Dissertations / Theses on the topic 'Graph classification'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Graph classification.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Wainer, L. J. "Online graph-based learning for classification." Thesis, University College London (University of London), 2008. http://discovery.ucl.ac.uk/1446151/.
Full textSaldanha, Richard A. "Graph-theoretic methods in discrimination and classification." Thesis, University of Oxford, 1998. https://ora.ox.ac.uk/objects/uuid:3a06dee1-00e9-4b56-be8e-e991a570ced6.
Full textKetkar, Nikhil S. "Empirical comparison of graph classification and regression algorithms." Pullman, Wash. : Washington State University, 2009. http://www.dissertations.wsu.edu/Dissertations/Spring2009/n_ketkar_042409.pdf.
Full textTitle from PDF title page (viewed on June 3, 2009). "School of Electrical Engineering and Computer Science." Includes bibliographical references (p. 101-108).
Ferrer, Sumsi Miquel. "Theory and Algorithms on the Median Graph. Application to Graph-based Classification and Clustering." Doctoral thesis, Universitat Autònoma de Barcelona, 2008. http://hdl.handle.net/10803/5788.
Full textEn el reconeixement estructural de patrons, els grafs han estat usats normalment per a representar objectes complexos. En el domini dels grafs, el concepte de mediana és conegut com median graph. Potencialment, té les mateixes aplicacions que el concepte de mediana per poder ser usat com a representant d'un conjunt de grafs.
Tot i la seva simple definició i les potencials aplicacions, s'ha demostrat que el seu càlcul és una tasca extremadament complexa. Tots els algorismes existents només han estat capaços de treballar amb conjunts petits de grafs, i per tant, la seva aplicació ha estat limitada en molts casos a usar dades sintètiques sense significat real. Així, tot i el seu potencial, ha restat com un concepte eminentment teòric.
L'objectiu principal d'aquesta tesi doctoral és el d'investigar a fons la teoria i l'algorísmica relacionada amb el concepte de medinan graph, amb l'objectiu final d'extendre la seva aplicabilitat i lliurar tot el seu potencial al món de les aplicacions reals. Per això, presentem nous resultats teòrics i també nous algorismes per al seu càlcul. Des d'un punt de vista teòric aquesta tesi fa dues aportacions fonamentals. Per una banda, s'introdueix el nou concepte d'spectral median graph. Per altra banda es mostra que certes de les propietats teòriques del median graph poden ser millorades sota determinades condicions. Més enllà de les aportacioncs teòriques, proposem cinc noves alternatives per al seu càlcul. La primera d'elles és una conseqüència directa del concepte d'spectral median graph. Després, basats en les millores de les propietats teòriques, presentem dues alternatives més per a la seva obtenció. Finalment, s'introdueix una nova tècnica per al càlcul del median basat en el mapeig de grafs en espais de vectors, i es proposen dos nous algorismes més.
L'avaluació experimental dels mètodes proposats utilitzant una base de dades semi-artificial (símbols gràfics) i dues amb dades reals (mollècules i pàgines web), mostra que aquests mètodes són molt més eficients que els existents. A més, per primera vegada, hem demostrat que el median graph pot ser un bon representant d'un conjunt d'objectes utilitzant grans quantitats de dades. Hem dut a terme experiments de classificació i clustering que validen aquesta hipòtesi i permeten preveure una pròspera aplicació del median graph a un bon nombre d'algorismes d'aprenentatge.
Given a set of objects, the generic concept of median is defined as the object with the smallest sum of distances to all the objects in the set. It has been often used as a good alternative to obtain a representative of the set.
In structural pattern recognition, graphs are normally used to represent structured objects. In the graph domain, the concept analogous to the median is known as the median graph. By extension, it has the same potential applications as the generic median in order to be used as the representative of a set of graphs.
Despite its simple definition and potential applications, its computation has been shown as an extremely complex task. All the existing algorithms can only deal with small sets of graphs, and its application has been constrained in most cases to the use of synthetic data with no real meaning. Thus, it has mainly remained in the box of the theoretical concepts.
