To see the other types of publications on this topic, follow the link: Granular Dynamics.

Journal articles on the topic 'Granular Dynamics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Granular Dynamics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Hayakawa, Hisao, and Daniel C. Hong. "Dynamics of Granular Compaction." International Journal of Bifurcation and Chaos 07, no. 05 (1997): 1159–65. http://dx.doi.org/10.1142/s0218127497000960.

Full text
Abstract:
We investigate the way the disordered granular materials organize themselves in a vibrating bed, the intensity of which is given by the dimensionless parameter Γ. Based on the recognition that an assembly of mono-disperse and cohesionless granular materials is a collection of spinless hard sphere Fermions, we first demonstrate that the time averaged steady state density profile for weak excitation with Γ ≈ 1 is given by the Fermi distribution. This is consistent with the observed experimental data and the results of Molecular dynamics. We then present a dynamic model to study the dynamics of g
APA, Harvard, Vancouver, ISO, and other styles
2

Mutabaruka, Patrick, Krishna Kumar, Kenichi Soga, Farhang Radjai, and Jean-Yves Delenne. "Transient dynamics of a 2D granular pile." European Physical Journal - E 38, no. 47 (2015): 1–7. https://doi.org/10.1140/epje/i2015-15047-x.

Full text
Abstract:
We investigate by means of Contact Dynamics simulations the transient dynamics of a 2D granular pile set into motion by applying shear velocity during a short time interval to all particles. The spreading dynamics is directly controlled by the input energy whereas in recent studies of column collapse the dynamics scales with the initial potential energy of the column. As in column collapse, we observe a power-law dependence of the runout distance with respect to the input energy with nontrivial exponents. This suggests that the power-law behavior is a generic feature of granular dynamics, and
APA, Harvard, Vancouver, ISO, and other styles
3

Makse, Hernán A., Robin C. Ball, H. Eugene Stanley, and Stephen Warr. "Dynamics of granular stratification." Physical Review E 58, no. 3 (1998): 3357–67. http://dx.doi.org/10.1103/physreve.58.3357.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

LOGUINOVA, NADEJDA, and YURI VLASOV. "OSCILLATIONS IN GRANULAR DYNAMICS." Advances in Complex Systems 10, no. 03 (2007): 287–99. http://dx.doi.org/10.1142/s0219525907001203.

Full text
Abstract:
A new effect of granular dynamics in a bounded domain is reported. Oscillations arise when the system evolves from a given (non-equilibrium) initial state. The oscillations obtained are of importance for vibrated granular systems since they reveal some kind of fundamental frequencies and they lead to resonant frequencies under vibration.
APA, Harvard, Vancouver, ISO, and other styles
5

Sánchez, Rodrigo. "Granular dynamics and gravity." Soft Matter 16, no. 40 (2020): 9253–61. http://dx.doi.org/10.1039/d0sm01203c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Herrmann, Hans J., S. Luding, and R. Cafiero. "Dynamics of granular systems." Physica A: Statistical Mechanics and its Applications 295, no. 1-2 (2001): 93–100. http://dx.doi.org/10.1016/s0378-4371(01)00059-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mehta, A., G. C. Barker, and J. M. Luck. "Heterogeneities in granular dynamics." Proceedings of the National Academy of Sciences 105, no. 24 (2008): 8244–49. http://dx.doi.org/10.1073/pnas.0711733105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Murdoch, Naomi, Patrick Michel, Derek C. Richardson, et al. "Numerical simulations of granular dynamics II: Particle dynamics in a shaken granular material." Icarus 219, no. 1 (2012): 321–35. http://dx.doi.org/10.1016/j.icarus.2012.03.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Goh, Y. K., and R. L. Jacobs. "Coarsening dynamics of granular heaplets in tapped granular layers." New Journal of Physics 4 (October 28, 2002): 81. http://dx.doi.org/10.1088/1367-2630/4/1/381.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Herminghaus *, S. "Dynamics of wet granular matter." Advances in Physics 54, no. 3 (2005): 221–61. http://dx.doi.org/10.1080/00018730500167855.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Radjai, Farhang. "Multicontact dynamics of granular systems." Computer Physics Communications 121-122 (September 1999): 294–98. http://dx.doi.org/10.1016/s0010-4655(99)00337-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Armanini, Aronne, Luigi Fraccarollo, and Michele Larcher. "Liquid–granular channel flow dynamics." Powder Technology 182, no. 2 (2008): 218–27. http://dx.doi.org/10.1016/j.powtec.2007.08.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Chen, Kuo-Ching, and Jeng-Yin Lan. "Micromorphic modeling of granular dynamics." International Journal of Solids and Structures 46, no. 6 (2009): 1554–63. http://dx.doi.org/10.1016/j.ijsolstr.2008.11.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Hayakawa, Hisao, Hiraku Nishimori, and Sin'ichi Sasa. "Dynamics of Granular Matter*1." Japanese Journal of Applied Physics 34, Part 1, No. 2A (1995): 397–408. http://dx.doi.org/10.1143/jjap.34.397.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Sinkovits, Robert S., and Surajit Sen. "Nonlinear Dynamics in Granular Columns." Physical Review Letters 74, no. 14 (1995): 2686–89. http://dx.doi.org/10.1103/physrevlett.74.2686.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Mehta, Anita, and G. C. Barker. "Glassy dynamics in granular compaction." Journal of Physics: Condensed Matter 12, no. 29 (2000): 6619–28. http://dx.doi.org/10.1088/0953-8984/12/29/333.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Nie, X., E. Ben-Naim, and S. Y. Chen. "Dynamics of vibrated granular monolayers." Europhysics Letters (EPL) 51, no. 6 (2000): 679–84. http://dx.doi.org/10.1209/epl/i2000-00392-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

