Academic literature on the topic 'Graph and hypergraph drawing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Graph and hypergraph drawing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Graph and hypergraph drawing"
Jia, Jun, Xiao Yuan He, and Xiao Feng Hu. "Drawing Hypergraphs in Hyperedge’s Average Degree and Multi-Rules." Applied Mechanics and Materials 713-715 (January 2015): 1682–88. http://dx.doi.org/10.4028/www.scientific.net/amm.713-715.1682.
Full textRÖDL, V., A. RUCIŃSKI, and A. TARAZ. "Hypergraph Packing and Graph Embedding." Combinatorics, Probability and Computing 8, no. 4 (July 1999): 363–76. http://dx.doi.org/10.1017/s0963548399003879.
Full textBrown, Jason I., and Derek G. Corneil. "Graph properties and hypergraph colourings." Discrete Mathematics 98, no. 2 (December 1991): 81–93. http://dx.doi.org/10.1016/0012-365x(91)90034-y.
Full textDevezas, José, and Sérgio Nunes. "Hypergraph-of-entity." Open Computer Science 9, no. 1 (June 6, 2019): 103–27. http://dx.doi.org/10.1515/comp-2019-0006.
Full textZakiyyah, Alfi Yusrotis. "Laplacian Integral of Particular Steiner System." Engineering, MAthematics and Computer Science (EMACS) Journal 3, no. 1 (January 31, 2021): 31–32. http://dx.doi.org/10.21512/emacsjournal.v3i1.6883.
Full textVu Dang, Nguyen Trinh, Loc Tran, and Linh Tran. "Noise-robust classification with hypergraph neural network." Indonesian Journal of Electrical Engineering and Computer Science 21, no. 3 (March 10, 2021): 1465. http://dx.doi.org/10.11591/ijeecs.v21.i3.pp1465-1473.
Full textPaul, Viji, and K. A. Germina. "On hypergraph coloring and 3-uniform linear hypergraph set-indexers of a graph." Discrete Mathematics, Algorithms and Applications 07, no. 02 (May 25, 2015): 1550015. http://dx.doi.org/10.1142/s1793830915500159.
Full textCowling, Peter. "The total graph of a hypergraph." Discrete Mathematics 167-168 (April 1997): 215–36. http://dx.doi.org/10.1016/s0012-365x(96)00230-0.
Full textD'Atri, Alessandro, and Marina Moscarini. "On hypergraph acyclicity and graph chordality." Information Processing Letters 29, no. 5 (November 1988): 271–74. http://dx.doi.org/10.1016/0020-0190(88)90121-4.
Full textNarayanamoorthy, S., and A. Tamilselvi. "Bipolar Fuzzy Line Graph of a Bipolar Fuzzy Hypergraph." Cybernetics and Information Technologies 13, no. 1 (March 1, 2013): 13–17. http://dx.doi.org/10.2478/cait-2013-0002.
Full textDissertations / Theses on the topic "Graph and hypergraph drawing"
Sallaberry, Arnaud. "Visualisation d'information : de la théorie sémiotique à des exemples pratiques basés sur la représentation de graphes et d'hypergraphes." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2011. http://tel.archives-ouvertes.fr/tel-00646397.
Full textYilma, Zelealem Belaineh. "Results in Extremal Graph and Hypergraph Theory." Research Showcase @ CMU, 2011. http://repository.cmu.edu/dissertations/49.
Full textSuderman, Matthew. "Layered graph drawing." Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=86054.
Full textAs a first very drastic restriction, we consider layered drawings that are planar. Even with this restriction, however, the resulting problems can still be NP -hard. In addition to proving one such hardness result, we do succeed in deriving efficient algorithms for two problems. In both cases, we correct previously published results that claimed extremely simple and efficient algorithmic solutions to these problems. Our solutions, though efficient as well, show that the truth about these problems is significantly more complex than the published results would suggest.
We also study non-planar layered drawings, particularly drawings obtained by crossing minimization and minimum planarization. Though the corresponding problems are NP -hard, they become tractable when the value to be minimized is upper-bounded by a constant. This approach to obtaining tractable problems is formalized in a theory called parameterized complexity, and the resulting tractable problems and algorithmic solutions are said to be fixed-parameter tractable ( FPT ). Though relatively new, this theory has attracted a rapidly growing body of theoretical results. Indeed, we derive original FPT algorithms with the best-known asymptotic running times for planarization in two layer drawings.
