precisa efemerider finns iolika noggrannhetsnivåer (final, rapid och ultra-rapid) och kan laddas ner gratis från internet.Precis information om satelliternas klockor kommer inte med ultra-rapid efemerider varför detinte går att få noggranna lösningar med PPP i realtid.I Sverige finns väl utvecklade nät för relativpositionering, tex. SWEPOS eller EPOS. Så ärkanske inte fallet i andra delar av världen. Med PPP skulle man kunna etablera egnareferenspunkter och på så sätt kunna mäta i realtid med DGPS.Målet med detta examensarbete är att undersöka vilken noggrannhet som kan uppnås medPPP. Observationsfiler från både SWEPOS- och IGS-stationer har använts för att se om mankan förvänta sig samma resultat oberoende av var på jorden man befinner sig. Även någrapunkter har mätts enbart för denna undersökning för att se om resultatet blir detsamma undervanliga förhållanden. Koordinaterna för varje punkt har beräknats med olika observationstideroch olika typer av efemerider (final, rapid och ultra-rapid). Bernese 5.0 och Auto-Gipsy haranvänts för att beräkna PPP-koordinaterna, som sedan har jämförts med de sanna värdena.Egna mätta punkter har även bestämts med WADGPS (Omnistar) för att enkelt kunna jämföraPPP med en traditionell metod.Som väntat blev resultatet bättre för längre observationstider och för noggrannare efemerider.Skillnaderna i noggrannhet mellan final och rapid efemerider är så liten att den kan bortsesifrån i de flesta fall. Bortsett från något undantag är noggrannheten bättre än 10cm efter baraen timmes mätning med rapid efemerider. Undersökningen visar inte någon signifikantskillnad i noggrannhet beroende på latitud, och skillnaden mellan de egna mätta punkternaoch IGS- och SWEPOS-stationer kan också försummas. Koordinater beräknade med PPP,beräknade med rapid och final efemerider är mycket mer noggranna än de som beräknats medOmnistar.
APA, Harvard, Vancouver, ISO, and other styles
7

Wallerström, Mattias, and Fredrik Johnsson. "En nätverks-RTK-jämförelse mellan GPS och GPS/GLONASS." Thesis, University of Gävle, Department of Technology and Built Environment, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-130.

Full text
Abstract:

Från den 1 april 2006 har SWEPOS kompletterat den befintliga nätverks-RTK-tjänsten, som dittills levererat RTK-data för GPS, med ett alternativ där RTK-data för GPS/GLONASS levereras. En del användare har rapporterat att de upplever att GPS/GLONASS inte tillför något och även att det ibland kan ta längre tid att få fixlösning. Andra användare hävdar att de nu kan använda nätverks-RTK på platser där de tidigare inte kunde mäta och är mycket positiva till GPS/GLONASS.

Syftet med detta examensarbete var att undersöka hur tillgängligheten för satellitmätning, positionsnoggrannheten och initialiseringstiden påverkades i öppna respektive störda miljöer med GPS/GLONASS jämfört med enbart GPS vid användandet av nätverks-RTK-tjänsten. Undersökningen har utförts med tre olika fabrikat av GNSS-mottagare (Leica, Topcon och Trimble), vilket även medger att en jämförelse mellan dessa till viss utsträckning kan göras.

I studien gjordes totalt 1 440 mätningar på sex punkter med kända positioner och med olika grad av sikthinder. Fixlösning uppnåddes inte inom 180 sekunder för 206 (77 för GPS/GLONASS och 129 för GPS) av de 1 440 mätningarna.

De extra GLONASS-satelliterna tillför en klar fördel när det gäller möjligheten att mäta i störda miljöer. När det gäller initialiseringstid så är dessa kortare för GPS/GLONASS. GLONASS-satelliterna ger ingen förbättring av positionsnoggrannheten. Det är till och med så att GPS får något bättre kvalitetstal i både plan och höjd i denna studie (1-3 mm bättre). För de olika fabrikaten kan det konstateras att precision och noggrannhet är likvärdiga i både plan och höjd för alla tre märken.


On the 1st of April 2006, SWEPOS complemented the existing network RTK service with corrections for the Russian satellite system GLONASS. The service had so far only provided corrections for GPS. Some users have claimed that GPS/GLONASS do not contribute at all and also that the time for initialization sometimes can be longer. However, other users insist on that they now can use network RTK in areas that earlier were impossible and they are very favourable of GPS/GLONASS.

