Academic literature on the topic 'Graph classification'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Graph classification.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Graph classification"
Liu, Xien, Xinxin You, Xiao Zhang, Ji Wu, and Ping Lv. "Tensor Graph Convolutional Networks for Text Classification." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 05 (April 3, 2020): 8409–16. http://dx.doi.org/10.1609/aaai.v34i05.6359.
Full textRIESEN, KASPAR, and HORST BUNKE. "GRAPH CLASSIFICATION BASED ON VECTOR SPACE EMBEDDING." International Journal of Pattern Recognition and Artificial Intelligence 23, no. 06 (September 2009): 1053–81. http://dx.doi.org/10.1142/s021800140900748x.
Full textAref'ev, Roman D., John T. Baldwin, and Marco Mazzucco. "Classification of δ-invariant amalgamation classes." Journal of Symbolic Logic 64, no. 4 (December 1999): 1743–50. http://dx.doi.org/10.2307/2586809.
Full textGumbrell, Lee, and James McKee. "A classification of all 1-Salem graphs." LMS Journal of Computation and Mathematics 17, no. 1 (2014): 582–94. http://dx.doi.org/10.1112/s1461157014000060.
Full textBera, Abhijit, Mrinal Kanti Ghose, and Dibyendu Kumar Pal. "Graph Classification Using Back Propagation Learning Algorithms." International Journal of Systems and Software Security and Protection 11, no. 2 (July 2020): 1–12. http://dx.doi.org/10.4018/ijsssp.2020070101.
Full textSchmidt, Miriam, Günther Palm, and Friedhelm Schwenker. "Spectral graph features for the classification of graphs and graph sequences." Computational Statistics 29, no. 1-2 (November 30, 2012): 65–80. http://dx.doi.org/10.1007/s00180-012-0381-6.
Full textZhang, Yingxue, Soumyasundar Pal, Mark Coates, and Deniz Ustebay. "Bayesian Graph Convolutional Neural Networks for Semi-Supervised Classification." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 5829–36. http://dx.doi.org/10.1609/aaai.v33i01.33015829.
Full textSCHENKER, ADAM, MARK LAST, HORST BUNKE, and ABRAHAM KANDEL. "CLASSIFICATION OF WEB DOCUMENTS USING GRAPH MATCHING." International Journal of Pattern Recognition and Artificial Intelligence 18, no. 03 (May 2004): 475–96. http://dx.doi.org/10.1142/s0218001404003241.
Full textEilers, Søren, Gunnar Restorff, Efren Ruiz, and Adam P. W. Sørensen. "Geometric Classification of Graph C*-algebras over Finite Graphs." Canadian Journal of Mathematics 70, no. 2 (April 1, 2018): 294–353. http://dx.doi.org/10.4153/cjm-2017-016-7.
Full textMagelinski, Thomas, David Beskow, and Kathleen M. Carley. "Graph-Hist: Graph Classification from Latent Feature Histograms with Application to Bot Detection." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (April 3, 2020): 5134–41. http://dx.doi.org/10.1609/aaai.v34i04.5956.
Full textDissertations / Theses on the topic "Graph classification"
Wainer, L. J. "Online graph-based learning for classification." Thesis, University College London (University of London), 2008. http://discovery.ucl.ac.uk/1446151/.
Full textSaldanha, Richard A. "Graph-theoretic methods in discrimination and classification." Thesis, University of Oxford, 1998. https://ora.ox.ac.uk/objects/uuid:3a06dee1-00e9-4b56-be8e-e991a570ced6.
Full textKetkar, Nikhil S. "Empirical comparison of graph classification and regression algorithms." Pullman, Wash. : Washington State University, 2009. http://www.dissertations.wsu.edu/Dissertations/Spring2009/n_ketkar_042409.pdf.
Full textTitle from PDF title page (viewed on June 3, 2009). "School of Electrical Engineering and Computer Science." Includes bibliographical references (p. 101-108).
Ferrer, Sumsi Miquel. "Theory and Algorithms on the Median Graph. Application to Graph-based Classification and Clustering." Doctoral thesis, Universitat Autònoma de Barcelona, 2008. http://hdl.handle.net/10803/5788.
Full textEn el reconeixement estructural de patrons, els grafs han estat usats normalment per a representar objectes complexos. En el domini dels grafs, el concepte de mediana és conegut com median graph. Potencialment, té les mateixes aplicacions que el concepte de mediana per poder ser usat com a representant d'un conjunt de grafs.