Because parameterized complexity is so new, little is known about its implications to the practice of graph drawing. Consequently, we have implemented a few FPT algorithms and compared them experimentally with previously implemented approaches, especially integer linear programming (ILP). Our experiments show that the performance of our FPT planarization algorithms are competitive with current ILP algorithms, but that, for crossing minimization, current ILP algorithms remain the clear winners.
Puppe, Thomas. "Spectral graph drawing." [S.l. : s.n.], 2005. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB11759114.
Full textSchulz, Michael. "Simultaneous graph drawing." Tönning Marburg Lübeck Der Andere Verl, 2008. http://d-nb.info/992494834/04.
Full textWang, Guan. "STREAMING HYPERGRAPH PARTITION FOR MASSIVE GRAPHS." Kent State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=kent1385097649.
Full textPampel, Barbara [Verfasser]. "Constrained Graph Drawing / Barbara Pampel." Konstanz : Bibliothek der Universität Konstanz, 2012. http://d-nb.info/1024457656/34.
Full textHe, Dayu. "Algorithms for Graph Drawing Problems." Thesis, State University of New York at Buffalo, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10284151.
Full textA graph G is called planar if it can be drawn on the plan such that no two distinct edges intersect each other but at common endpoints. Such drawing is called a plane embedding of G. A plane graph is a graph with a fixed embedding. A straight-line drawing G of a graph G = (V, E) is a drawing where each vertex of V is drawn as a distinct point on the plane and each edge of G is drawn as a line segment connecting two end vertices. In this thesis, we study a set of planar graph drawing problems.
First, we consider the problem of monotone drawing: A path P in a straight line drawing Γ is monotone if there exists a line l such that the orthogonal projections of the vertices of P on l appear along l in the order they appear in P. We call l a monotone line (or monotone direction) of P. G is called a monotone drawing of G if it contains at least one monotone path Puw between every pair of vertices u,w of G. Monotone drawings were recently introduced by Angelini et al. and represent a new visualization paradigm, and is also closely related to several other important graph drawing problems. As in many graph drawing problems, one of the main concerns of this research is to reduce the drawing size, which is the size of the smallest integer grid such that every graph in the graph class can be drawn in such a grid. We present two approaches for the problem of monotone drawings of trees. Our first approach show that every n-vertex tree T admits a monotone drawing on a grid of size O(n1.205) × O( n1.205) grid. Our second approach further reduces the size of drawing to 12n × 12n, which is asymptotically optimal. Both of our two drawings can be constructed in O(n) time.
We also consider monotone drawings of 3-connected plane graphs. We prove that the classical Schnyder drawing of 3-connected plane graphs is a monotone drawing on a f × f grid, which can be constructed in O(n) time.
Second, we consider the problem of orthogonal drawing. An orthogonal drawing of a plane graph G is a planar drawing of G such that each vertex of G is drawn as a point on the plane, and each edge is drawn as a sequence of horizontal and vertical line segments with no crossings. Orthogonal drawing has attracted much attention due to its various applications in circuit schematics, relationship diagrams, data flow diagrams etc. . Rahman et al. gave a necessary and sufficient condition for a plane graph G of maximum degree 3 to have an orthogonal drawing without bends. An orthogonal drawing D(G) is orthogonally convex if all faces of D(G) are orthogonally convex polygons. Chang et al. gave a necessary and sufficient condition (which strengthens the conditions in the previous result) for a plane graph G of maximum degree 3 to have an orthogonal convex drawing without bends. We further strengthen the results such that if G satisfies the same conditions as in previous papers, it not only has an orthogonally convex drawing, but also a stronger star-shaped orthogonal drawing.
Lauw, Madelaine L. "TiddlyGraph : graph drawing tool for TiddlyWiki /." Leeds : University of Leeds, School of Computer Studies, 2008. http://www.comp.leeds.ac.uk/fyproj/reports/0708/Lauw.pdf.
Full textAspegren, Villiam. "CluStic – Automatic graph drawing with clusters." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-179251.
