Academic literature on the topic 'Graph Attention Networks'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Graph Attention Networks.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Graph Attention Networks"
Wu, Nan, and Chaofan Wang. "Ensemble Graph Attention Networks." Transactions on Machine Learning and Artificial Intelligence 10, no. 3 (June 12, 2022): 29–41. http://dx.doi.org/10.14738/tmlai.103.12399.
Full textMurzin, M. V., I. A. Kulikov, and N. A. Zhukova. "Methods for Constructing Graph Neural Networks." LETI Transactions on Electrical Engineering & Computer Science 17, no. 10 (2024): 40–48. https://doi.org/10.32603/2071-8985-2024-17-10-40-48.
Full textSheng, Jinfang, Yufeng Zhang, Bin Wang, and Yaoxing Chang. "MGATs: Motif-Based Graph Attention Networks." Mathematics 12, no. 2 (January 16, 2024): 293. http://dx.doi.org/10.3390/math12020293.
Full textChatzianastasis, Michail, Johannes Lutzeyer, George Dasoulas, and Michalis Vazirgiannis. "Graph Ordering Attention Networks." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 6 (June 26, 2023): 7006–14. http://dx.doi.org/10.1609/aaai.v37i6.25856.
Full textLi, Yu, Yuan Tian, Jiawei Zhang, and Yi Chang. "Learning Signed Network Embedding via Graph Attention." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (April 3, 2020): 4772–79. http://dx.doi.org/10.1609/aaai.v34i04.5911.
Full textWang, Bin, Yu Chen, Jinfang Sheng, and Zhengkun He. "Attributed Graph Embedding Based on Attention with Cluster." Mathematics 10, no. 23 (December 1, 2022): 4563. http://dx.doi.org/10.3390/math10234563.
Full textLi, Zitong, Xiang Cheng, Lixiao Sun, Ji Zhang, and Bing Chen. "A Hierarchical Approach for Advanced Persistent Threat Detection with Attention-Based Graph Neural Networks." Security and Communication Networks 2021 (May 4, 2021): 1–14. http://dx.doi.org/10.1155/2021/9961342.
Full textChen, Lu, Boer Lv, Chi Wang, Su Zhu, Bowen Tan, and Kai Yu. "Schema-Guided Multi-Domain Dialogue State Tracking with Graph Attention Neural Networks." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 05 (April 3, 2020): 7521–28. http://dx.doi.org/10.1609/aaai.v34i05.6250.
Full textLiu, Jie, Lingyun Song, Li Gao, and Xuequn Shang. "MMAN: Metapath Based Multi-Level Graph Attention Networks for Heterogeneous Network Embedding (Student Abstract)." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 11 (June 28, 2022): 13005–6. http://dx.doi.org/10.1609/aaai.v36i11.21639.
Full textWang, Rui, Bicheng Li, Shengwei Hu, Wenqian Du, and Min Zhang. "Knowledge Graph Embedding via Graph Attenuated Attention Networks." IEEE Access 8 (2020): 5212–24. http://dx.doi.org/10.1109/access.2019.2963367.
Full textDissertations / Theses on the topic "Graph Attention Networks"
Guo, Dalu. "Attention Networks in Visual Question Answering and Visual Dialog." Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/25079.
Full textDronzeková, Michaela. "Analýza polygonálních modelů pomocí neuronových sítí." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2020. http://www.nusl.cz/ntk/nusl-417253.
Full textLee, John Boaz T. "Deep Learning on Graph-structured Data." Digital WPI, 2019. https://digitalcommons.wpi.edu/etd-dissertations/570.
Full textYou, Di. "Attributed Multi-Relational Attention Network for Fact-checking URL Recommendation." Digital WPI, 2019. https://digitalcommons.wpi.edu/etd-theses/1321.
Full textMazzieri, Diego. "Machine Learning for combinatorial optimization: the case of Vehicle Routing." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24688/.