Tot i la seva simple definició i les potencials aplicacions, s'ha demostrat que el seu càlcul és una tasca extremadament complexa. Tots els algorismes existents només han estat capaços de treballar amb conjunts petits de grafs, i per tant, la seva aplicació ha estat limitada en molts casos a usar dades sintètiques sense significat real. Així, tot i el seu potencial, ha restat com un concepte eminentment teòric.
L'objectiu principal d'aquesta tesi doctoral és el d'investigar a fons la teoria i l'algorísmica relacionada amb el concepte de medinan graph, amb l'objectiu final d'extendre la seva aplicabilitat i lliurar tot el seu potencial al món de les aplicacions reals. Per això, presentem nous resultats teòrics i també nous algorismes per al seu càlcul. Des d'un punt de vista teòric aquesta tesi fa dues aportacions fonamentals. Per una banda, s'introdueix el nou concepte d'spectral median graph. Per altra banda es mostra que certes de les propietats teòriques del median graph poden ser millorades sota determinades condicions. Més enllà de les aportacioncs teòriques, proposem cinc noves alternatives per al seu càlcul. La primera d'elles és una conseqüència directa del concepte d'spectral median graph. Després, basats en les millores de les propietats teòriques, presentem dues alternatives més per a la seva obtenció. Finalment, s'introdueix una nova tècnica per al càlcul del median basat en el mapeig de grafs en espais de vectors, i es proposen dos nous algorismes més.
L'avaluació experimental dels mètodes proposats utilitzant una base de dades semi-artificial (símbols gràfics) i dues amb dades reals (mollècules i pàgines web), mostra que aquests mètodes són molt més eficients que els existents. A més, per primera vegada, hem demostrat que el median graph pot ser un bon representant d'un conjunt d'objectes utilitzant grans quantitats de dades. Hem dut a terme experiments de classificació i clustering que validen aquesta hipòtesi i permeten preveure una pròspera aplicació del median graph a un bon nombre d'algorismes d'aprenentatge.
Given a set of objects, the generic concept of median is defined as the object with the smallest sum of distances to all the objects in the set. It has been often used as a good alternative to obtain a representative of the set.
In structural pattern recognition, graphs are normally used to represent structured objects. In the graph domain, the concept analogous to the median is known as the median graph. By extension, it has the same potential applications as the generic median in order to be used as the representative of a set of graphs.
Despite its simple definition and potential applications, its computation has been shown as an extremely complex task. All the existing algorithms can only deal with small sets of graphs, and its application has been constrained in most cases to the use of synthetic data with no real meaning. Thus, it has mainly remained in the box of the theoretical concepts.
The main objective of this work is to further investigate both the theory and the algorithmic underlying the concept of the median graph with the final objective to extend its applicability and bring all its potential to the world of real applications. To this end, new theory and new algorithms for its computation are reported. From a theoretical point of view, this thesis makes two main contributions. On one hand, the new concept of spectral median graph. On the other hand, we show that some of the existing theoretical properties of the median graph can be improved under some specific conditions. In addition to these theoretical contributions, we propose five new ways to compute the median graph. One of them is a direct consequence of the spectral median graph concept. In addition, we provide two new algorithms based on the new theoretical properties. Finally, we present a novel technique for the median graph computation based on graph embedding into vector spaces. With this technique two more new algorithms are presented.
The experimental evaluation of the proposed methods on one semi-artificial and two real-world datasets, representing graphical symbols, molecules and webpages, shows that these methods are much more ecient than the existing ones. In addition, we have been able to proof for the first time that the median graph can be a good representative of a class in large datasets. We have performed some classification and clustering experiments that validate this hypothesis and permit to foresee a successful application of the median graph to a variety of machine learning algorithms.
Childs, Liam, Zoran Nikoloski, Patrick May, and Dirk Walther. "Identification and classification of ncRNA molecules using graph properties." Universität Potsdam, 2009. http://opus.kobv.de/ubp/volltexte/2010/4519/.
Full textErsahin, Kaan. "Segmentation and classification of polarimetric SAR data using spectral graph partitioning." Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/14607.
Full textLee, Zed Heeje. "A graph representation of event intervals for efficient clustering and classification." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-281947.