Full textMålet med automatiserad grafritning är att utifrån en uppsättning noder och kanter hitta en layout som är visuellt tillfredställande. Ett delområde som inte utforskats nog är möjligheten till att låsa vissa komponenter i grafen som sedan inte får alterneras av grafritningsalgoritmen. En användare som exempel, strukturerar vissa delar av grafen manuellt och applicerar sedan automatisk layout av resterande element utan att förstöra den struktur som manuellt skapats. CluStic, grafritningsverktyget som skapats och utvärderats i denna masters uppsats fyller denna funktion. CluStic bevarar den interna strukturen för ett kluster genom att tilldela en högre prioritet för noder i klustret med avseende på övriga element i grafen. Efter att högprioritets element placerats tilldelas resterande element sina bäst tillgängliga positioner. Utöver detta så uppfyller CluStic några av de vanligaste estetiska mål inom grafritning: minimera antalet kantkorsningar, minimera höjden, och räta ut kanter. Metoden som används i denna master uppsatts var att först gör en inledande studie där vi undersöker fyra populära grafritnings verktyg: Cytogate, GraphDraw, Diagram.Net och GraphNet. En uppsättning grafer genereras av dessa verktyg och vi mäter hur lång tid det tar för en användare att hitta den längsta vägen i grafen. Genom denna studie konstaterar vi att Cytogate presenterade grafer med best kvalitet. Från kunskap samlad i den inledande studien utvecklar vi CluStic och utför uppsatsens huvud studie där vi jämför CluStic med avseende på Cytogate och en bas layout Breddenförst algoritm. CluStic uppnår ett visualiserings effektivitetsvärde på 1,4 vilket är en ökning jämtemot Bredden-först algoritmen (-3,8). CluStic levererar inte layouter som är mer visuellt tillfredställande än de som skapats av Cytogate som får ett visualiserings effektivitetsvärde på 1,9. CluStic tillskillnad från Cytogate bevarar den internt fixa strukturen mellan element med hög prioritet vilket gör CluStic till det bättre verktyget för grafer med statiska element.
Books on the topic "Graph and hypergraph drawing"
Bader, David A., 1969- editor of compilation, Meyerhenke, Henning, 1978- editor of compilation, Sanders, Peter, editor of compilation, and Wagner, Dorothea, 1957- editor of compilation, eds. Graph partitioning and graph clustering: 10th DIMACS Implementation Challenge Workshop, February 13-14, 2012, Georgia Institute of Technology, Atlanta, GA. Providence, Rhode Island: American Mathematical Society, 2013.
Find full textIntroduction to graph and hypergraph theory. Hauppauge, NY: Nova Science Publishers, 2009.
Find full textWhitesides, Sue H., ed. Graph Drawing. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/3-540-37623-2.
Full textEppstein, David, and Emden R. Gansner, eds. Graph Drawing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11805-0.
Full textTollis, Ioannis G., and Maurizio Patrignani, eds. Graph Drawing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00219-9.
Full textDidimo, Walter, and Maurizio Patrignani, eds. Graph Drawing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36763-2.
Full textGoodrich, Michael T., and Stephen G. Kobourov, eds. Graph Drawing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-36151-0.
Full textWismath, Stephen, and Alexander Wolff, eds. Graph Drawing. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-03841-4.
Full textDiBattista, Giuseppe, ed. Graph Drawing. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/3-540-63938-1.
Full textHong, Seok-Hee, Takao Nishizeki, and Wu Quan, eds. Graph Drawing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77537-9.
Full textBook chapters on the topic "Graph and hypergraph drawing"
Kaufmann, Michael, Marc van Kreveld, and Bettina Speckmann. "Subdivision Drawings of Hypergraphs." In Graph Drawing, 396–407. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00219-9_39.
Full textBuchin, Kevin, Marc van Kreveld, Henk Meijer, Bettina Speckmann, and Kevin Verbeek. "On Planar Supports for Hypergraphs." In Graph Drawing, 345–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11805-0_33.
Full textSander, Georg. "Layout of Directed Hypergraphs with Orthogonal Hyperedges." In Graph Drawing, 381–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-24595-7_35.
Full textMubayi, Dhruv, and Andrew Suk. "A Ramsey-Type Result for Geometric ℓ-Hypergraphs." In Graph Drawing, 364–75. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-03841-4_32.
Full textde Fraysseix, Hubert, Patrice Ossona de Mendez, and Pierre Rosenstiehl. "Representation of Planar Hypergraphs by Contacts of Triangles." In Graph Drawing, 125–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77537-9_15.
