Academic literature on the topic 'Granular materials High pressure (Science)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Granular materials High pressure (Science).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Granular materials High pressure (Science)"
PENG, JIEGANG, S. XUE, Z. YAN, X. WU, and L. ZHAN. "INVESTIGATION OF HIGH-COERCIVITY FePt-C NANOGRANULAR FILMS FOR PERPENDICULAR MAGNETIC RECORDING (PMR) MEDIA." Nano 06, no. 06 (December 2011): 569–74. http://dx.doi.org/10.1142/s179329201100286x.
Full textStasiak, Mateusz, Marek Molenda, Maciej Bańda, Józef Horabik, Joanna Wiącek, Piotr Parafiniuk, Justyna Wajs, et al. "Friction and Shear Properties of Pine Biomass and Pellets." Materials 13, no. 16 (August 12, 2020): 3567. http://dx.doi.org/10.3390/ma13163567.
Full textMoussa, Amrane, Messast Salah, and Demagh Rafik. "Improvement of a Hypoplastic Model for Granular Materials Under High-Confining Pressures." Geotechnical and Geological Engineering 38, no. 4 (March 11, 2020): 3761–71. http://dx.doi.org/10.1007/s10706-020-01256-y.
Full textCai, Yuanqiang, Jingyu Chen, Zhigang Cao, Chuan Gu, and Jun Wang. "Influence of Grain Gradation on Permanent Strain of Unbound Granular Materials under Low Confining Pressure and High-Cycle Loading." International Journal of Geomechanics 18, no. 3 (March 2018): 04017156. http://dx.doi.org/10.1061/(asce)gm.1943-5622.0001054.
Full textNjoya, M., M. Basitere, and S. K. O. Ntwampe. "Treatment of poultry slaughterhouse wastewater using a down-flow expanded granular bed reactor." Water Practice and Technology 14, no. 3 (June 5, 2019): 549–59. http://dx.doi.org/10.2166/wpt.2019.039.
Full textLee, Wei-Chang, Chang-Lin Tu, Chang-Yueh Weng, and Shyan-Lung Chung. "A novel process for combustion synthesis of AlN powder." Journal of Materials Research 10, no. 3 (March 1995): 774–78. http://dx.doi.org/10.1557/jmr.1995.0774.
Full textWells, Tony, Stephen Fityus, David W. Smith, and Hlwan Moe. "The indirect estimation of saturated hydraulic conductivity of soils, using measurements of gas permeability. I. Laboratory testing with dry granular soils." Soil Research 44, no. 7 (2006): 719. http://dx.doi.org/10.1071/sr06037.
Full textSadler, L. Y., and M. Shamsuzzoha. "Response of silicon carbide to high-intensity laser irradiation in a high-pressure inert gas atmosphere." Journal of Materials Research 12, no. 1 (January 1997): 147–60. http://dx.doi.org/10.1557/jmr.1997.0022.
Full textRingeisen, Damien, Martin Losch, L. Bruno Tremblay, and Nils Hutter. "Simulating intersection angles between conjugate faults in sea ice with different viscous–plastic rheologies." Cryosphere 13, no. 4 (April 9, 2019): 1167–86. http://dx.doi.org/10.5194/tc-13-1167-2019.
Full textOthmani, Hammouda, Lamine Hassini, Raja Lamloumi, and Mohamed Afif El Cafsi. "Modelling of heat and mass transfer in a granular medium during high-temperature air drying. Effect of the internal gas pressure." Comptes Rendus Mécanique 344, no. 2 (February 2016): 119–27. http://dx.doi.org/10.1016/j.crme.2015.12.003.
Full textDissertations / Theses on the topic "Granular materials High pressure (Science)"
Zhou, Fuping. "Creeping flow behavior of dense granular materials under high confinement pressure." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 197 p, 2006. http://proquest.umi.com/pqdweb?did=1172112591&sid=2&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Full textPrincipal faculty advisors: Suresh G. Advani, Dept. of Mechanical Engineering, and Eric D. Wetzel, Army Research Laboratory. Includes bibliographical references.
Almström, Linda, and Camilla Söderström. "Alternative materials for high-temperature and high-pressure valves." Thesis, Karlstads universitet, Fakulteten för teknik- och naturvetenskap, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-7393.