Full textSekvenser av händelsesintervall förekommer i flera applikationsdomäner, medan deras inneboende komplexitet hindrar skalbara lösningar på uppgifter som kluster och klassificering. I den här avhandlingen föreslår vi en ny spektral inbäddningsrepresentation av händelsens intervallsekvenser som förlitar sig på bipartitgrafer. Mer konkret representeras varje händelsesintervalsekvens av en bipartitgraf genom att följa tre huvudsteg: (1) skapa en hashtabell som snabbt kan konvertera en samling händelsintervalsekvenser till en bipartig grafrepresentation, (2) skapa och reglera en bi-adjacency-matris som motsvarar bipartitgrafen, (3) definiera en spektral inbäddning på bi-adjacensmatrisen. Dessutom visar vi att väsentliga förbättringar kan uppnås med avseende på klassificeringsprestanda genom beskärningsparametrar som fångar arten av relationerna som bildas av händelsesintervallen. Vi demonstrerar genom omfattande experimentell utvärdering på fem verkliga datasätt att vår strategi kan erhålla runtime-hastigheter på upp till två storlekar jämfört med andra modernaste metoder och liknande eller bättre kluster- och klassificerings- prestanda.
Wu, Jindong. "Pooling strategies for graph convolution neural networks and their effect on classification." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-288953.
Full textMed utvecklingen av grafneurala nätverk har detta nya neurala nätverk tillämpats i olika område. Ett av de svåra problemen för forskare inom detta område är hur man väljer en lämplig poolningsmetod för en specifik forskningsuppgift från en mängd befintliga poolningsmetoder. I den här arbetet, baserat på de befintliga vanliga grafpoolingsmetoderna, utvecklar vi ett riktmärke för neuralt nätverk ram som kan användas till olika diagram pooling metoders jämförelse. Genom att använda ramverket jämför vi fyra allmängiltig diagram pooling metod och utforska deras egenskaper. Dessutom utvidgar vi två metoder för att förklara beslut om neuralt nätverk från convolution neurala nätverk till diagram neurala nätverk och jämföra dem med befintliga GNNExplainer. Vi kör experiment av grafisk klassificering uppgifter under benchmarkingramverk och hittade olika egenskaper av olika diagram pooling metoder. Dessutom verifierar vi korrekthet i dessa förklarningsmetoder som vi utvecklade och mäter överenskommelserna mellan dem. Till slut, vi försöker utforska egenskaper av olika metoder för att förklara neuralt nätverks beslut och deras betydelse för att välja pooling metoder i grafisk neuralt nätverk.
Chandra, Nagasai. "Node Classification on Relational Graphs using Deep-RGCNs." DigitalCommons@CalPoly, 2021. https://digitalcommons.calpoly.edu/theses/2265.
Full textLamont, Morné Michael Connell. "Binary classification trees : a comparison with popular classification methods in statistics using different software." Thesis, Stellenbosch : Stellenbosch University, 2002. http://hdl.handle.net/10019.1/52718.
Full textENGLISH ABSTRACT: Consider a data set with a categorical response variable and a set of explanatory variables. The response variable can have two or more categories and the explanatory variables can be numerical or categorical. This is a typical setup for a classification analysis, where we want to model the response based on the explanatory variables. Traditional statistical methods have been developed under certain assumptions such as: the explanatory variables are numeric only and! or the data follow a multivariate normal distribution. hl practice such assumptions are not always met. Different research fields generate data that have a mixed structure (categorical and numeric) and researchers are often interested using all these data in the analysis. hl recent years robust methods such as classification trees have become the substitute for traditional statistical methods when the above assumptions are violated. Classification trees are not only an effective classification method, but offer many other advantages. The aim of this thesis is to highlight the advantages of classification trees. hl the chapters that follow, the theory of and further developments on classification trees are discussed. This forms the foundation for the CART software which is discussed in Chapter 5, as well as other software in which classification tree modeling is possible. We will compare classification trees to parametric-, kernel- and k-nearest-neighbour discriminant analyses. A neural network is also compared to classification trees and finally we draw some conclusions on classification trees and its comparisons with other methods.