Full textGullstrand, Mattias, and Stefan Maraš. "Using Graph Neural Networks for Track Classification and Time Determination of Primary Vertices in the ATLAS Experiment." Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-288505.
Full textFrån och med 2027 kommer \textit{high-luminosity Large Hadron Collider} (HL-LHC) att tas i drift och möjliggöra mätningar med högre precision och utforskningar av nya fysikprocesser mellan elementarpartiklar. Ett centralt problem som uppstår i ATLAS-detektorn vid rekonstruktionen av partikelkollisioner är att separera sällsynta och intressanta interaktioner, så kallade \textit{hard-scatters} (HS) från ointressanta \textit{pileup}-interaktioner (PU) i den kompakta rumsliga dimensionen. Svårighetsgraden för detta problem ökar vid högre luminositeter. Med hjälp av den kommande \textit{High-Granularity Timing-detektorns} (HGTD) mätningar kommer även tidsinformation relaterat till interaktionerna att erhållas. I detta projekt används denna information för att beräkna tiden för enskillda interaktioner vilket därmed kan användas för att separera HS-interaktioner från PU-interaktioner. Den nuvarande metoden använder en trädregressionsmetod, s.k. boosted decision tree (BDT) tillsammans med tidsinformationen från HGTD för att bestämma en tid. Vi föreslår ett nytt tillvägagångssätt baserat på ett s.k. uppvaktande grafnätverk (GAT), där varje protonkollision representeras som en graf över partikelspåren och där GAT-egenskaperna tillämpas på spårnivå. Våra resultat visar att vi kan replikera de BDT-baserade resultaten och till och med förbättra resultaten på bekostnad av att öka osäkerheten i tidsbestämningarna. Vi drar slutsatsen att även om det finns potential för GAT-modeller att överträffa BDT-modeller, bör mer komplexa versioner av de förra tillämpas. Vi ger slutligen några förbättringsförslag som vi hoppas ska kunna inspirera till ytterligare studier och framsteg inom detta område, vilket visar lovande potential.
Breckel, Thomas P. K. [Verfasser], Christiane [Akademischer Betreuer] Thiel, and Stefan [Akademischer Betreuer] Debener. "Insights into brain networks from functional MRI and graph analysis during and following attentional demand / Thomas P. K. Breckel. Betreuer: Christiane Thiel ; Stefan Debener." Oldenburg : BIS der Universität Oldenburg, 2013. http://d-nb.info/1050299434/34.
Full textBreckel, Thomas [Verfasser], Christiane Akademischer Betreuer] Thiel, and Stefan [Akademischer Betreuer] [Debener. "Insights into brain networks from functional MRI and graph analysis during and following attentional demand / Thomas P. K. Breckel. Betreuer: Christiane Thiel ; Stefan Debener." Oldenburg : BIS der Universität Oldenburg, 2013. http://nbn-resolving.de/urn:nbn:de:gbv:715-oops-15262.
Full textAmor, Yasmine. "Ιntelligent apprοach fοr trafic cοngestiοn predictiοn." Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMR129.
