Dissertations / Theses on the topic 'Granular materials High pressure (Science)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 34 dissertations / theses for your research on the topic 'Granular materials High pressure (Science).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Zhou, Fuping. "Creeping flow behavior of dense granular materials under high confinement pressure." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 197 p, 2006. http://proquest.umi.com/pqdweb?did=1172112591&sid=2&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Full textPrincipal faculty advisors: Suresh G. Advani, Dept. of Mechanical Engineering, and Eric D. Wetzel, Army Research Laboratory. Includes bibliographical references.
Almström, Linda, and Camilla Söderström. "Alternative materials for high-temperature and high-pressure valves." Thesis, Karlstads universitet, Fakulteten för teknik- och naturvetenskap, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-7393.
Full textAB Somas ventiler är ett företag som tillverkar ventiler för ett brett spann av applikationer. I det här examensarbetet har undersökningar genomförts på en ventil av modell DN VSSL 400, PN 100, som normalt används i applikationer för höga tryck och höga temperaturer. Ventilen beläggs i dagsläget med höghaltiga koboltlegeringar för att uppnå de tribologiska egenskaper som krävs i de påfrestande arbetsförhållanden som råder. AB Somas Ventiler har dock framfört en förfrågan om att hitta en alternativ lösning, en förfrågan som grundar sig i att kundernas ständiga önskemål på att ventilerna ska klara högre arbetstemperaturer också medför högre krav på ventilmaterialen. Det är även en prisfråga, då kobolt är en dyr legering att använda sig av. De material som inkluderades i undersökningen var det kvävelegerade stålet Vanax 75, nickelbaserade superlegeringen Inconel 718 samt de två stålen EN 1.4903 och EN 1.4923 i härdat tillstånd. De två sistnämnda används idag som basmaterial i ventilen. Genom att använda den finita element metoden (FEM) kunde en första beräkning göras av det kontakttryck som uppstår då ventilen stängs. Flera modeller konstruerades för att simulera ventilens deformation vid stängning. Där efter utfördes nötningstester i hög temperatur på de alternativa materialen, genom att låta en provbit pressas mot en roterande cylinder, för att sedan kunna göra en jämförelse mellan materialen och även med den nuvarande lösningen. Från nötningstesterna erhölls data som kunde användas för att ta fram friktionskoefficienter för de olika materialparen. Med hjälp av undersökningar med profilometer och svepelektronmikroskop (SEM) kunde värden på nötta och vidhäfta volymer erhållas tillsammans med information om nötningssituationer för ytorna mellan de olika materialparen. De nötningsmekanismer som påvisades med hjälp av SEM-undersökningen var adhesiv och abrasiv nötning, och resultaten visade tydligt att nötningen av stålen var omfattande, på grund av att lika material i kontakt med varandra skapar starkare band mellan ytorna, och att de därför inte var en intressant lösning. Det kvävelegerade Vanax 75 uppförde sig visserligen bättre men en tydlig skillnad mot superlegeringarna kunde dock fortfarande konstateras, sett till både friktionskoefficient och mängden slitage. Baserat på dessa resultat valdes Inconel 718 som det bäst lämpade materialet att ersätta de höghaltiga koboltlegeringarna som idag används i ventilen.
Berger, Stephanie 1981. "Experimental and finite element analysis of high pressure packer elements." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/28879.
Full textIncludes bibliographical references (leaf 30).
Packer elements are traditionally rubber seals that can operate under specified downhole conditions and provide a seal for either a short-term, retrievable, or a long-term, permanent, completion. In this case a retrievable 19.7cm (7-3/4") packer element for a high-pressure high-temperature (HPHT) environment was designed and tested. The element created a seal between the mandrel, or tubing, and the casing. At high temperature and pressure rubber needs to be contained so that it will create and maintain an energized seal. In this study only Aflas rubber was tested. Various backup systems were examined; some more traditional designs such as the carbon steel foldback ring were compared to more experimental ideas. Results of theoretical simulations were compared to actual test results in order to gain a greater understanding of element behavior. Experiments were also performed to study the process of element setting, which is difficult to observe due to the high pressures and temperatures required. In a related study alternative materials to rubber such as annealed high-conductivity oxygen-free copper were tested to determine if the properties could be applied for packer element applications. The most successful design was the foldback ring with an anti-extrusion PEEK ring under the gage ring. This design passed a liquid test at 134 MPa (19.5k psi) differential pressure and a gas test at 87.6 MPa (12.7k psi) differential pressure. New designs such as the split ring with mesh and the garter spring with mesh did not pass fixture tests but could be successful with further modifications. FEA was used as an analytical tool to create simulations of the element after a setting force is applied. The modeling was shown to correlate to the actual test results and therefore it would be a good tool to use in future studies.