DOPPLER, DELPHINE, PHILIPPE GONDRET, THOMAS LOISELEUX, SAM MEYER, and MARC RABAUD. "Relaxation dynamics of water-immersed granular avalanches." Journal of Fluid Mechanics 577 (April 19, 2007): 161–81. http://dx.doi.org/10.1017/s0022112007004697.

Full text
Abstract:
We study water-immersed granular avalanches in a long rectangular cell of small thickness. By video means, both the angle of the granular pile and the velocity profiles of the grains across the depth are recorded as a function of time. These measurements give access to the instantaneous granular flux. By inclining the pile at initial angles larger than the maximum angle of stability, avalanches are triggered and last for a long time, up to several hours for small grains, during which both the slope angle and the granular flux relax slowly. We show that the relaxation is quasi-steady so that th
APA, Harvard, Vancouver, ISO, and other styles
19

Liao, Chun-Chung. "Density-induced granular migration dynamics in sheared slurry granular materials." Powder Technology 338 (October 2018): 931–36. http://dx.doi.org/10.1016/j.powtec.2018.07.070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

HONG, DANIEL C. "DYNAMIC MODEL FOR GRANULAR ASSEMBLY." International Journal of Modern Physics B 07, no. 09n10 (1993): 1929–47. http://dx.doi.org/10.1142/s0217979293002699.

Full text
Abstract:
In this paper, we investigate in detail the complex dynamics and flow patterns of granular materials based on two simple yet quite realistic models: the diffusing void model and the nonlinear dynamic model. We first show how the diffusing void model describes some of the unusual and unique features of granular flows in a confined geometry such as the deformation of the free surface, the formation of dead zones, the flow around obstacles, the shock front with its companion void regions, and the front profile of the propagating density waves. We then provide theoretical framework for the diffusi
APA, Harvard, Vancouver, ISO, and other styles
21

Bi, Dapeng, and Bulbul Chakraborty. "Rheology of granular materials: dynamics in a stress landscape." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 367, no. 1909 (2009): 5073–90. http://dx.doi.org/10.1098/rsta.2009.0193.

Full text
Abstract:
We present a framework for analysing the rheology of dense driven granular materials, based on a recent proposal of a stress-based ensemble. In this ensemble, fluctuations in a granular system near jamming are controlled by a temperature-like parameter, the angoricity, which is conjugate to the stress of the system. In this paper, we develop a model for slowly driven granular materials based on the stress ensemble and the idea of a landscape in stress space. The idea of an activated process driven by the angoricity has been shown by Behringer et al . (Behringer et al. 2008 Phys. Rev. Lett. 101
APA, Harvard, Vancouver, ISO, and other styles
22

Oono, Yoshitsugu. "Cell-Dynamics Modeling of Vibrating Powder." International Journal of Modern Physics B 07, no. 09n10 (1993): 1859–64. http://dx.doi.org/10.1142/s0217979293002638.