The purposes of this diploma work were to study and examine measurements using GPS and GPS/GLONASS in areas with different degrees of visual obstacles. Corrections were provided by SWEPOS Network RTK service and availability of satellites, accuracy of position and time for initialization were evaluated. The study has been conducted with three different brands of GNSS receivers (Leica, Topcon and Trimble), which also to some extent makes a comparison between the three brands possible.

A total number of 1 440 field measurements were made on six well-known points with different degrees of visual obstacles. A fixed solution was not accomplished within 180 seconds for 206 (77 for GPS/GLONASS and 129 for GPS) of the 1 440 measurements.

The additional GLONASS satellites provide an apparent advantage regarding the possibility to measure in disturbed environments. The time for initialization is shorter for GPS/GLONASS. The GLONASS satellites do not give any improvement in accuracy of position. On the contrary, GPS receives slightly better accuracy numbers in quality for both horizontal and vertical readings (1-3 mm better). Regarding the different brands, it was found that the precision and accuracy were similar in both plane and height for all three brands.

APA, Harvard, Vancouver, ISO, and other styles
8

Glushik, John J. (John Joseph). "Data analysis and accuracy performance of multisite differential GPS." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/12113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Forrest, Timothy Lee. "Logistic regression models for predicting trip reporting accuracy in GPS-enhanced household travel surveys." Thesis, Texas A&M University, 2005. http://hdl.handle.net/1969.1/4667.

Full text
Abstract:
This thesis presents a methodology for conducting logistic regression modeling of trip and household information obtained from household travel surveys and vehicle trip information obtained from global positioning systems (GPS) to better understand the trip underreporting that occurs. The methodology presented here builds on previous research by adding additional variables to the logistic regression model that might be significant in contributing to underreporting, specifically, trip purpose. Understanding the trip purpose is crucial in transportation planning because many of the transportation models used today are based on the number of trips in a given area by the purpose of a trip. The methodology used here was applied to two study areas in Texas, Laredo and Tyler-Longview. In these two study areas, household travel survey data and GPS-based vehicle tracking data was collected over a 24-hour period for 254 households and 388 vehicles. From these 254 households, a total of 2,795 trips were made, averaging 11.0 trips per household. By comparing the trips reported in the household travel survey with those recorded by the GPS unit, trips not reported in the household travel survey were identified. Logistic regression was shown to be effective in determining which household- and trip-related variables significantly contributed to the likelihood of a trip being reported. Although different variables were identified as significant in each of the models tested, one variable was found to be significant in all of them - trip purpose. It was also found that the household residence type and the use of household vehicles for commercial purposes did not significantly affect reporting rates in any of the models tested. The results shown here support the need for modeling trips by trip purpose, but also indicate that, from urban area to urban area, there are different factors contributing to the level of underreporting that occurs. An analysis of additional significant variables in each urban area found combinations that yielded trip reporting rates of 0%. Similar to the results of Zmud and Wolf (2003), trip duration and the number of vehicles available were also found to be significant in a full model encompassing both study areas.
APA, Harvard, Vancouver, ISO, and other styles
10

De, Lorenzo David S. "Navigation accuracy and interference rejection for GPS adaptive antenna arrays /." May be available electronically:, 2007. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "GPS accuracy"

1

Grinker, Barry. Accuracy of shipborne kinematic GPS surveying. Monterey, Calif: Naval Postgraduate School, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tortosa, Delio. Accuracy and precision tests using differential GPS for natural resource applications. Sault Ste. Marie, Ont: Great Lakes Forestry Centre, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Advanced Galileo and GPS receiver techniques: Enhanced sensitivity and improved accuracy. Hauppauge, NY: Nova Science, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sluiter, P. G. Geodetic dual-frequency GPS receivers under anti-spoofing: Comparison of four receivers for baseline accuracy susceptibility to radio frequency interference noise in the observables. Delft, the Netherlands: Netherlands Geodetic Commission, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Liu, Yen. Equilibrium gas flow computations I. Accurate and efficient calculation of equilibrium gas properties. Washington, D. C: American Institute of Aeronautics and Astronautics, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Stevano, Joseph A. Air pumps at U.S. gas stations: An investigation into factors associated with gauge accuracy. [Washington, D.C.]: National Center for Statistics and Analysis, Research and Development, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Stevano, Joseph A. Air pumps at U.S. gas stations: An investigation into factors associated with gauge accuracy. [Washington, D.C.]: National Center for Statistics and Analysis, Research and Development, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rhoderick, G. C. A gravimetric technique for the preparation of accurate trace organic gas standards. Research Triangle Park, NC: U.S. Environmental Protection Agency, Environmental Monitoring Systems Laboratory, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jameson, Antony. Analysis and design of numerical schemes for gas dynamics I: artificial diffusion, upwind biasing, limiters and their effect on accuracy and multigrid convergence. Columbia, Md. ; Moffett Field, Calif: Research Institute for Advanced Computer Science ; Ames Research Center, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wahyunto. Peatland distribution in Sumatra and Kalimantan: Explanation of its data sets including source of information, accuracy, data constraints, and gaps. Bogor: Wetlands International, Indonesia Programme, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "GPS accuracy"