by Stephanie Berger.
S.M.
Laukli, Hans Ivar. "High Pressure Die Casting of Aluminium and Magnesium Alloys : Grain Structure and Segregation Characteristics." Doctoral thesis, Norwegian University of Science and Technology, Department of Materials Technology, 2004. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-379.
Full textCold chamber high pressure die casting, (HPDC), is an important commercial process for the production of complex near net shape aluminium and magnesium alloy castings. The work presented in the thesis was aimed at investigating the microstructure formation in this type of casting. The solidification characteristics related to the process and the alloys control the formation of grains and defects. This again has a significant impact on the mechanical properties of the castings.
The investigations were carried out mainly using the AM60 magnesium alloy and the A356 aluminium alloy. Two different casting arrangements were used: the cold chamber HPDC and the gravity die casting methods, which allowed for different flow and solidification conditions. The microstructures in the castings were investigated using optical microscopy, image analysis, scanning electron microscopy, electron back scatter diffraction measurements and electron probe microanalysis.
In the HPDC experiments, the shot sleeve solidification conditions were investigated primarily by changing the melt superheat on pouring. This significantly affected the microstructures in the castings. The fraction of externally solidified crystals (ESCs) was consistently found to be largest near the gate in both the AM60 and the A356 die castings. This was attributed to the inherent shot sleeve solidification conditions and the flow set up by the plunger movement. When the superheat was increased, a lower fraction of ESCs was found in the castings. Furthermore, a high superheat gave ESCs with branched dendritic/elongated trunk morphology whilst a low superheat generated coarser and more globular ESCs, both in the AM60 and the A356 castings. The ESCs typically segregated towards the central region of the cross sections at further distances from the gate in the die castings.
When a thin layer of thermal insulating coating was applied on the shot sleeve wall in the production of AM60 die castings, it nearly removed all ESCs in the castings. Using an A356 alloy, (and no shot sleeve coating), with no Ti in solution gave a significantly lower fraction of ESCs, whereas AlTi5B1 grain refiner additions induced an increase in the fraction of ESCs and a significantly finer grain size in the castings. The formation of globular ESCs was enhanced when AlTi5B1 grain refiner was added to the A356 alloy.
In controlled laboratory gravity die casting experiments, typical HPDC microstructures were created by pouring semi-solid metal into a steel die: The ESCs were found to segregate/migrate to the central region during flow, until a maximum packing, (fraction of ESCs of ~35-40%), was reached. The extent of segregation is determined by the fraction of ESCs, and the die temperature affects the position of the ESCs. The segregation of ESCs was explained to occur during flow as a result of lift forces.
The formation of banded defects has also been studied: the position of the bands was affected by the die temperature and the fraction of ESCs. Based on the nature of the bands and their occurrence, a new theory on the formation of defect bands was proposed: During flow the solid distribution from the die wall consists of three regions: 1) a solid fraction gradient at the wall; 2) a low solid fraction region which carries (3) a network of ESCs. A critical fraction solid exists where the deformation rate exceeds the interdendritic flow rate. When the induced stress exceeds the network strength, deformation can occur by slip, followed by liquid flow. The liquid flow is caused by solidification shrinkage, hydrostatic pressure on the interior ESC network, and gaps forming which draw in liquid.
Davis, Sergio. "Atomistic Computer Simulations of Melting, Diffusion and Thermal Defects in High Pressure Solids." Doctoral thesis, KTH, Tillämpad materialfysik, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-11027.