AFRIKAANSE OPSOMMING: Beskou 'n datastel met 'n kategoriese respons veranderlike en 'n stel verklarende veranderlikes. Die respons veranderlike kan twee of meer kategorieë hê en die verklarende veranderlikes kan numeries of kategories wees. Hierdie is 'n tipiese opset vir 'n klassifikasie analise, waar ons die respons wil modelleer deur gebruik te maak van die verklarende veranderlikes. Tradisionele statistiese metodes is ontwikkelonder sekere aannames soos: die verklarende veranderlikes is slegs numeries en! of dat die data 'n meerveranderlike normaal verdeling het. In die praktyk word daar nie altyd voldoen aan hierdie aannames nie. Verskillende navorsingsvelde genereer data wat 'n gemengde struktuur het (kategories en numeries) en navorsers wil soms al hierdie data gebruik in die analise. In die afgelope jare het robuuste metodes soos klassifikasie bome die alternatief geword vir tradisionele statistiese metodes as daar nie aan bogenoemde aannames voldoen word nie. Klassifikasie bome is nie net 'n effektiewe klassifikasie metode nie, maar bied baie meer voordele. Die doel van hierdie werkstuk is om die voordele van klassifikasie bome uit te wys. In die hoofstukke wat volg word die teorie en verdere ontwikkelinge van klassifikasie bome bespreek. Hierdie vorm die fondament vir die CART sagteware wat bespreek word in Hoofstuk 5, asook ander sagteware waarin klassifikasie boom modelering moontlik is. Ons sal klassifikasie bome vergelyk met parametriese-, "kernel"- en "k-nearest-neighbour" diskriminant analise. 'n Neurale netwerk word ook vergelyk met klassifikasie bome en ten slote word daar gevolgtrekkings gemaak oor klassifikasie bome en hoe dit vergelyk met ander metodes.
Books on the topic "Graph classification"
Riesen, Kaspar. Graph classification and clustering based on vector space embedding. New Jersey: World Scientific, 2010.
Find full textThe classification of minimal graphs with given abelian automorphism group. Providence, R.I., USA: American Mathematical Society, 1985.
Find full textCherlin, Gregory L. The classification of countable homogeneous directed graphs and countable homogeneous n-tournaments. Providence, R.I: American Mathematical Society, 1998.
Find full textArgyros, S. A classification of separable Rosenthal compacta and its applications. Warszawa: Institute of Mathematics, Polish Academy of Sciences, 2008.
Find full textArgyros, S. A classification of separable Rosenthal compacta and its applications. Warszawa: Institute of Mathematics, Polish Academy of Sciences, 2008.
Find full textHage, Per. Island networks: Communication, kinship, and classification structures in Oceania. Cambridge: Cambridge University Press, 1996.
Find full textOcneanu, Adrian. Quantum symmetry, differential geometry of finite graphs and classification of subfactors. Tokyo, Japan: Dept. of Mathematics, University of Tokyo, 1991.
Find full textOn the classification of C*-algebras of real rank zero: Inductive limits of matrix algebras over non-Hausdorff graphs. Providence, R.I: American Mathematical Society, 1995.
Find full textSu, Hongbing. On the classification of C*, algebras of real rank zero: Inductive limits of matrix algebras over non-Hausdorff graphs. Toronto: [s.n.], 1992.
Find full textBook chapters on the topic "Graph classification"
Tsuda, Koji, and Hiroto Saigo. "Graph Classification." In Managing and Mining Graph Data, 337–63. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-6045-0_11.
Full textMorris, Christopher. "Graph Neural Networks: Graph Classification." In Graph Neural Networks: Foundations, Frontiers, and Applications, 179–93. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6054-2_9.
Full textGuo, Ting, and Xingquan Zhu. "Super-Graph Classification." In Advances in Knowledge Discovery and Data Mining, 323–36. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06608-0_27.
Full textAuer, Christopher, Christian Bachmaier, Franz Josef Brandenburg, and Andreas Gleißner. "Classification of Planar Upward Embedding." In Graph Drawing, 415–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25878-7_39.
Full textKataoka, Tetsuya, Eimi Shiotsuki, and Akihiro Inokuchi. "Graph Classification with Mapping Distance Graph Kernels." In Lecture Notes in Computer Science, 21–44. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93647-5_2.
Full textVinh, Nguyen Duy, Akihiro Inokuchi, and Takashi Washio. "Graph Classification Based on Optimizing Graph Spectra." In Discovery Science, 205–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-16184-1_15.
Full textQiu, Kunfeng, Jinchao Zhou, Hui Cui, Zhuangzhi Chen, Shilian Zheng, and Qi Xuan. "Time Series Classification Based on Complex Network." In Graph Data Mining, 205–22. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2609-8_10.
Full textBonnington, C. Paul, and Charles H. C. Little. "Classification of Surfaces." In The Foundations of Topological Graph Theory, 39–51. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4612-2540-9_3.