Full textAB Somas ventiler är ett företag som tillverkar ventiler för ett brett spann av applikationer. I det här examensarbetet har undersökningar genomförts på en ventil av modell DN VSSL 400, PN 100, som normalt används i applikationer för höga tryck och höga temperaturer. Ventilen beläggs i dagsläget med höghaltiga koboltlegeringar för att uppnå de tribologiska egenskaper som krävs i de påfrestande arbetsförhållanden som råder. AB Somas Ventiler har dock framfört en förfrågan om att hitta en alternativ lösning, en förfrågan som grundar sig i att kundernas ständiga önskemål på att ventilerna ska klara högre arbetstemperaturer också medför högre krav på ventilmaterialen. Det är även en prisfråga, då kobolt är en dyr legering att använda sig av. De material som inkluderades i undersökningen var det kvävelegerade stålet Vanax 75, nickelbaserade superlegeringen Inconel 718 samt de två stålen EN 1.4903 och EN 1.4923 i härdat tillstånd. De två sistnämnda används idag som basmaterial i ventilen. Genom att använda den finita element metoden (FEM) kunde en första beräkning göras av det kontakttryck som uppstår då ventilen stängs. Flera modeller konstruerades för att simulera ventilens deformation vid stängning. Där efter utfördes nötningstester i hög temperatur på de alternativa materialen, genom att låta en provbit pressas mot en roterande cylinder, för att sedan kunna göra en jämförelse mellan materialen och även med den nuvarande lösningen. Från nötningstesterna erhölls data som kunde användas för att ta fram friktionskoefficienter för de olika materialparen. Med hjälp av undersökningar med profilometer och svepelektronmikroskop (SEM) kunde värden på nötta och vidhäfta volymer erhållas tillsammans med information om nötningssituationer för ytorna mellan de olika materialparen. De nötningsmekanismer som påvisades med hjälp av SEM-undersökningen var adhesiv och abrasiv nötning, och resultaten visade tydligt att nötningen av stålen var omfattande, på grund av att lika material i kontakt med varandra skapar starkare band mellan ytorna, och att de därför inte var en intressant lösning. Det kvävelegerade Vanax 75 uppförde sig visserligen bättre men en tydlig skillnad mot superlegeringarna kunde dock fortfarande konstateras, sett till både friktionskoefficient och mängden slitage. Baserat på dessa resultat valdes Inconel 718 som det bäst lämpade materialet att ersätta de höghaltiga koboltlegeringarna som idag används i ventilen.
Berger, Stephanie 1981. "Experimental and finite element analysis of high pressure packer elements." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/28879.
Full textIncludes bibliographical references (leaf 30).
Packer elements are traditionally rubber seals that can operate under specified downhole conditions and provide a seal for either a short-term, retrievable, or a long-term, permanent, completion. In this case a retrievable 19.7cm (7-3/4") packer element for a high-pressure high-temperature (HPHT) environment was designed and tested. The element created a seal between the mandrel, or tubing, and the casing. At high temperature and pressure rubber needs to be contained so that it will create and maintain an energized seal. In this study only Aflas rubber was tested. Various backup systems were examined; some more traditional designs such as the carbon steel foldback ring were compared to more experimental ideas. Results of theoretical simulations were compared to actual test results in order to gain a greater understanding of element behavior. Experiments were also performed to study the process of element setting, which is difficult to observe due to the high pressures and temperatures required. In a related study alternative materials to rubber such as annealed high-conductivity oxygen-free copper were tested to determine if the properties could be applied for packer element applications. The most successful design was the foldback ring with an anti-extrusion PEEK ring under the gage ring. This design passed a liquid test at 134 MPa (19.5k psi) differential pressure and a gas test at 87.6 MPa (12.7k psi) differential pressure. New designs such as the split ring with mesh and the garter spring with mesh did not pass fixture tests but could be successful with further modifications. FEA was used as an analytical tool to create simulations of the element after a setting force is applied. The modeling was shown to correlate to the actual test results and therefore it would be a good tool to use in future studies.
by Stephanie Berger.
S.M.