Full textTraffic congestion presents a critical challenge to urban areas, as the volume of vehicles continues to grow faster than the system’s overall capacity. This growth impacts economic activity, environmental sustainability, and overall quality of life. Although strategies for mitigating traffic congestion have seen improvements over the past few decades, many cities still struggle to manage it effectively. While various models have been developed to tackle this issue, existing approaches often fall short in providing real-time, localized predictions that can adapt to complex and dynamic traffic conditions. Most rely on fixed prediction horizons and lack the intelligent infrastructure needed for flexibility. This thesis addresses these gaps by proposing an intelligent, decentralized, infrastructure-based approach for traffic congestion estimation and prediction.We start by studying Traffic Estimation. We examine the possible congestion measures and data sources required for different contexts that may be studied. We establish a three-dimensional relationship between these axes. A rule-based system is developed to assist researchers and traffic operators in recommending the most appropriate congestion measures based on the specific context under study. We then proceed to Traffic Prediction, introducing our DECentralized COngestion esTimation and pRediction model using Intelligent Variable Message Signs (DECOTRIVMS). This infrastructure-based model employs intelligent Variable Message Signs (VMSs) to collect real-time traffic data and provide short-term congestion predictions with variable prediction horizons.We use Graph Attention Networks (GATs) due to their ability to capture complex relationships and handle graph-structured data. They are well-suited for modeling interactions between different road segments. In addition to GATs, we employ online learning methods, specifically, Stochastic Gradient Descent (SGD) and ADAptive GRAdient Descent (ADAGRAD). While these methods have been successfully used in various other domains, their application in traffic congestion prediction remains under-explored. In our thesis, we aim to bridge that gap by exploring their effectiveness within the context of real-time traffic congestion forecasting.Finally, we validate our model’s effectiveness through two case studies conducted in Muscat, Oman, and Rouen, France. A comprehensive comparative analysis is performed, evaluating various prediction techniques, including GATs, Graph Convolutional Networks (GCNs), SGD and ADAGRAD. The achieved results underscore the potential of DECOTRIVMS, demonstrating its potential for accurate and effective traffic congestion prediction across diverse urban contexts
Blini, Elvio A. "Biases in Visuo-Spatial Attention: from Assessment to Experimental Induction." Doctoral thesis, Università degli studi di Padova, 2016. http://hdl.handle.net/11577/3424480.
Full textIn questo lavoro presenterò una serie di ricerche che possono sembrare piuttosto eterogenee per quesiti sperimentali e approcci metodologici, ma sono tuttavia legate da un filo conduttore comune: i costrutti di ragionamento e attenzione spaziale. Affronterò in particolare aspetti legati alla valutazione delle asimmetrie attenzionali, nell'individuo sano come nel paziente con disturbi neurologici, il loro ruolo in vari aspetti della cognizione umana, e i loro substrati neurali, guidato dalla convinzione che l’attenzione spaziale giochi un ruolo importante in svariati processi mentali non necessariamente limitati alla percezione. Quanto segue è stato dunque organizzato in due sezioni distinte. Nella prima mi soffermerò sulla valutazione delle asimmetrie visuospaziali, iniziando dalla descrizione di un nuovo paradigma particolarmente adatto a questo scopo. Nel primo capitolo descriverò gli effetti del doppio compito e del carico attenzionale su un test di monitoraggio spaziale; il risultato principale mostra un netto peggioramento nella prestazione al compito di detezione spaziale in funzione del carico di memoria introdotto. Nel secondo capitolo applicherò lo stesso paradigma ad una popolazione clinica contraddistinta da lesione cerebrale dell’emisfero sinistro. Nonostante una valutazione neuropsicologica standard non evidenziasse alcun deficit lateralizzato dell’attenzione, mostrerò che sfruttare un compito accessorio può portare ad una spiccata maggiore sensibilità dei test diagnostici, con evidenti ricadute benefiche sull'iter clinico e terapeutico dei pazienti. Infine, nel terzo capitolo suggerirò, tramite