Full textBertault, François, and Peter Eades. "Drawing Hypergraphs in the Subset Standard (Short Demo Paper)." In Graph Drawing, 164–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-44541-2_15.
Full textChimani, Markus, Carsten Gutwenger, Petra Mutzel, Miro Spönemann, and Hoi-Ming Wong. "Crossing Minimization and Layouts of Directed Hypergraphs with Port Constraints." In Graph Drawing, 141–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-18469-7_13.
Full textChevalier, Cédric. "Hypergraph Partitioning." In Graph Partitioning, 65–80. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118601181.ch3.
Full textPshenitsyn, Tikhon. "Hypergraph Basic Categorial Grammars." In Graph Transformation, 146–62. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51372-6_9.
Full textvan Wijk, Jarke J. "Graph Visualization." In Graph Drawing, 86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25878-7_9.
Full textConference papers on the topic "Graph and hypergraph drawing"
Zass, Ron, and Amnon Shashua. "Probabilistic graph and hypergraph matching." In 2008 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2008. http://dx.doi.org/10.1109/cvpr.2008.4587500.
Full textSun, Xiangguo, Hongzhi Yin, Bo Liu, Hongxu Chen, Jiuxin Cao, Yingxia Shao, and Nguyen Quoc Viet Hung. "Heterogeneous Hypergraph Embedding for Graph Classification." In WSDM '21: The Fourteenth ACM International Conference on Web Search and Data Mining. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3437963.3441835.
Full textDi Giacomo, Emilio, Walter Didimo, Seok-hee Hong, Michael Kaufmann, Stephen G. Kobourov, Giuseppe Liotta, Kazuo Misue, Antonios Symvonis, and Hsu-Chun Yen. "Low ply graph drawing." In 2015 6th International Conference on Information, Intelligence, Systems and Applications (IISA). IEEE, 2015. http://dx.doi.org/10.1109/iisa.2015.7388020.
Full textDa Lozzo, Giordano, Marco Di Bartolomeo, Maurizio Patrignani, Giuseppe Di Battista, Davide Cannone, and Sergio Tortora. "Drawing Georeferenced Graphs - Combining Graph Drawing and Geographic Data." In International Conference on Information Visualization Theory and Applications. SCITEPRESS - Science and and Technology Publications, 2015. http://dx.doi.org/10.5220/0005266601090116.
Full textBae, Joonhyun, and Sangwook Kim. "A Global Social Graph as a Hybrid Hypergraph." In 2009 Fifth International Joint Conference on INC, IMS and IDC. IEEE, 2009. http://dx.doi.org/10.1109/ncm.2009.20.
Full textKallaugher, John, Michael Kapralov, and Eric Price. "The Sketching Complexity of Graph and Hypergraph Counting." In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 2018. http://dx.doi.org/10.1109/focs.2018.00059.
Full textMunshi, Shiladitya, Ayan Chakraborty, and Debajyoti Mukhopadhyay. "Theories of Hypergraph-Graph (HG(2)) Data Structure." In 2013 International Conference on Cloud & Ubiquitous Computing & Emerging Technologies (CUBE). IEEE, 2013. http://dx.doi.org/10.1109/cube.2013.45.
Full textIbrahim, Bertrand, Honitriniela Randriamparany, and Hidenori Yoshizumi. "Relevance of graph-drawing algorithms to graph-based interfaces." In the working conference. New York, New York, USA: ACM Press, 2000. http://dx.doi.org/10.1145/345513.345357.
Full textSamaranayake, Meththa, Helen Ji, and John Ainscough. "Graph drawing alogorithms based module placement." In 2009 International Symposium on Signals, Circuits and Systems - ISSCS 2009. IEEE, 2009. http://dx.doi.org/10.1109/isscs.2009.5206087.
Full textNiggemann, Oliver, and Benno Stein. "A meta heuristic for graph drawing." In the working conference. New York, New York, USA: ACM Press, 2000. http://dx.doi.org/10.1145/345513.345354.
Full textReports on the topic "Graph and hypergraph drawing"
Fu, Xiangyang, Guangdao Gao, and Peng Yang. Aircraft Drawing-Die Design CAD Expert System Based on Engineering Graph,. Fort Belvoir, VA: Defense Technical Information Center, August 1995. http://dx.doi.org/10.21236/ada300179.
Full text