Academic literature on the topic 'Granite'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Granite.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Granite"
Usman, Ediar. "THE GEOCHEMICAL CHARACTERISTIC OF MAJOR ELEMENT OF GRANITOID OF NATUNA, SINGKEP, BANGKA AND SIBOLGA." BULLETIN OF THE MARINE GEOLOGY 30, no. 1 (February 15, 2016): 45. http://dx.doi.org/10.32693/bomg.30.1.2015.74.
Full textMustafa, Moch Akrom, and Ediar Usman. "ANALISIS PERBANDINGAN GEOKIMIA GRANIT DAN SEDIMEN DASAR LAUT DI PULAU SINGKEP BAGIAN TIMUR, PROVINSI KEPULAUAN RIAU." JURNAL GEOLOGI KELAUTAN 11, no. 3 (February 16, 2016): 131. http://dx.doi.org/10.32693/jgk.11.3.2013.237.
Full textFEELY, MARTIN, DAVID SELBY, JON HUNT, and JAMES CONLIFFE. "Long-lived granite-related molybdenite mineralization at Connemara, western Irish Caledonides." Geological Magazine 147, no. 6 (April 22, 2010): 886–94. http://dx.doi.org/10.1017/s0016756810000324.
Full textFu, Jiangang, Guangming Li, Genhou Wang, Weikang Guo, Suiliang Dong, Yingxu Li, Hai Zhang, Wei Liang, and Yanjie Jiao. "Geochemical Evidence for Genesis of Nb–Ta–Be Rare Metal Mineralization in Highly Fractionated Leucogranites at the Lalong Dome, Tethyan Himalaya, China." Minerals 13, no. 11 (November 19, 2023): 1456. http://dx.doi.org/10.3390/min13111456.
Full textWilson, Reginald A., and Sandra L. Kamo. "Geochronology and lithogeochemistry of granitoid rocks from the central part of the Central plutonic belt, New Brunswick, Canada: implications for Sn-W-Mo exploration." Atlantic Geology 52 (April 29, 2016): 125. http://dx.doi.org/10.4138/atlgeol.2016.007.
Full textVonopartis, Leonidas, Paul Nex, Judith Kinnaird, and Laurence Robb. "Evaluating the Changes from Endogranitic Magmatic to Magmatic-Hydrothermal Mineralization: The Zaaiplaats Tin Granites, Bushveld Igneous Complex, South Africa." Minerals 10, no. 4 (April 23, 2020): 379. http://dx.doi.org/10.3390/min10040379.
Full textUchida, Etsuo, Takumi Yokokura, Sota Niki, and Takafumi Hirata. "Geochemical Characteristics and U–Pb Dating of Granites in the Western Granitoid Belt of Thailand." Geosciences 14, no. 5 (May 14, 2024): 135. http://dx.doi.org/10.3390/geosciences14050135.
Full textDebowski, Beatriz Pereira, Guilherme Loriato Potratz, Armando Dias Tavares Júnior, Maria Virgínia Alves Martins, and Mauro Cesar Geraldes. "Age and Origin of the Massangana Intrusive Suite and Associated Mineralizations, in the Rondônia Tin Province: Petrography, U-Pb, and Lu-Hf Isotopes Zircons." Minerals 12, no. 10 (October 16, 2022): 1304. http://dx.doi.org/10.3390/min12101304.
Full textŠuica, Sanja, Vesnica Garašić, and Alan B. Woodland. "Petrography and geochemistry of granitoids and related rocks from the pre-Neogene basement of the Slavonia-Srijem Depression (Croatia)." Geologia Croatica 75, no. 1 (February 28, 2022): 129–44. http://dx.doi.org/10.4154/gc.2022.09.
Full textNguyen, Tai Minh, Hoa Xuan Tran, Giang Thi Truong Nguyen, Cuong Chi Truong, and Minh Pham. "U-Pb zircon and Hf composition of granite Song Ma block." Science and Technology Development Journal - Natural Sciences 2, no. 4 (August 14, 2019): 167–75. http://dx.doi.org/10.32508/stdjns.v2i4.825.