dati preliminari, che asimmetrie attenzionali possono essere individuate, nell'individuo sano, anche lungo l’asse sagittale; argomenterò, in particolare, che attorno allo spazio peripersonale sembrano essere generalmente concentrate più risorse attentive, e che i benefici conseguenti si estendono a compiti di varia natura (ad esempio compiti di discriminazione). Passerò dunque alla seconda sezione, in cui, seguendo una logica inversa, indurrò degli spostamenti nel focus attentivo in modo da valutarne il ruolo in compiti di varia natura. Nei capitoli quarto e quinto sfrutterò delle stimolazioni sensoriali: la stimolazione visiva optocinetica e la stimolazione galvanico vestibolare, rispettivamente. Nel quarto capitolo mostrerò che l’attenzione spaziale è coinvolta nella cognizione numerica, con cui intrattiene rapporti bidirezionali. Nello specifico mostrerò da un lato che la stimolazione optocinetica può modulare l’occorrenza di errori procedurali nel calcolo mentale, dall'altro che il calcolo stesso ha degli effetti sull'attenzione spaziale e in particolare sul comportamento oculomotorio. Nel quinto capitolo esaminerò gli effetti della stimolazione galvanica vestibolare, una tecnica particolarmente promettente per la riabilitazione dei disturbi attentivi lateralizzati, sulle rappresentazioni mentali dello spazio. Discuterò in modo critico un recente modello della negligenza spaziale unilaterale, suggerendo che stimolazioni e disturbi vestibolari possano sì avere ripercussioni sulle rappresentazioni metriche dello spazio, ma senza comportare necessariamente inattenzione per lo spazio stesso. Infine, nel sesto capitolo descriverò gli effetti di cattura dell’attenzione visuospaziale che stimoli distrattori intrinsecamente motivanti possono esercitare nell'adulto sano. Cercherò, in particolare, di predire l’entità di questa cattura attenzionale partendo da immagini di risonanza magnetica funzionale a riposo: riporterò dati preliminari focalizzati sull'importanza del circuito cingolo-opercolare, effettuando un parallelismo con popolazioni cliniche caratterizzate da comportamenti di dipendenza.
Books on the topic "Graph Attention Networks"
Dorogovtsev, Sergey N., and José F. F. Mendes. The Nature of Complex Networks. Oxford University PressOxford, 2022. http://dx.doi.org/10.1093/oso/9780199695119.001.0001.
Full textBianconi, Ginestra. Synchronization, Non-linear Dynamics and Control. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198753919.003.0015.
Full textBook chapters on the topic "Graph Attention Networks"
Liu, Zhiyuan, and Jie Zhou. "Graph Attention Networks." In Introduction to Graph Neural Networks, 39–41. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-031-01587-8_7.
Full textHuang, Junjie, Huawei Shen, Liang Hou, and Xueqi Cheng. "Signed Graph Attention Networks." In Artificial Neural Networks and Machine Learning – ICANN 2019: Workshop and Special Sessions, 566–77. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30493-5_53.
Full textAbdel-Basset, Mohamed, Nour Moustafa, Hossam Hawash, and Zahir Tari. "Graph Attention Networks: A Journey from Start to End." In Responsible Graph Neural Networks, 131–58. Boca Raton: Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003329701-6.
Full textFrey, Christian M. M., Yunpu Ma, and Matthias Schubert. "SEA: Graph Shell Attention in Graph Neural Networks." In Machine Learning and Knowledge Discovery in Databases, 326–43. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-26390-3_20.
Full textMa, Liheng, Reihaneh Rabbany, and Adriana Romero-Soriano. "Graph Attention Networks with Positional Embeddings." In Advances in Knowledge Discovery and Data Mining, 514–27. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75762-5_41.
Full textTao, Ye, Ying Li, and Zhonghai Wu. "Revisiting Attention-Based Graph Neural Networks for Graph Classification." In Lecture Notes in Computer Science, 442–58. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-14714-2_31.
Full textWang, Yubin, Zhenyu Zhang, Tingwen Liu, and Li Guo. "SLGAT: Soft Labels Guided Graph Attention Networks." In Advances in Knowledge Discovery and Data Mining, 512–23. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47426-3_40.
Full textJyoti, Divya, Akhil Sharma, Shaswat Gupta, Prashant Manhar, Jyoti Srivastava, and Dharamendra Prasad Mahato. "Abstractive Summarization Using Gated Graph Attention Networks." In Lecture Notes on Data Engineering and Communications Technologies, 95–106. Cham: Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-87766-7_9.