Laukli, Hans Ivar. "High Pressure Die Casting of Aluminium and Magnesium Alloys : Grain Structure and Segregation Characteristics." Doctoral thesis, Norwegian University of Science and Technology, Department of Materials Technology, 2004. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-379.
Full textCold chamber high pressure die casting, (HPDC), is an important commercial process for the production of complex near net shape aluminium and magnesium alloy castings. The work presented in the thesis was aimed at investigating the microstructure formation in this type of casting. The solidification characteristics related to the process and the alloys control the formation of grains and defects. This again has a significant impact on the mechanical properties of the castings.
The investigations were carried out mainly using the AM60 magnesium alloy and the A356 aluminium alloy. Two different casting arrangements were used: the cold chamber HPDC and the gravity die casting methods, which allowed for different flow and solidification conditions. The microstructures in the castings were investigated using optical microscopy, image analysis, scanning electron microscopy, electron back scatter diffraction measurements and electron probe microanalysis.
In the HPDC experiments, the shot sleeve solidification conditions were investigated primarily by changing the melt superheat on pouring. This significantly affected the microstructures in the castings. The fraction of externally solidified crystals (ESCs) was consistently found to be largest near the gate in both the AM60 and the A356 die castings. This was attributed to the inherent shot sleeve solidification conditions and the flow set up by the plunger movement. When the superheat was increased, a lower fraction of ESCs was found in the castings. Furthermore, a high superheat gave ESCs with branched dendritic/elongated trunk morphology whilst a low superheat generated coarser and more globular ESCs, both in the AM60 and the A356 castings. The ESCs typically segregated towards the central region of the cross sections at further distances from the gate in the die castings.
When a thin layer of thermal insulating coating was applied on the shot sleeve wall in the production of AM60 die castings, it nearly removed all ESCs in the castings. Using an A356 alloy, (and no shot sleeve coating), with no Ti in solution gave a significantly lower fraction of ESCs, whereas AlTi5B1 grain refiner additions induced an increase in the fraction of ESCs and a significantly finer grain size in the castings. The formation of globular ESCs was enhanced when AlTi5B1 grain refiner was added to the A356 alloy.
In controlled laboratory gravity die casting experiments, typical HPDC microstructures were created by pouring semi-solid metal into a steel die: The ESCs were found to segregate/migrate to the central region during flow, until a maximum packing, (fraction of ESCs of ~35-40%), was reached. The extent of segregation is determined by the fraction of ESCs, and the die temperature affects the position of the ESCs. The segregation of ESCs was explained to occur during flow as a result of lift forces.
The formation of banded defects has also been studied: the position of the bands was affected by the die temperature and the fraction of ESCs. Based on the nature of the bands and their occurrence, a new theory on the formation of defect bands was proposed: During flow the solid distribution from the die wall consists of three regions: 1) a solid fraction gradient at the wall; 2) a low solid fraction region which carries (3) a network of ESCs. A critical fraction solid exists where the deformation rate exceeds the interdendritic flow rate. When the induced stress exceeds the network strength, deformation can occur by slip, followed by liquid flow. The liquid flow is caused by solidification shrinkage, hydrostatic pressure on the interior ESC network, and gaps forming which draw in liquid.
Davis, Sergio. "Atomistic Computer Simulations of Melting, Diffusion and Thermal Defects in High Pressure Solids." Doctoral thesis, KTH, Tillämpad materialfysik, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-11027.
Full textQC 20100708
Ramaswamy, Raghupathy. "Thermal behavior of food materials during high pressure processing." Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1190122901.
Full textJin, Sheng. "Silicon carbide pressure sensors for high temperature applications." Case Western Reserve University School of Graduate Studies / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=case1296096110.
Full textSteele, Brad A. "Computational Discovery of Energetic Polynitrogen Compounds at High Pressure." Scholar Commons, 2018. http://scholarcommons.usf.edu/etd/7232.
Full textOsorio, Guillén Jorge Mario. "Density Functional Theory in Computational Materials Science." Doctoral thesis, Uppsala University, Department of Physics, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-4496.
Full textThe present thesis is concerned to the application of first-principles self-consistent total-energy calculations within the density functional theory on different topics in materials science.