Full textQC 20100708
Ramaswamy, Raghupathy. "Thermal behavior of food materials during high pressure processing." Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1190122901.
Full textJin, Sheng. "Silicon carbide pressure sensors for high temperature applications." Case Western Reserve University School of Graduate Studies / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=case1296096110.
Full textSteele, Brad A. "Computational Discovery of Energetic Polynitrogen Compounds at High Pressure." Scholar Commons, 2018. http://scholarcommons.usf.edu/etd/7232.
Full textOsorio, Guillén Jorge Mario. "Density Functional Theory in Computational Materials Science." Doctoral thesis, Uppsala University, Department of Physics, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-4496.
Full textThe present thesis is concerned to the application of first-principles self-consistent total-energy calculations within the density functional theory on different topics in materials science.
Crystallographic phase-transitions under high-pressure has been study for TiO2, FeI2, Fe3O4, Ti, the heavy alkali metals Cs and Rb, and C3N4. A new high-pressure polymorph of TiO2 has been discovered, this new polymorph has an orthorhombic OI (Pbca) crystal structure, which is predicted theoretically for the pressure range 50 to 100 GPa. Also, the crystal structures of Cs and Rb metals have been studied under high compressions. Our results confirm the recent high-pressure experimental observations of new complex crystal structures for the Cs-III and Rb-III phases. Thus, it is now certain that the famous isostructural phase transition in Cs is rather a new crystallographic phase transition.
The elastic properties of the new superconductor MgB2 and Al-doped MgB2 have been investigated. Values of all independent elastic constants (c11, c12, c13, c33, and c55) as well as bulk moduli in the a and c directions (Ba and Bc respectively) are predicted. Our analysis suggests that the high anisotropy of the calculated elastic moduli is a strong indication that MgB2 should be rather brittle. Al doping decreases the elastic anisotropy of MgB2 in the a and c directions, but, it will not change the brittle behaviour of the material considerably.
The three most relevant battery properties, namely average voltage, energy density and specific energy, as well as the electronic structure of the Li/LixMPO4 systems, where M is either Fe, Mn, or Co have been calculated. The mixing between Fe and Mn in these materials is also examined. Our calculated values for these properties are in good agreement with recent experimental values. Further insight is gained from the electronic density of states of these materials, through which conclusions about the physical properties of the various phases are made.
The electronic and magnetic properties of the dilute magnetic semiconductor Mn-doped ZnO has been calculated. We have found that for an Mn concentration of 5.6%, the ferromagnetic configuration is energetically stable in comparison to the antiferromgnetic one. A half-metallic electronic structure is calculated by the GGA approximation, where Mn ions are in a divalent state leading to a total magnetic moment of 5 μB per Mn atom.
Widehammar, Svante. "A Method for Dispersive Split Hopkinson Pressure Bar Analysis Applied to High Strain Rate Testing of Spruce Wood." Doctoral thesis, Uppsala University, Department of Materials Science, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-2872.
Full textEn metod för dispersiv analys av försök med delad hopkinsonstång tillämpad på provning av granved vid hög töjningshastighet
Syftet var att etablera en metod för att studera sambandet mellan spänning och töjning för granved vid hög töjningshastighet. Detta åstadkoms genom att anpassa och något vidareutveckla tekniken med delad hopkinsonstång ("Split Hopkinson Pressure Bar", SHPB).
Vanligtvis har hopkinsonstavar cirkulärt tvärsnitt och en diameter som är mycket mindre än de verksamma våglängderna. Under sådana förhållanden är vågutbredningen i stängerna approximativt ickedispersiv, och en endimensionell (1D) vågutbredningsmodell kan användas. När det, som är fallet i denna studie, däremot inte kan säkerställas att stängernas tvärdimensioner är små i förhållande till våglängderna, är en helt igenom 1D vågutbredningsmodell otillräcklig, och tvärsnittets geometri, vilken var kvadratisk i denna studie, måste beaktas. Därför utvecklades med hjälp av Hamiltons princip en approximativ 3D vågutbredningsmodell för stänger med godtyckligt tvärsnitt. Modellen ger ett dispersionssamband (vågtal som funktion av vinkelfrekvens) samt medelvärden för förskjutningar och spänningar över gränsytorna mellan stänger och provstav. En kalibreringsprocedur utvecklades också.