Full textZhao, Ming, Weijia Jia, and Yusheng Huang. "Attention-Based Aggregation Graph Networks for Knowledge Graph Information Transfer." In Advances in Knowledge Discovery and Data Mining, 542–54. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47436-2_41.
Full textWang, Jingqi, Cui Zhu, and Wenjun Zhu. "Dynamic Embedding Graph Attention Networks for Temporal Knowledge Graph Completion." In Knowledge Science, Engineering and Management, 722–34. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-10983-6_55.
Full textConference papers on the topic "Graph Attention Networks"
Kato, Jun, Airi Mita, Keita Gobara, and Akihiro Inokuchi. "Deep Graph Attention Networks." In 2024 Twelfth International Symposium on Computing and Networking Workshops (CANDARW), 170–74. IEEE, 2024. https://doi.org/10.1109/candarw64572.2024.00034.
Full textIshtiaq, Mariam, Jong-Un Won, and Sangchan Park. "GATreg - Graph Attention Networks with Regularization." In 2025 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), 1022–26. IEEE, 2025. https://doi.org/10.1109/icaiic64266.2025.10920663.
Full textBuschmann, Fernando Vera, Zhihui Du, and David Bader. "Enhanced Knowledge Graph Attention Networks for Efficient Graph Learning." In 2024 IEEE High Performance Extreme Computing Conference (HPEC), 1–7. IEEE, 2024. https://doi.org/10.1109/hpec62836.2024.10938526.
Full textGao, Yiwei, and Qing Gao. "Graph Structure Adversarial Attack Design Based on Graph Attention Networks." In 2024 43rd Chinese Control Conference (CCC), 9028–33. IEEE, 2024. http://dx.doi.org/10.23919/ccc63176.2024.10661862.
Full textLi, Min, Xuejun Li, and Jing Liao. "Graph Attention Networks Fusing Semantic Information for Knowledge Graph Completion." In 2024 17th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), 1–6. IEEE, 2024. https://doi.org/10.1109/cisp-bmei64163.2024.10906235.
Full textVu, Tuan Hoang, Anh Nguyen, and Minh Tuan Nguyen. "Graph Attention Networks Based Cardiac Arrest Diagnosis." In 2024 International Conference on Advanced Technologies for Communications (ATC), 762–67. IEEE, 2024. https://doi.org/10.1109/atc63255.2024.10908172.
Full textRustamov, Zahiriddin, Ayham Zaitouny, Rafat Damseh, and Nazar Zaki. "GAIS: A Novel Approach to Instance Selection with Graph Attention Networks." In 2024 IEEE International Conference on Knowledge Graph (ICKG), 309–16. IEEE, 2024. https://doi.org/10.1109/ickg63256.2024.00046.
Full textWang, Shuowei, Sifan Ding, and William Zhu. "Deep Graph Matching with Improved Graph-Context Networks based by Attention." In 2024 International Conference on Artificial Intelligence and Power Systems (AIPS), 156–60. IEEE, 2024. http://dx.doi.org/10.1109/aips64124.2024.00041.
Full textBrynte, Lucas, José Pedro Iglesias, Carl Olsson, and Fredrik Kahl. "Learning Structure-From-Motion with Graph Attention Networks." In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 4808–17. IEEE, 2024. http://dx.doi.org/10.1109/cvpr52733.2024.00460.
Full textZhang, Shuya, Tao Yang, and Kongfa Hu. "Multi-Label Syndrome Classification with Graph Attention Networks." In 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 4802–6. IEEE, 2024. https://doi.org/10.1109/bibm62325.2024.10822526.
Full textReports on the topic "Graph Attention Networks"
Fait, Aaron, Grant Cramer, and Avichai Perl. Towards improved grape nutrition and defense: The regulation of stilbene metabolism under drought. United States Department of Agriculture, May 2014. http://dx.doi.org/10.32747/2014.7594398.bard.
Full text