Full textDissertations / Theses on the topic "Granite"
Flatley, Kerin. "Granite Butterfly." Digital Archive @ GSU, 2009. http://digitalarchive.gsu.edu/english_diss/45.
Full textVillaros, Arnaud. "Petrogenesis of S-type granites : the example of the Cape Granite Suite." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/4015.
Full textENGLISH SUMMARY: S-type granite intrusions are extremely common in the continental crust and form from the partial melting of metasediments. Compositions of S-type granite range from leucogranite to granodiorite and have trace element contents that globally increase with increasing maficity (Fe + Mg). Models proposed for the formation of S-type granite do not answer satisfactorily all petrological and compositional requirements. In this study, S-type granite of the Cape Granite Suite (CGS), South Africa is used to discriminate between potential sources of compositional variation. Experimental studies show that melt produced from the partial melting of sediment is exclusively leucocratic. On this basis, the entrainment of up to 20 wt.% of peritectic garnet within S-type melt can be established to produce the observed major element variations. S-type CGS locally contains garnet. This garnet is in equilibrium with granite composition at P-T conditions (5kb and 750 C for the core of the garnet and 3kb and 720 C for the rim) well below conditions recorded by xenoliths from the same granite (10 kb and 850 C from a metabasite). From this result it seems that the originally entrained garnet no longer exists in the Stype CGS and it have been replaced by newly formed minerals (garnet, cordierite and biotite). Considering the short time necessary to emplace granites (about 100 000 years), it appears that garnet has been compositionnally re-equilibrated through a dissolution-precipitation process. The study of trace element variations in S-type CGS shows that most leucocratic compositions are undersaturated in Zr and Ce compared to predictions from experimental models for dissolution of accessory zircon and monazite in their source regions. Thus, S-type melts are likely to be formed in disequilibrium with respect to accessory phase stability. As a result the observed increase in trace element content with increasing maficity indicates that accessory minerals such as zircon and monazite are co-entrained with peritectic garnet in melt to produce the observed trace element variation in S-type granite. Trace element disequilibrium in the CGS S-type granitoids requires particularly short times of residence of melt within the source region. Together, these results provide for the first time, a fully comprehensive model for major and trace elements variations. Compositional variation in CGS S-type granite results from source processes by a selective entrainment of peritectic and accessory minerals. After entrainment, these minerals are likely to be re-equilibrated within the magma, through a dissolution-reprecipitation process. In addition, it appears that the construction of large S-type granitic bodies occurs through successive addition of magma batches of different composition that originates directly from the source region.
AFRIKAANSE OPSOMMING: S-tipe granietinstrusies is baie algemeen in die kontinentale kors en vorm deur die gedeeltelike smelting van metasedimente. Samestellings van S-tipe graniete strek vanaf leukograniet tot granodioriet en het spoorelementsamestellings wat global toeneem met ’n toenemende mafiese component (Fe + Mg). Modelle wat voorgestel is vir die formasie van S-tipe graniete beantwoord nie bevredigend al die petrologiese en komposisionele benodigdhede nie. In hierdie studie word S-tipe graniete van die Kaapse Graniet Suite (CGS), Suid Afrika, gebruik om te diskrimineer tussen potensiele bronne van komposisionele variasie. Eksperimentele studies wys dat smelt, geproduseer van die gedeeltelike smelting van sedimente, uitsluitlik leukokraties is. Op hierdie basis kan bewys word, dat die optel-en-meevoering van tot 20 wt% van peritektiese granaat in S-tipe smelt, die waargeneemde hoofelement variasies kan produseer. S-tipe CGS bevat lokale granaat. Hierdie granaat is in ekwilibrium met die graniet samestelling by P-T kondisies (5kb en 750circC vir die kern van die granaat en 3kb en 720circC vir die rand) ver onder kondisies waargeneem by xenoliete van