Provning av granved genomfördes vid hög töjningshastighet (omkring 103 s-1) med den anpassade SHPB-tekniken, samt för jämförelse vid låg (8×10-3 s-1) och måttlig (17 s-1) töjningshastighet med en servohydraulisk provningsmaskin. Fukthalterna i veden motsvarade ugnstorr, fibermättnad och fullständig mättnad, och proven utfördes i radiell, tangentiell och axiell riktning i förhållande till trädets stam. För vart fall utfördes fem försök vid rumstemperatur. Resultaten visar töjningshastighetsberoendet för sambandet mellan spänning och töjning för granved under alla studerade förhållanden.
The aim was to establish a method for studying the relation between stress and strain in spruce wood at high strain rate. This was achieved by adapting and somewhat further developing the split Hopkinson pressure bar (SHPB) technique.
Hopkinson bars usually have a circular cross-section and a diameter much smaller than the operative wavelengths. The wave propagation in the bar is then approximately non-dispersive and a one-dimensional (1D) wave propagation model can be used. When, as in this study, it is not certain that the transverse dimensions of the bars are small in relation to the wavelengths, a solely 1D wave propagation model is insufficient and the geometry of the cross-section, which was square in this study, must be taken into account. Therefore, an approximate 3D wave propagation model for bars with arbitrary cross-section was developed using Hamilton's principle. The model provides a dispersion relation (wavenumber vs. angular frequency) and average values for displacements and stresses over the bar/specimen interfaces. A calibration procedure was also developed.
Tests on spruce wood specimens were carried out at a high strain rate (about 103 s-1) using the adapted SHPB technique, and for comparison at low (8×10-3 s-1) and medium (17 s-1) strain rates using a servohydraulic testing machine. The moisture contents of the wood specimens corresponded to oven dry, fibre saturated and fully saturated, and the testing was performed in the radial, tangential and axial directions relative to the stem of the tree. In each case, five tests were run at room temperature. The results show the strain rate dependence of the relation between stress and strain for spruce wood under all conditions studied.
Najiba, Shah. "High Pressure and Low Temperature Study of Ammonia Borane and Lithium Amidoborane." FIU Digital Commons, 2014. http://digitalcommons.fiu.edu/etd/1388.
Full textRobbins, Jesse. "An Investigation into the Cyclic Electric Fatigue of Ferroelectric Ceramics as Actuators: High Temperature and Low Pressure." University of Akron / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=akron1240861885.
Full textSuhor, Muhammad Firdaus. "Effect of Iron Carbonate Deposition on Mild Steel Corrosion in High Partial Pressure Carbon Dioxide Systems." Ohio University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1532376719359574.
Full textMohamed, Mohd Farid. "Water Chemistry and Corrosion Inhibition in High Pressure CO2 Corrosion of Mild Steel." Ohio University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1429223819.
Full textHansen, Steven Richard. "Vaporizing Foil Actuator Process Parameters: Input Characteristics, Energy Deposition, and Pressure Output." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1514997723443633.
Full textBrune, Ryan Carl. "Effect of Geometrical Parameters on Pressure Distributions of Impulse Manufacturing Technologies." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1480616552913196.
Full textZhai, Yun. "Studies on Structure and Property of Polymer-based Nano-composite Materials." ScholarWorks@UNO, 2013. http://scholarworks.uno.edu/td/1680.
Full textWindholtz, Timothy Nolan. "Plane-Strain Formability of Sheet Metal at High Velocity." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1332509672.
Full textBonfils, Laure. "Characterisation of the high strain rate deformation behaviour of α-β titanium alloys at near-transus temperature." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:e2507c22-6478-4461-be57-347382a5ee0c.
Full textSun, Yongzhou. "Study of Ammonia Borane and its Derivatives: Influence of Nanoconfinements and Pressures." FIU Digital Commons, 2015. http://digitalcommons.fiu.edu/etd/1830.
Full textPilemalm, Robert. "TiAlN-based Coatings at High Pressures and Temperatures." Licentiate thesis, Linköpings universitet, Nanostrukturerade material, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-112213.