1

Lachapelle, G., M. Casey, M. Eaton, A. Kleusberg, J. Tranquilla, and D. Wells. "GPS Marine Kinematic Positioning Accuracy and Reliability." In Proceedings International Symposium on Marine Positioning, 113–47. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3885-4_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kam, Katie A., Joel L. Meyer, Jennifer C. Duthie, and Hamza Khan. "Mapping GPS data and assessing mapping accuracy." In Bicycle Urbanism, 199–212. Abingdon, Oxon ; New York, NY : Routledge, 2018. |: Routledge, 2018. http://dx.doi.org/10.4324/9781315569338-13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Janowski, Artur, Aleksander Nowak, Marek Przyborski, and Jakub Szulwic. "Mobile Indicators in GIS and GPS Positioning Accuracy in Cities." In Rough Sets and Intelligent Systems Paradigms, 309–18. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08729-0_31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lange, Arthur F. "Centimeter Accuracy Differential GPS for Precision Agriculture Applications." In Proceedings of the Third International Conference on Precision Agriculture, 675–80. Madison, WI, USA: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, 2015. http://dx.doi.org/10.2134/1996.precisionagproc3.c81.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tokarz, Krzysztof, Jarosław Paduch, and Łukasz Herb. "Influence of Receiver Parameters on GPS Navigation Accuracy." In Advances in Intelligent and Soft Computing, 85–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23169-8_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hao, Wanliang, Fuping Sun, and Po Chen. "Comparison of Two Algorithms on Improving GPS/INS Positioning Accuracy During GPS Outage." In Lecture Notes in Electrical Engineering, 647–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29187-6_63.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Ershen, Ming Cai, and Tao Pang. "Improving GPS Positioning Accuracy Based on Particle Filter Algorithm." In Lecture Notes in Electrical Engineering, 139–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37398-5_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mahesh, Ch, R. Pavan Kumar Reddy, K. Ravindra, and V. Kamakshi Prasad. "Cascading De-noising Algorithm for Improving GPS Positional Accuracy." In Advances in Intelligent Systems and Computing, 691–701. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2517-1_66.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Friess, Peter. "Empirical Accuracy of Positions Computed from Airborne GPS Data." In High Precision Navigation, 163–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74585-0_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Tianzi, Huabin Chai, and Yuanyuan Xu. "Leveling Accuracy Research Based on Trimble 5700 GPS Antenna." In Advances in Intelligent and Soft Computing, 455–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30126-1_72.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "GPS accuracy"

1

Jiung-yao Huang and Chung-Hsien Tsai. "Improve GPS positioning accuracy with context awareness." In 2008 First IEEE International Conference on Ubi-media Computing (U-Media 2008). IEEE, 2008. http://dx.doi.org/10.1109/umedia.2008.4570872.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dutta, Rohit, Pooja Sharma, and Jayanta Sinha. "Airspeed estimation using GPS with Improved Accuracy." In 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). IEEE, 2020. http://dx.doi.org/10.1109/icrito48877.2020.9197821.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chen, Chen, Yi Han, Yan Chen, and K. J. Ray Liu. "Indoor GPS with centimeter accuracy using WiFi." In 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA). IEEE, 2016. http://dx.doi.org/10.1109/apsipa.2016.7820842.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Di Lecce, V., A. Amato, and V. Piuri. "Neural technologies for increasing the GPS position accuracy." In 2008 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications (CIMSA). IEEE, 2008. http://dx.doi.org/10.1109/cimsa.2008.4595822.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Lin, Wenhui Zhou, and Shusen Tan. "Tracking Accuracy of Narrow Correlator Spacing GPS Receiver." In 2006 8th international Conference on Signal Processing. IEEE, 2006. http://dx.doi.org/10.1109/icosp.2006.346123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