Crystallographic phase-transitions under high-pressure has been study for TiO2, FeI2, Fe3O4, Ti, the heavy alkali metals Cs and Rb, and C3N4. A new high-pressure polymorph of TiO2 has been discovered, this new polymorph has an orthorhombic OI (Pbca) crystal structure, which is predicted theoretically for the pressure range 50 to 100 GPa. Also, the crystal structures of Cs and Rb metals have been studied under high compressions. Our results confirm the recent high-pressure experimental observations of new complex crystal structures for the Cs-III and Rb-III phases. Thus, it is now certain that the famous isostructural phase transition in Cs is rather a new crystallographic phase transition.
The elastic properties of the new superconductor MgB2 and Al-doped MgB2 have been investigated. Values of all independent elastic constants (c11, c12, c13, c33, and c55) as well as bulk moduli in the a and c directions (Ba and Bc respectively) are predicted. Our analysis suggests that the high anisotropy of the calculated elastic moduli is a strong indication that MgB2 should be rather brittle. Al doping decreases the elastic anisotropy of MgB2 in the a and c directions, but, it will not change the brittle behaviour of the material considerably.
The three most relevant battery properties, namely average voltage, energy density and specific energy, as well as the electronic structure of the Li/LixMPO4 systems, where M is either Fe, Mn, or Co have been calculated. The mixing between Fe and Mn in these materials is also examined. Our calculated values for these properties are in good agreement with recent experimental values. Further insight is gained from the electronic density of states of these materials, through which conclusions about the physical properties of the various phases are made.
The electronic and magnetic properties of the dilute magnetic semiconductor Mn-doped ZnO has been calculated. We have found that for an Mn concentration of 5.6%, the ferromagnetic configuration is energetically stable in comparison to the antiferromgnetic one. A half-metallic electronic structure is calculated by the GGA approximation, where Mn ions are in a divalent state leading to a total magnetic moment of 5 μB per Mn atom.
Widehammar, Svante. "A Method for Dispersive Split Hopkinson Pressure Bar Analysis Applied to High Strain Rate Testing of Spruce Wood." Doctoral thesis, Uppsala University, Department of Materials Science, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-2872.
Full textEn metod för dispersiv analys av försök med delad hopkinsonstång tillämpad på provning av granved vid hög töjningshastighet
Syftet var att etablera en metod för att studera sambandet mellan spänning och töjning för granved vid hög töjningshastighet. Detta åstadkoms genom att anpassa och något vidareutveckla tekniken med delad hopkinsonstång ("Split Hopkinson Pressure Bar", SHPB).
Vanligtvis har hopkinsonstavar cirkulärt tvärsnitt och en diameter som är mycket mindre än de verksamma våglängderna. Under sådana förhållanden är vågutbredningen i stängerna approximativt ickedispersiv, och en endimensionell (1D) vågutbredningsmodell kan användas. När det, som är fallet i denna studie, däremot inte kan säkerställas att stängernas tvärdimensioner är små i förhållande till våglängderna, är en helt igenom 1D vågutbredningsmodell otillräcklig, och tvärsnittets geometri, vilken var kvadratisk i denna studie, måste beaktas. Därför utvecklades med hjälp av Hamiltons princip en approximativ 3D vågutbredningsmodell för stänger med godtyckligt tvärsnitt. Modellen ger ett dispersionssamband (vågtal som funktion av vinkelfrekvens) samt medelvärden för förskjutningar och spänningar över gränsytorna mellan stänger och provstav. En kalibreringsprocedur utvecklades också.
Provning av granved genomfördes vid hög töjningshastighet (omkring 103 s-1) med den anpassade SHPB-tekniken, samt för jämförelse vid låg (8×10-3 s-1) och måttlig (17 s-1) töjningshastighet med en servohydraulisk provningsmaskin. Fukthalterna i veden motsvarade ugnstorr, fibermättnad och fullständig mättnad, och proven utfördes i radiell, tangentiell och axiell riktning i förhållande till trädets stam. För vart fall utfördes fem försök vid rumstemperatur. Resultaten visar töjningshastighetsberoendet för sambandet mellan spänning och töjning för granved under alla studerade förhållanden.
The aim was to establish a method for studying the relation between stress and strain in spruce wood at high strain rate. This was achieved by adapting and somewhat further developing the split Hopkinson pressure bar (SHPB) technique.