Full textYoung, Lindsay Kay. "Synthesis and Characterization of A2Mo3O12 Materials." University of Toledo / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1431517117.
Full textKlarner, Andrew Daniel. "Development of Mg-Al-Sn and Mg-Al-Sn-Si Alloys and Optimization of Super Vacuum Die Casting Process for Lightweight Applications." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1515083355012541.
Full textBilgen, Suheyla. "Dynamic pressure in particle accelerators : experimental measurements and simulation for the LHC." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASP020.
Full textUltra-High Vacuum is an essential requirement to achieve design performances and high luminosities in high-energy particle colliders. Consequently, the understanding of the dynamic pressure evolution during accelerator operation is fundamental to provide solutions to mitigate pressure rises induced by multiple-effects occurring in the vacuum chambers and leading to beam instabilities. For the LHC, the appearance of instabilities may be due to the succession of several phenomena. First, the high intensity proton beams ionize the residual gas producing positive ions (mainly H₂⁺ or CO⁺) as well as accelerated electrons which impinge the copper wall of the beam pipe. Then, these interactions induce: (i) the desorption of gases adsorbed on the surfaces leading to pressure rises; (ii) the creation of secondary particles (ions, electrons). In this latter case, the production of secondary electrons leads to the so-called “Electron Cloud” build-up by multipacting effect, the mitigation of which being one of the major challenges of the LHC storage ring. Electron clouds generate beam instabilities, pressure rises and heat loads on the walls of beam pipe and can lead to “quench” of the superconducting magnets. All these phenomena limit the maximum intensity of the beams and thus the ultimate luminosity achievable in a proton accelerator. This work aims to investigate some fundamental phenomena which drive the dynamic pressure in the LHC, namely the effects induced by electrons and ions interacting with the copper surface of the beam screens on the one hand and the influence of the surface chemistry of copper on the other hand. First, in-situ measurements were performed. Electron and ion currents as well as pressure were recorded in situ in the Vacuum Pilot Sector (VPS) located on the LHC ring during the RUN II. By analyzing the results, more ions than expected were detected and the interplay between electrons, ions and pressure changes was investigated. Then, the ion-stimulated desorption was studied, using a devoted experimental set-up at the CERN vacuum Lab. The influence of the nature, mass, and energy of the incident ions interacting with the copper surface on the ion-desorption yields was discussed. In addition, extensive surface analyses were performed in the IJCLab laboratory to identify the role played by the surface chemistry on the electron emission yield, surface conditioning processes and the stimulated gas desorption. The fundamental role of the surface chemical components (contaminants, presence of carbon and native oxide layers) on the secondary electron yield was evidenced. Finally, we proposed a simulation code allowing to predict the pressure profiles in the vacuum chambers of particle accelerators as well as their evolution under dynamic conditions (i.e. as a function of time). This new simulation code called DYVACS (DYnamic VACuum Simulation) is an upgrade of the VASCO code developed at CERN. It was applied to simulate the dynamic pressure in the VPS when proton beams circulate into the ring. The electron cloud build-up was implemented in the code via electron cloud maps. The ionization of the residual gas by electrons was also considered. Results obtained with the DYVACS code are compared to pressure measurements recorded during typical fills for physics and a good agreement is obtained. This PhD study has provided interesting results and has allowed the development of new experimental and simulation tools that will be useful for further investigations on the vacuum stability of future particle accelerators such as HL-LHC or FCC (ee and hh)
Afsaridis, Kimon. "Investigation of residual stresses generation in aluminum flywheel." Thesis, Jönköping University, Jönköping University, JTH. Research area Product Development, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-9255.
Full textQuality of the castings is affected by several factors which the designer should take into consideration during the product development process. Although residual stress is one of those, it is often not considered in practical computations. Hence residual stresses are one of the forgotten areas in designing of machine parts. This master thesis is focused on the investigation of residual stresses in a high pressure die casted component, with the aim of extending its service life, by taking results from the study as a feedback.