dieselfde granite (10kb en 850circC van ’n metabasiet). Van hierdie resultaat kan afgelei word dat die oorspronklike opgetel-en-meegevoerde graniet bestaan nie meer in die S-tipe CGS en dat dit vervang is deur nuutgevormde minerale (granaat, kordieriet en biotiet). As in ag geneem word die kort tyd wat nodig is om graniete in te plaas (omtrent 100 000 jaar), wil dit voorkom dat granaat se samestelling geherekwilibreer word deur ’n oplossings-presipitasie proses. Die studie van spoorelement variasies in S-tipe CGS wys dat meeste leukokratiese samestellings is onderversadig in Zr en Ce in vergelyking met voorspellings deur eksperimentele modelle vir die oplossing van bykomstige zircon en monasiet in hulle brongebiede. Dus is S-tipe smelte meer geneig om gevorm te word in disekwilibrium in verhouding tot bykomstige mineraalstabilileit. Met die gevolg is dat die waargenome toename in spoorelementinhoud met toename in mafiese component wys dat bykomstige minerale, soos zirkoon en monasiet, word saam opgetel-enmeegevoer met peritektiese granaat in smelt om die waargenome spoorelement variasie in S-tipe graniete te verklaar. Spoorelement disekwilibrium in die CGS S-tipe granitoide benodig veral kort tye van residensie van die smelt binne die brongebied. Saam gee hierdie resultate vir die eerste keer ’n algehele antwoord vir hoof- en spoorelement variasies. Variasie in samestelling in CGS S-tipe graniete is die resultaat van bronprosesse deur ’n selektiewe optel-en-meevoer van peritektiese en bykomstige minerale. Na die optel-en-meevoer van hierdie minerale word hulle geherekwilibreer binne die magma deur ’n oplossings-presipitasie proses. Addisioneel wil dit voorkom of die konstruksie van groot S-tipe granietliggame plaasvind deur opeenvolgende toevoegings van magma lotte van verskillende samestellings wat direk uit die brongebied kom.
England, Richard W. "The ascent and emplacement of granitic magma : the Northern Arran granite." Thesis, Durham University, 1988. http://etheses.dur.ac.uk/6609/.
Full textMiller, James Thomas Ph D. Massachusetts Institute of Technology. "Crack coalescence in granite." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/47771.
Full textIncludes bibliographical references.
This thesis experimentally investigates crack coalescence in prismatic Barre Granite specimens with two pre-cut, open flaws under uniaxial compression. Using a high-speed video system, crack initiation, propagation, and coalescence are observed. Flaw geometries are chosen to allow one to compare the results with those of studies in other materials as well as to better understand fracturing and coalescence processes. Specifically, the effect of ligament length (L), flaw inclination angle (p3), and bridging angle (a) on coalescence is investigated. The same crack types as in other materials are observed. Coalescence patterns observed fit into a previously developed framework (for molded gypsum and Carrara marble) with the exception of one new coalescence pattern. Crack processes and coalescence patterns suggest a more tensile behavior as grain size increases from gypsum to marble to granite. Similar to previous work in marble and granite, white patches are observed during compression tests. These white patches can be categorized as either diffuse or linear, with linear white patches further subdivided into two more types, namely boundary-following and through-going. The white patches are essentially process zones. The effect of water pressure on coalescence pattern is also investigated. Flaw water pressure is seen to affect coalescence in granite, although further work is needed.
by James Thomas Miller.
S.M.
Wu, Jimin. "Description quantitative et modélisation de la texture d'un granite : granite de Guéret (France)." Bordeaux 1, 1995. http://www.theses.fr/1995BOR10600.
Full textBland, A. M. "The geology of the granites of Western Jersey, with particular reference to the south-west granite complex." Thesis, Oxford Brookes University, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.355623.
Full textGraham, Nigel Thomas. "Fabric studies in the Galway Granite, Ireland." Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.362002.
Full textAl-Hafdh, Nabeel Mustafa Suliman. "The alteration petrology of the Cheviot granite." Thesis, University of Newcastle Upon Tyne, 1985. http://hdl.handle.net/10443/1866.