Full text
Abstract:
The instabilities in vibrating granular materials may be interpreted as segregation processes of vacuum and powder particles. Through an attempt of mesocale modeling of the instabilities within the cell-dynamics scheme, a notable distinction between the ordinary segregation processes such as binary alloy spinodal decomposition and the granular processes is highlighted. ‘Vibrating particles in a horizontal Hele-Shaw cell’ experiment is proposed.
APA, Harvard, Vancouver, ISO, and other styles
23

Tarasov, V. P., and S. V. Krivenko. "Gas dynamics of a granular bed." Steel in Translation 44, no. 5 (2014): 359–62. http://dx.doi.org/10.3103/s0967091214050143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Scherer, Michael A., Thomas Mahr, Andreas Engel, and Ingo Rehberg. "Granular dynamics in a swirled annulus." Physical Review E 58, no. 5 (1998): 6061–72. http://dx.doi.org/10.1103/physreve.58.6061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

HERRMANN, HANS J. "MOLECULAR DYNAMICS SIMULATIONS OF GRANULAR MATERIALS." International Journal of Modern Physics C 04, no. 02 (1993): 309–16. http://dx.doi.org/10.1142/s012918319300032x.

Full text
Abstract:
When sand or other granular materials are shaken, poured or sheared many intriguing phenomena can be observed. We will model the granular medium by a packing of elastic spheres and simulate it via Molecular Dynamics. Dissipation of energy and shear friction at collisions are included. The onset of fluidization can be determined and is in good agreement with experiments. On a vibrating plate we observe the formation of convection cells due to walls or amplitude modulations. Density and velocity profiles on conveyor belts are measured and the influence of an obstacle discussed. We mention variou
APA, Harvard, Vancouver, ISO, and other styles
26

Barrat, A., E. Trizac, and M. H. Ernst. "Granular gases: dynamics and collective effects." Journal of Physics: Condensed Matter 17, no. 24 (2005): S2429—S2437. http://dx.doi.org/10.1088/0953-8984/17/24/004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Guillard, François, Pouya Golshan, Luming Shen, Julio R. Valdès, and Itai Einav. "Compaction dynamics of crunchy granular material." EPJ Web of Conferences 140 (2017): 07012. http://dx.doi.org/10.1051/epjconf/201714007012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

TenCate, James A., Eric Smith, and Robert A. Guyer. "Universal Slow Dynamics in Granular Solids." Physical Review Letters 85, no. 5 (2000): 1020–23. http://dx.doi.org/10.1103/physrevlett.85.1020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Losert, W., L. Bocquet, T. C. Lubensky, and J. P. Gollub. "Particle Dynamics in Sheared Granular Matter." Physical Review Letters 85, no. 7 (2000): 1428–31. http://dx.doi.org/10.1103/physrevlett.85.1428.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Sanchez-Castillo, Francisco X., Jamshed Anwar, and David M. Heyes. "Molecular Dynamics Simulations of Granular Compaction." Chemistry of Materials 15, no. 18 (2003): 3417–30. http://dx.doi.org/10.1021/cm030176a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Ristow, Gerald H. "Simulating granular flow with molecular dynamics." Journal de Physique I 2, no. 5 (1992): 649–62. http://dx.doi.org/10.1051/jp1:1992159.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Schulz, B. M., and M. Schulz. "The dynamics of wet granular matter." Journal of Non-Crystalline Solids 352, no. 42-49 (2006): 4877–79. http://dx.doi.org/10.1016/j.jnoncrysol.2006.03.125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Krabbenhoft, K., J. Huang, M. Vicente da Silva, and A. V. Lyamin. "Granular contact dynamics with particle elasticity." Granular Matter 14, no. 5 (2012): 607–19. http://dx.doi.org/10.1007/s10035-012-0360-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Colombo, R. M., G. Guerra, and F. Monti. "Modelling the dynamics of granular matter." IMA Journal of Applied Mathematics 77, no. 2 (2011): 140–56. http://dx.doi.org/10.1093/imamat/hxr007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Vo, Thanh-Trung, and Trung-Kien Nguyen. "Linking dynamics between anchors and granular materials." IOP Conference Series: Materials Science and Engineering 1289, no. 1 (2023): 012090. http://dx.doi.org/10.1088/1757-899x/1289/1/012090.

Full text
Abstract:
Abstract The research quantitatively explores the linking properties between the circular plate anchor and the granular assembly during the failure process under the subject of a specified pullout force given to the anchor using three-dimensional discrete particle simulations. This circular anchor is created as a hard cluster of spherical grains and is initially buried at a depth in the granular assembly. The numerical method is constructed based on the frictional interaction force law. The linking dynamic is characterized by the variation of the drag force acting on such anchor due to interac
APA, Harvard, Vancouver, ISO, and other styles
36

BERG, JOHANNES, and ANITA MEHTA. "SPIN-MODELS OF GRANULAR COMPACTION: FROM ONE-DIMENSIONAL MODELS TO RANDOM GRAPHS." Advances in Complex Systems 04, no. 04 (2001): 309–19. http://dx.doi.org/10.1142/s0219525901000231.