The investigation of residual stresses was done on a variety of specimens, cast aluminum flywheel, provided by Husqvarna AB. This flywheel is a component in a product of the same company.In evaluating the residual stresses in the part, two tools-simulation and physical measurement were used. Moreover, comparison with these two methods is also done at an area of interest on the flywheel. The simulation was carried out by using MAGMAhpdc-a module for high pressure die casting process, from the commercial software package MAGMAsoft; while for the physical measurements, the hole drilling method was used, a method believed to be less accurate at low stresses areas.
The findings obtained from this study show that the results from both procedures are close, with small deviations observed, which reveals the reliability of the hole drilling method even when the stress levels are low. It is also found that the compressive residual stresses dominate in the component-a preferred phenomenon with regards to residual stress.
Lidon, Pierre. "Effet d'ultrasons de puissance sur les matériaux mous : vers des matériaux "acousto-rhéologiques"." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEN014/document.
Full textUltrasonic imaging and velocimetry has been proved to be very efficient methods to study various materials. At high intensity, ultrasonic waves are known to exert steady forces in newtonian fluid through nonlinear effects like the acoustic radiation pressure. However those effects have never been used in fundamental studies of the physics of soft materials. This thesis aims at exploiting the interaction between high intensity ultrasound and soft jammed materials to probe actively and even modify their mechanical properties.We first introduce an alternative technique for active microrheology we called « acoustic mesorheology ». By analyzing the motion of an intruder under the acoustic radiation pressure we characterize locally the rheology of the system under study. We test this technique on a simple yield stress fluid, namely a carbopol microgel. We compare the results with those obtained by standard rheology measurements of the behaviour of this gel under its yield stress.Then we describe the fluidization of an immersed granular packing by high intensity focused ultrasound. We compare our observations with the results of molecular dynamics simulations. The obtained fluidization is original as the injection of energy is discontinuous in time. It is hysteretic and intermittent and those properties are well captures by both simulations and a phenomenological model.Finally, we replace the plane of a standard cone-plate rheometer by an ultrasonic transducer. This allows us to characterize the effect of high frequency vibrations on the rheology of a fragile carbon black gel. We observe a significant and eventually irreversible effect of ultrasound on the elastic modulus and on the yielding of the system. Vibrations are shown to favor wall slip but seem to induce changes in the volume of the sample though
Morin, Jeremy Edward. "Thermoset recycling via high-pressure high-temperature sintering: Revisiting the effect of interchange chemistry." 2002. https://scholarworks.umass.edu/dissertations/AAI3056263.
Full textFrancis, Timothy John. "Thermodynamics of polymer -diluent systems at high pressure." 2005. https://scholarworks.umass.edu/dissertations/AAI3193901.
Full textXu, Tao. "Matrix free fiber reinforced polymeric composites via high -temperature high -pressure sintering." 2004. https://scholarworks.umass.edu/dissertations/AAI3136797.
Full textBertone, Jane Frances. "The synthesis and high pressure behavior of nanoquartz." Thesis, 2003. http://hdl.handle.net/1911/18588.
Full textVardhanabhuti, Barames. "The coefficient of earth pressure at rest and deformation and densification of granular soils subjected to static and dynamic loading." 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3223735.
Full textSource: Dissertation Abstracts International, Volume: 67-07, Section: B, page: 3976. Adviser: G. Mesri. Includes bibliographical references (leaves 895-906) Available on microfilm from Pro Quest Information and Learning.
Williams, Drew E. "Recycling thermosets: The use of high-pressure high-temperature sintering (HPHTS) and degraded material as means of producing new products." 2004. https://scholarworks.umass.edu/dissertations/AAI3152760.
Full textBuono, Antonio Salvatore. "High Pressure Melting of Iron with Nonmetals Sulfur, Carbon, Oxygen, and Hydrogen: Implications for Planetary Cores." Thesis, 2011. https://doi.org/10.7916/D8DZ0FN9.
Full text"High Pressure and High Temperature Study on Lithium carbide (Li2C2) and Calcium carbide (CaC2): An attempt to make a novel polyanionic form of Carbon." Master's thesis, 2012. http://hdl.handle.net/2286/R.I.15232.
Full textDissertation/Thesis
M.S. Chemistry 2012