TianLi, Song, Wang ShuNing, and An WeiLian. "GPS Positioning Accuracy Estimation Using Cornish-Fisher Expansion." In 2009 WRI International Conference on Communications and Mobile Computing (CMC). IEEE, 2009. http://dx.doi.org/10.1109/cmc.2009.162.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sood, Gaurav, Jordan Willis, Arunita Jaekel, Shaik Nazeer, and Dominic Paulraj. "Analyzing accuracy of GPS data for vehicular parameters." In 2015 International Conference on Connected Vehicles and Expo (ICCVE). IEEE, 2015. http://dx.doi.org/10.1109/iccve.2015.4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lishuang Sun and Lianghong Ji. "Research on the accuracy of GPS baseline solution." In 2016 Progress in Electromagnetic Research Symposium (PIERS). IEEE, 2016. http://dx.doi.org/10.1109/piers.2016.7735393.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Li, Zan, Torsten Braun, and Desislava C. Dimitrova. "Methodology for GPS Synchronization Evaluation with High Accuracy." In 2015 IEEE 81st Vehicular Technology Conference (VTC Spring). IEEE, 2015. http://dx.doi.org/10.1109/vtcspring.2015.7145929.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Qiao, Jing, and Wu Chen. "Improving GPS AutoNav Orbit Accuracy with Onboard Accelerometers." In 30th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2017). Institute of Navigation, 2017. http://dx.doi.org/10.33012/2017.15203.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "GPS accuracy"

1

Dickson, Dick. Standard Report Format for Global Positioning System (GPS) Receivers and Systems Accuracy Tests and Evaluations. Fort Belvoir, VA: Defense Technical Information Center, February 2000. http://dx.doi.org/10.21236/ada375388.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schreiner, William S. A Covariance Study for Orbit Accuracy Improvement of the GPS Satellites Using Fiber Optics Tracking. Fort Belvoir, VA: Defense Technical Information Center, January 1991. http://dx.doi.org/10.21236/ada237858.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Brunch, Michael H., G. A. Gilbreath, J. W. Muelhauser, and J. Q. Lum. Accurate Waypoint Navigation using Non-Differential GPS. Fort Belvoir, VA: Defense Technical Information Center, July 2002. http://dx.doi.org/10.21236/ada422034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

BERG, DALE E., and JOSE R. ZAYAS. Accurate GPS Time-Linked Data Acquisition System (ATLAS) User's Manual. Office of Scientific and Technical Information (OSTI), May 2001. http://dx.doi.org/10.2172/782703.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tamura, Yohsuke, Jinji Suzuki, and Shogo Watanabe. Bonfire Test of Automotive Hydrogen Gas Cylinder With High Reliability and Accuracy. Warrendale, PA: SAE International, September 2005. http://dx.doi.org/10.4271/2005-08-0671.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jones, Perry L., Jose R. Zayas, and Juan Ortiz-Moyet. Accurate GPS Time-Linked data Acquisition System (ATLAS II) user's manual. Office of Scientific and Technical Information (OSTI), February 2004. http://dx.doi.org/10.2172/918380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Konaev, Margarita, Andrew Imbrie, Ryan Fedasiuk, Emily Weinstein, Katerina Sedova, and James Dunham. Headline or Trend Line? Center for Security and Emerging Technology, August 2021. http://dx.doi.org/10.51593/20210033.

Full text
Abstract:
Chinese and Russian government officials are keen to publicize their countries’ strategic partnership in emerging technologies, particularly artificial intelligence. This report evaluates the scope of cooperation between China and Russia as well as relative trends over time in two key metrics of AI development: research publications and investment. The findings expose gaps between aspirations and reality, bringing greater accuracy and nuance to current assessments of Sino-Russian tech cooperation.
APA, Harvard, Vancouver, ISO, and other styles
8

Cogan, James L. Change in Weather Research and Forecasting (WRF) Model Accuracy with Age of Input Data from the Global Forecast System (GFS). Fort Belvoir, VA: Defense Technical Information Center, September 2016. http://dx.doi.org/10.21236/ad1016607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Margot Gerritsen. Industrial Compositional Streamline Simulation for Efficient and Accurate Prediction of Gas Injection and WAG Processes. Office of Scientific and Technical Information (OSTI), October 2008. http://dx.doi.org/10.2172/950479.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wang, L., M. Pivi, T. O. Raubenheimer, and J. Safranek. An Accurate Model of Beam Ion Instability with Nonlinear Space Charge, Realistic Beam Optics and Multiple Gas Species Vacuum. Office of Scientific and Technical Information (OSTI), January 2013. http://dx.doi.org/10.2172/1060214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography