Journal articles on the topic 'Granular avalanche'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Granular avalanche.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Bartelt, Perry, Othmar Buser, and Katharina Platzer. "Fluctuation-dissipation relations for granular snow avalanches." Journal of Glaciology 52, no. 179 (2006): 631–43. http://dx.doi.org/10.3189/172756506781828476.
Full textKRISHNAMURTHY, SUPRIYA, HANS HERRMANN, VITTORIO LORETO, MARIO NICODEMI, and STEPHANE ROUX. "INTERNAL AVALANCHES IN MODELS OF GRANULAR MEDIA." Fractals 07, no. 01 (1999): 51–58. http://dx.doi.org/10.1142/s0218348x99000074.
Full textBuser, Othmar, and Perry Bartelt. "Production and decay of random kinetic energy in granular snow avalanches." Journal of Glaciology 55, no. 189 (2009): 3–12. http://dx.doi.org/10.3189/002214309788608859.
Full textBartelt, Perry, James Glover, Thomas Feistl, Yves Bühler, and Othmar Buser. "Formation of levees and en-echelon shear planes during snow avalanche run-out." Journal of Glaciology 58, no. 211 (2012): 980–92. http://dx.doi.org/10.3189/2012jog11j011.
Full textWIELAND, M., J. M. N. T. GRAY, and K. HUTTER. "Channelized free-surface flow of cohesionless granular avalanches in a chute with shallow lateral curvature." Journal of Fluid Mechanics 392 (August 10, 1999): 73–100. http://dx.doi.org/10.1017/s0022112099005467.
Full textFaug, Thierry, Benoit Chanut, Mohamed Naaim, and Bertrand Perrin. "Avalanches overflowing a dam: dead zone, granular bore and run-out shortening." Annals of Glaciology 49 (2008): 77–82. http://dx.doi.org/10.3189/172756408787814799.
Full textMcElwaine, J., and K. Nishimura. "Ping-pong ball avalanche experiments." Annals of Glaciology 32 (2001): 241–50. http://dx.doi.org/10.3189/172756401781819526.
Full textSovilla, B., M. Kern, and M. Schaer. "Slow drag in wet-snow avalanche flow." Journal of Glaciology 56, no. 198 (2010): 587–92. http://dx.doi.org/10.3189/002214310793146287.
Full textLINARES-GUERRERO, ESPERANZA, CELINE GOUJON, and ROBERTO ZENIT. "Increased mobility of bidisperse granular avalanches." Journal of Fluid Mechanics 593 (November 23, 2007): 475–504. http://dx.doi.org/10.1017/s0022112007008932.
Full textFeistl, T., P. Bebi, M. Christen, S. Margreth, L. Diefenbach, and P. Bartelt. "Forest damage and snow avalanche flow regime." Natural Hazards and Earth System Sciences Discussions 3, no. 1 (2015): 535–74. http://dx.doi.org/10.5194/nhessd-3-535-2015.
Full textNaaim-Bouvet, Florence, Mohamed Naaim, and Thierry Faug. "Dense and powder avalanches: momentumreduction generated by a dam." Annals of Glaciology 38 (2004): 373–78. http://dx.doi.org/10.3189/172756404781815185.
Full textBartelt, Perry, Othmar Buser, and Martin Kern. "Dissipated work, stability and the internal flow structure of granular snow avalanches." Journal of Glaciology 51, no. 172 (2005): 125–38. http://dx.doi.org/10.3189/172756505781829638.
Full textTai, Y. C., J. M. N. T. Gray, K. Hutter, and S. Noelle. "Flow of dense avalanches past obstructions." Annals of Glaciology 32 (2001): 281–84. http://dx.doi.org/10.3189/172756401781819166.
Full textSampl, Peter, and Thomas Zwinger. "Avalanche simulation with SAMOS." Annals of Glaciology 38 (2004): 393–98. http://dx.doi.org/10.3189/172756404781814780.
Full textDavies, T. R., and M. J. McSaveney. "Runout of dry granular avalanches." Canadian Geotechnical Journal 36, no. 2 (1999): 313–20. http://dx.doi.org/10.1139/t98-108.
Full textFeistl, T., P. Bebi, M. Christen, S. Margreth, L. Diefenbach, and P. Bartelt. "Forest damage and snow avalanche flow regime." Natural Hazards and Earth System Sciences 15, no. 6 (2015): 1275–88. http://dx.doi.org/10.5194/nhess-15-1275-2015.
Full textValero, Cesar Vera, Katreen Wikstroem Jones, Yves Bühler, and Perry Bartelt. "Release temperature, snow-cover entrainment and the thermal flow regime of snow avalanches." Journal of Glaciology 61, no. 225 (2015): 173–84. http://dx.doi.org/10.3189/2015jog14j117.
Full textTrujillo-Vela, Mario Germán, Jorge Alberto Escobar-Vargas, and Alfonso Mariano Ramos-Cañón. "A spectral multidomain penalty method solver for the numerical simulation of granular avalanches." Earth Sciences Research Journal 23, no. 4 (2019): 317–29. http://dx.doi.org/10.15446/esrj.v23n4.77683.
Full textGubler, H. "Comparison of three Models of Avalanche Dynamics." Annals of Glaciology 13 (1989): 82–89. http://dx.doi.org/10.3189/s0260305500007680.
Full textGubler, H. "Comparison of three Models of Avalanche Dynamics." Annals of Glaciology 13 (1989): 82–89. http://dx.doi.org/10.1017/s0260305500007680.
Full textDOPPLER, DELPHINE, PHILIPPE GONDRET, THOMAS LOISELEUX, SAM MEYER, and MARC RABAUD. "Relaxation dynamics of water-immersed granular avalanches." Journal of Fluid Mechanics 577 (April 19, 2007): 161–81. http://dx.doi.org/10.1017/s0022112007004697.
Full textPudasaini, Shiva P., Winfried Eckart, and Kolumban Hutter. "Gravity-Driven Rapid Shear Flows of Dry Granular Masses in Helically Curved and Twisted Channels." Mathematical Models and Methods in Applied Sciences 13, no. 07 (2003): 1019–52. http://dx.doi.org/10.1142/s0218202503002805.
Full textMetcalfe, Guy, Troy Shinbrot, J. J. McCarthy, and Julio M. Ottino. "Avalanche mixing of granular solids." Nature 374, no. 6517 (1995): 39–41. http://dx.doi.org/10.1038/374039a0.
Full textDorogovtsev, S. N. "Avalanche mixing of granular solids." Europhysics Letters (EPL) 41, no. 1 (1998): 25–30. http://dx.doi.org/10.1209/epl/i1998-00106-9.
Full textViroulet, S., J. L. Baker, A. N. Edwards, et al. "Multiple solutions for granular flow over a smooth two-dimensional bump." Journal of Fluid Mechanics 815 (February 15, 2017): 77–116. http://dx.doi.org/10.1017/jfm.2017.41.
Full textPAILHA, MICKAËL, and OLIVIER POULIQUEN. "A two-phase flow description of the initiation of underwater granular avalanches." Journal of Fluid Mechanics 633 (August 25, 2009): 115–35. http://dx.doi.org/10.1017/s0022112009007460.
Full textDe Biagi, Valerio, Bernardino Chiaia, and Barbara Frigo. "Fractal grain distribution in snow avalanche deposits." Journal of Glaciology 58, no. 208 (2012): 340–46. http://dx.doi.org/10.3189/2012jog11j119.
Full textBartelt, Perry, Cesar Vera Valero, Thomas Feistl, Marc Christen, Yves Bühler, and Othmar Buser. "Modelling cohesion in snow avalanche flow." Journal of Glaciology 61, no. 229 (2015): 837–50. http://dx.doi.org/10.3189/2015jog14j126.
Full textChu, T., G. Hill, D. M. McClung, R. Ngun, and R. Sherkat. "Experiments on granular flows to predict avalanche runup." Canadian Geotechnical Journal 32, no. 2 (1995): 285–95. http://dx.doi.org/10.1139/t95-030.
Full textTai, Y. C., and J. M. N. T. Gray. "Limiting stress states in granular avalanches." Annals of Glaciology 26 (1998): 272–76. http://dx.doi.org/10.3189/1998aog26-1-272-276.
Full textTai, Y. C., and J. M. N. T. Gray. "Limiting stress states in granular avalanches." Annals of Glaciology 26 (1998): 272–76. http://dx.doi.org/10.1017/s0260305500014944.
Full textStaron, Lydie, Farhang Radjai, and Jean-Pierre Vilotte. "Granular micro-structure and avalanche precursors." Journal of Statistical Mechanics: Theory and Experiment 2006, no. 07 (2006): P07014. http://dx.doi.org/10.1088/1742-5468/2006/07/p07014.
Full textRauter, Matthias, Jan-Thomas Fischer, Wolfgang Fellin, and Andreas Kofler. "Snow avalanche friction relation based on extended kinetic theory." Natural Hazards and Earth System Sciences 16, no. 11 (2016): 2325–45. http://dx.doi.org/10.5194/nhess-16-2325-2016.
Full textBiswas, Soumyajyoti, and Lucas Goehring. "Mapping heterogeneities through avalanche statistics." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 377, no. 2136 (2018): 20170388. http://dx.doi.org/10.1098/rsta.2017.0388.
Full textTai, Y. C., K. Hutter, and J. M. N. T. Gray. "Steady Motion of a Finite Granular Mass in a Rotating Drum." Journal of Mechanics 16, no. 2 (2000): 67–72. http://dx.doi.org/10.1017/s1727719100001623.
Full textMcclung, D. M. "A Model for Scaling Avalanche Speeds." Journal of Glaciology 36, no. 123 (1990): 188–98. http://dx.doi.org/10.1017/s0022143000009436.
Full textMcclung, D. M. "A Model for Scaling Avalanche Speeds." Journal of Glaciology 36, no. 123 (1990): 188–98. http://dx.doi.org/10.3189/s0022143000009436.
Full textWoodhouse, M. J., A. R. Thornton, C. G. Johnson, B. P. Kokelaar, and J. M. N. T. Gray. "Segregation-induced fingering instabilities in granular free-surface flows." Journal of Fluid Mechanics 709 (August 21, 2012): 543–80. http://dx.doi.org/10.1017/jfm.2012.348.
Full textDorogovtsev, S. N. "Kinetics of avalanche mixing of granular materials." Journal of Experimental and Theoretical Physics 85, no. 1 (1997): 141–51. http://dx.doi.org/10.1134/1.558298.
Full textDavies, T. R., M. J. McSaveney, and K. A. Hodgson. "A fragmentation-spreading model for long-runout rock avalanches." Canadian Geotechnical Journal 36, no. 6 (1999): 1096–110. http://dx.doi.org/10.1139/t99-067.
Full textHutter, Kolumban, Stuart B. Savage, and Yasuaki Nohguchi. "Numerical, Analytical, and Laboratory Experimental Studies of Granular Avalanche Flows." Annals of Glaciology 13 (1989): 109–16. http://dx.doi.org/10.3189/s0260305500007722.
Full textHutter, Kolumban, Stuart B. Savage, and Yasuaki Nohguchi. "Numerical, Analytical, and Laboratory Experimental Studies of Granular Avalanche Flows." Annals of Glaciology 13 (1989): 109–16. http://dx.doi.org/10.1017/s0260305500007722.
Full textGRAY, J. M. N. T., and B. P. KOKELAAR. "Large particle segregation, transport and accumulation in granular free-surface flows." Journal of Fluid Mechanics 652 (May 19, 2010): 105–37. http://dx.doi.org/10.1017/s002211201000011x.
Full textFrette, Vidar, and Joel Stavans. "Avalanche-mediated transport in a rotated granular mixture." Physical Review E 56, no. 6 (1997): 6981–90. http://dx.doi.org/10.1103/physreve.56.6981.
Full textKoeppe, J. P., M. Enz, and J. Kakalios. "Phase diagram for avalanche stratification of granular media." Physical Review E 58, no. 4 (1998): R4104—R4107. http://dx.doi.org/10.1103/physreve.58.r4104.
Full textDaerr, Adrian, and Stéphane Douady. "Two types of avalanche behaviour in granular media." Nature 399, no. 6733 (1999): 241–43. http://dx.doi.org/10.1038/20392.
Full textTAKAHASHI, Tamotsu, and Hirofumi TSUJIMOTO. "GRANULAR FLOW MODEL OF AVALANCHE AND ITS APPLICATION." PROCEEDINGS OF HYDRAULIC ENGINEERING 42 (1998): 907–12. http://dx.doi.org/10.2208/prohe.42.907.
Full textDorogovtsev, S. N. "Characteristic time of avalanche mixing of granular materials." Journal of Experimental and Theoretical Physics 85, no. 6 (1997): 1157–61. http://dx.doi.org/10.1134/1.558387.
Full textFriedmann, S. Julio, N. Taberlet, and W. Losert. "Rock-avalanche dynamics: insights from granular physics experiments." International Journal of Earth Sciences 95, no. 5 (2006): 911–19. http://dx.doi.org/10.1007/s00531-006-0067-9.
Full textTsunematsu, Kae, Fukashi Maeno, and Kouichi Nishimura. "Application of an Inertia Dependent Flow Friction Model to Snow Avalanches: Exploration of the Model Using a Ping-Pong Ball Experiment." Geosciences 10, no. 11 (2020): 436. http://dx.doi.org/10.3390/geosciences10110436.
Full text