Full textLee, In-Keun. "Mechanical behaviour of compacted decomposed granite soil." Thesis, Online version, 1991. http://ethos.bl.uk/OrderDetails.do?did=1&uin=uk.bl.ethos.292710.
Full textKruszewska, Barbara M. "The xenolithic suite of the Strontian Granite." Thesis, London Metropolitan University, 1990. http://repository.londonmet.ac.uk/3153/.
Full textBooks on the topic "Granite"
Stevenson, David S. Granite Skyscrapers. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91503-6.
Full textMoroles, Jesús Bautista. Granite sculpture. New Orleans, La: Simms Fine Arts, 1988.
Find full textSusskind, Lawrence. Granite Construction Company. [Ft. Belvoir, VA]: U.S. Army Corps of Engineers, 1989.
Find full textBook chapters on the topic "Granite"
Arndt, Nicholas. "Granite." In Encyclopedia of Astrobiology, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27833-4_665-3.
Full textArndt, Nicholas. "Granite." In Encyclopedia of Astrobiology, 999. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_665.
Full textArndt, Nicholas. "Granite." In Encyclopedia of Astrobiology, 685. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_665.
Full textArndt, Nicholas. "Granite." In Encyclopedia of Astrobiology, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2022. http://dx.doi.org/10.1007/978-3-642-27833-4_665-4.
Full textArndt, Nicholas. "Granite." In Encyclopedia of Astrobiology, 1208. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-65093-6_665.
Full textCotta, Robert. "Stone: Granite." In Materials & Skills for Historic Building Conservation, 30–45. Oxford, UK: Blackwell Publishing Ltd, 2008. http://dx.doi.org/10.1002/9780470697696.ch2c.
Full textCampbell, S., A. J. Gerrard, C. P. Green, J. D. Scourse, N. D. W. Davey, and R. Cottle. "Granite landscapes." In Quaternary of South-West England, 71–127. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-4920-4_4.
Full textGutiérrez, Francisco, and Mateo Gutiérrez. "Granite Landforms." In Landforms of the Earth, 103–9. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26947-4_6.
Full textHofbauer, Gottfried. "Tiefe Granite." In Granit - Geschichte und Bedeutung, 111–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2021. http://dx.doi.org/10.1007/978-3-662-62724-2_14.
Full text"Granite." In Dictionary of Geotourism, 223. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-2538-0_953.
Full textConference papers on the topic "Granite"
Gogoi, Rhituparna, and Pranjit Hazarika. "U-Th remobilisation in granites, pegmatites and granite gneisses." In Goldschmidt2023. France: European Association of Geochemistry, 2023. http://dx.doi.org/10.7185/gold2023.14575.
Full textStevenson, Alexandria M., and Jonathan D. Price. "ANOMALOUS GRANITES WITHIN THE QUANAH GRANITE PLUTON, WICHITA MOUNTAINS, OKLAHOMA." In 54th Annual GSA South-Central Section Meeting 2020. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020sc-343875.
Full textLokajícek, T., M. Petružálek, T. Svitek, R. Vasin, and H. R. Wenk. "Westerly Granite Anisotropy Study." In 56th U.S. Rock Mechanics/Geomechanics Symposium. ARMA, 2022. http://dx.doi.org/10.56952/arma-2022-0850.
Full textArbain, Azizi, Mohd Hafiz Zawawi, Mohd Rashid Mohd Radzi, Nurul Husna Hassan, and Ahmad Zhafran Ahmad Mazlan. "Natural frequencies comparison between the pure granite and bonded granite-concrete." In PROCEEDINGS OF GREEN DESIGN AND MANUFACTURE 2020. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0044239.
Full textKeesling, Raelene, and Jonathan D. Price. "MOUNT SCOTT GRANITE ENCLAVES, WICHITA GRANITE GROUP, OKLAHOMA: CHARACTERIZATION, COMPARISON, CLASSIFICATION." In South-Central Section - 56th Annual Meeting - 2022. Geological Society of America, 2022. http://dx.doi.org/10.1130/abs/2022sc-374010.