Hopkinson bars usually have a circular cross-section and a diameter much smaller than the operative wavelengths. The wave propagation in the bar is then approximately non-dispersive and a one-dimensional (1D) wave propagation model can be used. When, as in this study, it is not certain that the transverse dimensions of the bars are small in relation to the wavelengths, a solely 1D wave propagation model is insufficient and the geometry of the cross-section, which was square in this study, must be taken into account. Therefore, an approximate 3D wave propagation model for bars with arbitrary cross-section was developed using Hamilton's principle. The model provides a dispersion relation (wavenumber vs. angular frequency) and average values for displacements and stresses over the bar/specimen interfaces. A calibration procedure was also developed.
Tests on spruce wood specimens were carried out at a high strain rate (about 103 s-1) using the adapted SHPB technique, and for comparison at low (8×10-3 s-1) and medium (17 s-1) strain rates using a servohydraulic testing machine. The moisture contents of the wood specimens corresponded to oven dry, fibre saturated and fully saturated, and the testing was performed in the radial, tangential and axial directions relative to the stem of the tree. In each case, five tests were run at room temperature. The results show the strain rate dependence of the relation between stress and strain for spruce wood under all conditions studied.
Books on the topic "Granular materials High pressure (Science)"
Winter, R., and J. Jonas, eds. High Pressure Chemistry, Biochemistry and Materials Science. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1699-2.
Full textEremets, M. I. High pressure experimental methods. Oxford: Oxford University, 1996.
Find full textD, Hochheimer Hans, and North Atlantic Treaty Organization. Scientific Affairs Division., eds. Frontiers of high pressure research II: Application of high pressure to low-dimensional novel electronic materials. Dordrecht: Kluwer Academic Publishers, 2001.
Find full textNATO Advanced Research Workshop on Frontiers of High-Pressure Research (2nd 2001 Pingree Park, Colo.). Frontiers of high pressure research II: Application of high pressure to low-dimensional novel electronic materials. Dordrecht: Kluwer Academic Publishers, 2001.
Find full textTechniques in high pressure neutron scattering. Boca Raton, FL: Taylor & Francis, 2012.
Find full textInternational, School of Physics "Enrico Fermi" (2001 Varenna Italy). High pressure phenomena =: Fenomeni ad alte pressioni. Amsterdam: IOS Press, 2002.
Find full textInternational School of Physics "Enrico Fermi" (2001 July 1-13 Varenna, Italy). High pressure phenomena: Varenna on Como Lake, Villa Monastero, 3-13 July 2001. Amsterdam: IOS Press, 2002.
Find full textJ, Oonk H. A., and SpringerLink (Online service), eds. Equilibrium Between Phases of Matter: Supplemental Text for Materials Science and High-Pressure Geophysics. Dordrecht: Springer Netherlands, 2012.
Find full textA, Trzeciakowski Witold, Uniwersytet Wrocławski im. Bolesława Bieruta. Instytut Fizyki Doświadczalnej., Polska Akademia Nauk. High Pressure Research Center., and EHPRG Conference (33rd : 1995 : Warsaw, Poland), eds. High pressure science & technology: Proceedings of the joint XV AIRAPT & XXXIII EHPRG international conference, Warsaw, Poland, September 11-15, 1995. Singapore: World Scientific Pub., 1996.
Find full textJ, Jonas, Winter R, and NATO Advanced Study Institute on High Pressure Molecular Science (1998 : Il Ciocco, Italy), eds. High pressure molecular science. Dordrecht: Kluwer Academic Publishers, 1999.
Find full textBook chapters on the topic "Granular materials High pressure (Science)"
Pasternak, Moshe P., and R. Dean Taylor. "High Pressure Mössbauer Spectroscopy." In Mössbauer Spectroscopy in Materials Science, 349–58. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4548-0_32.
Full textWetscher, F., Bao Hui Tian, Richard Stock, and Reinhard Pippan. "High Pressure Torsion of Rail Steels." In Materials Science Forum, 455–60. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-985-7.455.
Full textOmidvar, Mehdi, Stephan Bless, and Magued Iskander. "Recent Insights into Penetration of Sand and Similar Granular Materials." In Shock Wave and High Pressure Phenomena, 137–63. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23002-9_5.