Full textAdaloglou, Nikolas, Nicholas Vretos, and Petros Daras. "Multi-view Adaptive Graph Convolutions for Graph Classification." In Computer Vision – ECCV 2020, 398–414. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58574-7_24.
Full textLe, Tuan, Marco Bertolini, Frank Noé, and Djork-Arné Clevert. "Parameterized Hypercomplex Graph Neural Networks for Graph Classification." In Lecture Notes in Computer Science, 204–16. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-86365-4_17.
Full textConference papers on the topic "Graph classification"
Zhu, Yuanyuan, Jeffrey Xu Yu, Hong Cheng, and Lu Qin. "Graph classification." In the 21st ACM international conference. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2396761.2396791.
Full textChen, Siheng, Aliaksei Sandryhaila, Jose M. F. Moura, and Jelena Kovacevic. "Adaptive graph filtering: Multiresolution classification on graphs." In 2013 IEEE Global Conference on Signal and Information Processing (GlobalSIP). IEEE, 2013. http://dx.doi.org/10.1109/globalsip.2013.6736906.
Full textNikolentzos, Giannis, Polykarpos Meladianos, Stratis Limnios, and Michalis Vazirgiannis. "A Degeneracy Framework for Graph Similarity." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/360.
Full textBarros, Claudio D. T., Daniel N. R. da Silva, and Fabio A. M. Porto. "Machine Learning on Graph-Structured Data." In Anais Estendidos do Simpósio Brasileiro de Banco de Dados. Sociedade Brasileira de Computação - SBC, 2021. http://dx.doi.org/10.5753/sbbd_estendido.2021.18179.
Full textZhou, Kaixiong, Qingquan Song, Xiao Huang, Daochen Zha, Na Zou, and Xia Hu. "Multi-Channel Graph Neural Networks." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/188.
Full textBai, Yunsheng, Hao Ding, Yang Qiao, Agustin Marinovic, Ken Gu, Ting Chen, Yizhou Sun, and Wei Wang. "Unsupervised Inductive Graph-Level Representation Learning via Graph-Graph Proximity." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/275.
Full textLi, Pengyong, Jun Wang, Ziliang Li, Yixuan Qiao, Xianggen Liu, Fei Ma, Peng Gao, Sen Song, and Guotong Xie. "Pairwise Half-graph Discrimination: A Simple Graph-level Self-supervised Strategy for Pre-training Graph Neural Networks." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/371.
Full textShirui Pan, Xingquan Zhu, Chengqi Zhang, and P. S. Yu. "Graph stream classification using labeled and unlabeled graphs." In 2013 29th IEEE International Conference on Data Engineering (ICDE 2013). IEEE, 2013. http://dx.doi.org/10.1109/icde.2013.6544842.
Full textThanh Thi Ho, Tuyen, Hung Vu, and Bac Le. "Efficient Graph Classification via Graph Encoding Networks." In 2020 RIVF International Conference on Computing and Communication Technologies (RIVF). IEEE, 2020. http://dx.doi.org/10.1109/rivf48685.2020.9140729.
Full textWu, Jia, Zhibin Hong, Shirui Pan, Xingquan Zhu, Zhihua Cai, and Chengqi Zhang. "Multi-graph-view Learning for Graph Classification." In 2014 IEEE International Conference on Data Mining (ICDM). IEEE, 2014. http://dx.doi.org/10.1109/icdm.2014.97.
Full textReports on the topic "Graph classification"
Bagherjeiran, A., and C. Kamath. Graph-based Techniques for Orbit Classification: Early Results. Office of Scientific and Technical Information (OSTI), September 2005. http://dx.doi.org/10.2172/885147.
Full textPassariello, Fausto. The Graph Classification for the venous system of the lower limb. Fondazione Vasculab, 2009. http://dx.doi.org/10.24019/2009.uip50graph.
Full textMerkurjev, Ekaterina, Egil Bae, Andrea L. Bertozzi, and Xue-Cheng Tai. Global Binary Optimization on Graphs for Classification of High Dimensional Data. Fort Belvoir, VA: Defense Technical Information Center, September 2014. http://dx.doi.org/10.21236/ada610270.
Full textOr, Etti, David Galbraith, and Anne Fennell. Exploring mechanisms involved in grape bud dormancy: Large-scale analysis of expression reprogramming following controlled dormancy induction and dormancy release. United States Department of Agriculture, December 2002. http://dx.doi.org/10.32747/2002.7587232.bard.
Full text