Full textNewcomb, Sally. "THE CONTROVERSIAL GRANITE CONTROVERSY." In GSA Annual Meeting in Phoenix, Arizona, USA - 2019. Geological Society of America, 2019. http://dx.doi.org/10.1130/abs/2019am-334628.
Full textPrónay, Z., E. Törös, and B. Neducza. "Seismic Measurements to Characterize Granite." In Near Surface 2005 - 11th European Meeting of Environmental and Engineering Geophysics. European Association of Geoscientists & Engineers, 2005. http://dx.doi.org/10.3997/2214-4609-pdb.13.p029.
Full textPearce, Julian A. "GRANITE (AND RHYOLITE) FINGERPRINTING REVISITED." In Joint 53rd Annual South-Central/53rd North-Central/71st Rocky Mtn GSA Section Meeting - 2019. Geological Society of America, 2019. http://dx.doi.org/10.1130/abs/2019sc-326832.
Full textLin, Q. X., X. S. Li, and C. W. W. Ng. "Liquefaction of Completely Decomposed Granite." In Geo-Frontiers Congress 2005. Reston, VA: American Society of Civil Engineers, 2005. http://dx.doi.org/10.1061/40779(158)27.
Full textPou, Juan, R. Soto, C. Trillo, Angel F. Doval, M. Boutinguiza, F. Lusquinos, F. Quintero, and Mariano Perez-Amor. "Laser surface blasting of granite." In IV Iberoamerican Meeting of Optics and the VII Latin American Meeting of Optics, Lasers and Their Applications, edited by Vera L. Brudny, Silvia A. Ledesma, and Mario C. Marconi. SPIE, 2001. http://dx.doi.org/10.1117/12.437086.
Full textReports on the topic "Granite"
Susskind, Lawrence E., Susan L. Podziba, and Eileen Babbitt. Granite Construction Co. Fort Belvoir, VA: Defense Technical Information Center, August 1989. http://dx.doi.org/10.21236/ada225177.
Full textSwaja, R. E., and W. D. Cottrell. Results of the radiological survey at the Granite City Steel facility, Granite City, Illinois. Office of Scientific and Technical Information (OSTI), July 1990. http://dx.doi.org/10.2172/6605990.
Full textBuettner, Edwin W., and V. Lance Nelson. Smolt Monitoring at the Head of Granite Reservoir and Lower Granite Dam, 1989 Annual Report. Office of Scientific and Technical Information (OSTI), April 1990. http://dx.doi.org/10.2172/6854896.
Full textBedrossian, P. Neutrons and Granite: Transport and Activation. Office of Scientific and Technical Information (OSTI), April 2004. http://dx.doi.org/10.2172/15009828.
Full textJackson, L. E. Surficial geology, Granite Canyon, Yukon Territory. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1997. http://dx.doi.org/10.4095/208953.
Full textBuettner, Edwin W., and Arnold F. Brimmer. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 1995 Annual Report. Office of Scientific and Technical Information (OSTI), October 1996. http://dx.doi.org/10.2172/441714.
Full textBrimmer, Arnold F. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 1996 Annual Report. Office of Scientific and Technical Information (OSTI), September 1998. http://dx.doi.org/10.2172/14907.
Full textBuettner, Edwin W., and Arnold F. Brimmer. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 1998 Annual Report. Office of Scientific and Technical Information (OSTI), April 2000. http://dx.doi.org/10.2172/787363.
Full textBuettner, Edwin W., and Arnold F. Brimmer. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 1993 Annual Report. Office of Scientific and Technical Information (OSTI), March 1995. http://dx.doi.org/10.2172/88844.
Full textBuettner, Edwin W., and V. Lance Nelson. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 1990 Annual Report. Office of Scientific and Technical Information (OSTI), May 1991. http://dx.doi.org/10.2172/889033.
Full text