Full textMolnár, Dániel, Jenő Dúl, and Richárd Szabó. "Simulation of High Pressure Die Casting Solidification." In Materials Science Forum, 555–60. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-991-1.555.
Full textSakai, Genki, Katsuaki Nakamura, Zenji Horita, and Terence G. Langdon. "Application of High Pressure Torsion to Bulk Samples." In Materials Science Forum, 391–98. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-985-7.391.
Full textSanloup, Chrystele. "Amorphous Materials at High Pressure." In NATO Science for Peace and Security Series B: Physics and Biophysics, 459–68. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9258-8_37.
Full textMcMillan, Paul F. "High-Pressure Synthesis of Materials." In NATO Science for Peace and Security Series B: Physics and Biophysics, 373–83. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9258-8_30.
Full textWijngaarden, Rinke J., E. N. Eenige, J. J. Scholtz, D. Tristan Jover, and R. Griessen. "Ultra high pressure experiments on high-Tc superconductors." In High Pressure Chemistry, Biochemistry and Materials Science, 121–46. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1699-2_6.
Full textVerbetsky, V. N. "Metal Hydrides at High Pressure." In Hydrogen Materials Science and Chemistry of Metal Hydrides, 245–54. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0558-6_23.
Full textLumley, Roger N., R. G. O'Donnell, D. R. Gunasegaram, and M. Givord. "Blister Free Heat Treatment of High Pressure Die-Casting Alloys." In Materials Science Forum, 351–58. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-408-1.351.
Full textConference papers on the topic "Granular materials High pressure (Science)"
Watkins, Megan F., and Richard D. Gould. "Effect of Flow Rate and Particle Size on Heat Transfer to Dense Granular Flows." In ASME 2016 10th International Conference on Energy Sustainability collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/es2016-59258.
Full textCouture, Simon, Eric E. Fullerton, and Vitaliy Lomakin. "Properties of high-frequency granular magnetic materials." In 2015 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium). IEEE, 2015. http://dx.doi.org/10.1109/usnc-ursi.2015.7303351.
Full textGray, G. T. "Shock-loading response of advanced materials." In High-pressure science and technology—1993. AIP, 1994. http://dx.doi.org/10.1063/1.46050.
Full textRuuskanen, P. R., A. A. Kiiski, and O. Heczko. "Microstructure of dynamically compacted amorphous materials." In High-pressure science and technology—1993. AIP, 1994. http://dx.doi.org/10.1063/1.46057.
Full textYang, Wenbo, and Thomas J. Ahrens. "Oblique impact jetting of geological materials." In High-pressure science and technology—1993. AIP, 1994. http://dx.doi.org/10.1063/1.46229.
Full textLomonosov, Igor’ V., Aleksey V. Bushman, Vladimir E. Fortov, and Konstantin V. Khishenko. "Caloric equations of state of structural materials." In High-pressure science and technology—1993. AIP, 1994. http://dx.doi.org/10.1063/1.46458.
Full textMashimo, Tsutomu. "Shock compression of ceramic materials: Yielding property." In High-pressure science and technology—1993. AIP, 1994. http://dx.doi.org/10.1063/1.46209.
Full textMatsumoto, Yoshihiro, Kazuyuki Matsubayashi, Yoshiya Uwatoko, Masahiko Hiroi, Yoshifuru Mitsui, and Keiichi Koyama. "Magnetic properties of Mn1.9Cu0.1Sb under high pressure." In FRONTIERS IN MATERIALS SCIENCE (FMS2015): Proceedings of the 2nd International Symposium on Frontiers in Materials Science. Author(s), 2016. http://dx.doi.org/10.1063/1.4961338.
Full textJohnson, Gordon R., and Tim J. Holmquist. "An improved computational constitutive model for brittle materials." In High-pressure science and technology—1993. AIP, 1994. http://dx.doi.org/10.1063/1.46199.
Full textLanzerotti, M. Y. D., J. Autera, J. Pinto, and J. Sharma. "Crystal growth of energetic materials during high acceleration using an ultracentrifuge." In High-pressure science and technology—1993. AIP, 1994. http://dx.doi.org/10.1063/1.46081.
Full text