Full text
Abstract:
We discuss two athermal types of dynamics suitable for spin-models designed to model repeated tapping of a granular assembly. These dynamics are applied to a range of models characterized by a 3-spin Hamiltonian aiming to capture the geometric frustration in packings of granular matter.
APA, Harvard, Vancouver, ISO, and other styles
37

Liao, Chun-Chung, Shu-San Hsiau, and Yu-Ming Hu. "Density-driven sinking dynamics of a granular ring in sheared granular flows." Advanced Powder Technology 28, no. 10 (2017): 2597–604. http://dx.doi.org/10.1016/j.apt.2017.07.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Biroun, Mehdi H., and Luca Mazzei. "Unchannelized granular flows: Effect of initial granular column geometry on fluid dynamics." Chemical Engineering Science 292 (June 2024): 119997. http://dx.doi.org/10.1016/j.ces.2024.119997.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Zamankhan, Piroz, and Mohammad Hadi Bordbar. "Complex Flow Dynamics in Dense Granular Flows—Part I: Experimentation." Journal of Applied Mechanics 73, no. 4 (2005): 648–57. http://dx.doi.org/10.1115/1.2165234.

Full text
Abstract:
By applying a methodology useful for analysis of complex fluids based on a synergistic combination of experiments, computer simulations, and theoretical investigation, a model was built to investigate the fluid dynamics of granular flows in an intermediate regime where both collisional and frictional interactions may affect the flow behavior. In Part I, the viscoelastic behavior of nearly identical sized glass balls during a collision have been studied experimentally using a modified Newton’s cradle device. Analyzing the results of the measurements, by employing a numerical model based on fini
APA, Harvard, Vancouver, ISO, and other styles
40

Eckern, Ulrich, and Albert Schmid. "Quantum vortex dynamics in granular superconducting films." Physical Review B 39, no. 10 (1989): 6441–54. http://dx.doi.org/10.1103/physrevb.39.6441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Porter, Mason A., Panayotis G. Kevrekidis, and Chiara Daraio. "Granular crystals: Nonlinear dynamics meets materials engineering." Physics Today 68, no. 11 (2015): 44–50. http://dx.doi.org/10.1063/pt.3.2981.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Melby, P., F. Vega Reyes, A. Prevost, et al. "The dynamics of thin vibrated granular layers." Journal of Physics: Condensed Matter 17, no. 24 (2005): S2689—S2704. http://dx.doi.org/10.1088/0953-8984/17/24/020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Choi, M. Y., D. C. Hong, and Y. W. Kim. "Langevin dynamics, scale invariance, and granular flows." Physical Review E 47, no. 1 (1993): 137–42. http://dx.doi.org/10.1103/physreve.47.137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Caglioti, Emanuele, and Vittorio Loreto. "Entropy for Relaxation Dynamics in Granular Media." Physical Review Letters 83, no. 21 (1999): 4333–36. http://dx.doi.org/10.1103/physrevlett.83.4333.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Petri, A., A. Baldassarri, F. Dalton, G. Pontuale, L. Pietronero, and S. Zapperi. "Stochastic dynamics of a sheared granular medium." European Physical Journal B 64, no. 3-4 (2008): 531–35. http://dx.doi.org/10.1140/epjb/e2008-00177-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Piasecki, Jarosław, Julian Talbot, and Pascal Viot. "Cantor set dynamics of a granular piston." Journal of Statistical Mechanics: Theory and Experiment 2010, no. 05 (2010): P05004. http://dx.doi.org/10.1088/1742-5468/2010/05/p05004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Maynar, P., M. I. García de Soria, and J. Javier Brey. "Homogeneous dynamics in a vibrated granular monolayer." Journal of Statistical Mechanics: Theory and Experiment 2019, no. 9 (2019): 093205. http://dx.doi.org/10.1088/1742-5468/ab3410.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Petri, Alberto, Andrea Baldassarri, Fergal Dalton, Giorgio Pontuale, and Stefano Zapperi. "Stick‐slip dynamics of a granular medium." Journal of the Acoustical Society of America 123, no. 5 (2008): 3269. http://dx.doi.org/10.1121/1.2933595.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Nicodemi, Mario, Antonio Coniglio, and Hans J. Herrmann. "Frustration and slow dynamics of granular packings." Physical Review E 55, no. 4 (1997): 3962–69. http://dx.doi.org/10.1103/physreve.55.3962.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Bobaru, Florin, J. S. Chen, and Joseph A. Turner. "Advances in the Dynamics of Granular Materials." Mechanics of Materials 41, no. 6 (2009): 635–36. http://dx.doi.org/10.1016/j.mechmat.2009.02.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!