The main objective of this work is to further investigate both the theory and the algorithmic underlying the concept of the median graph with the final objective to extend its applicability and bring all its potential to the world of real applications. To this end, new theory and new algorithms for its computation are reported. From a theoretical point of view, this thesis makes two main contributions. On one hand, the new concept of spectral median graph. On the other hand, we show that some of the existing theoretical properties of the median graph can be improved under some specific conditions. In addition to these theoretical contributions, we propose five new ways to compute the median graph. One of them is a direct consequence of the spectral median graph concept. In addition, we provide two new algorithms based on the new theoretical properties. Finally, we present a novel technique for the median graph computation based on graph embedding into vector spaces. With this technique two more new algorithms are presented.
The experimental evaluation of the proposed methods on one semi-artificial and two real-world datasets, representing graphical symbols, molecules and webpages, shows that these methods are much more ecient than the existing ones. In addition, we have been able to proof for the first time that the median graph can be a good representative of a class in large datasets. We have performed some classification and clustering experiments that validate this hypothesis and permit to foresee a successful application of the median graph to a variety of machine learning algorithms.
Childs, Liam, Zoran Nikoloski, Patrick May, and Dirk Walther. "Identification and classification of ncRNA molecules using graph properties." Universität Potsdam, 2009. http://opus.kobv.de/ubp/volltexte/2010/4519/.
Full textErsahin, Kaan. "Segmentation and classification of polarimetric SAR data using spectral graph partitioning." Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/14607.
Full textLee, Zed Heeje. "A graph representation of event intervals for efficient clustering and classification." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-281947.
Full textSekvenser av händelsesintervall förekommer i flera applikationsdomäner, medan deras inneboende komplexitet hindrar skalbara lösningar på uppgifter som kluster och klassificering. I den här avhandlingen föreslår vi en ny spektral inbäddningsrepresentation av händelsens intervallsekvenser som förlitar sig på bipartitgrafer. Mer konkret representeras varje händelsesintervalsekvens av en bipartitgraf genom att följa tre huvudsteg: (1) skapa en hashtabell som snabbt kan konvertera en samling händelsintervalsekvenser till en bipartig grafrepresentation, (2) skapa och reglera en bi-adjacency-matris som motsvarar bipartitgrafen, (3) definiera en spektral inbäddning på bi-adjacensmatrisen. Dessutom visar vi att väsentliga förbättringar kan uppnås med avseende på klassificeringsprestanda genom beskärningsparametrar som fångar arten av relationerna som bildas av händelsesintervallen. Vi demonstrerar genom omfattande experimentell utvärdering på fem verkliga datasätt att vår strategi kan erhålla runtime-hastigheter på upp till två storlekar jämfört med andra modernaste metoder och liknande eller bättre kluster- och klassificerings- prestanda.
Wu, Jindong. "Pooling strategies for graph convolution neural networks and their effect on classification." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-288953.
Full textMed utvecklingen av grafneurala nätverk har detta nya neurala nätverk tillämpats i olika område. Ett av de svåra problemen för forskare inom detta område är hur man väljer en lämplig poolningsmetod för en specifik forskningsuppgift från en mängd befintliga poolningsmetoder. I den här arbetet, baserat på de befintliga vanliga grafpoolingsmetoderna, utvecklar vi ett riktmärke för neuralt nätverk ram som kan användas till olika diagram pooling metoders jämförelse. Genom att använda ramverket jämför vi fyra allmängiltig diagram pooling metod och utforska deras egenskaper. Dessutom utvidgar vi två metoder för att förklara beslut om neuralt nätverk från convolution neurala nätverk till diagram neurala nätverk och jämföra dem med befintliga GNNExplainer. Vi kör experiment av grafisk klassificering uppgifter under benchmarkingramverk och hittade olika egenskaper av olika diagram pooling metoder. Dessutom verifierar vi korrekthet i dessa förklarningsmetoder som vi utvecklade och mäter överenskommelserna mellan dem. Till slut, vi försöker utforska egenskaper av olika metoder för att förklara neuralt nätverks beslut och deras betydelse för att välja pooling metoder i grafisk neuralt nätverk.
Chandra, Nagasai. "Node Classification on Relational Graphs using Deep-RGCNs." DigitalCommons@CalPoly, 2021. https://digitalcommons.calpoly.edu/theses/2265.
Full textLamont, Morné Michael Connell. "Binary classification trees : a comparison with popular classification methods in statistics using different software." Thesis, Stellenbosch : Stellenbosch University, 2002. http://hdl.handle.net/10019.1/52718.
Full textENGLISH ABSTRACT: Consider a data set with a categorical response variable and a set of explanatory variables. The response variable can have two or more categories and the explanatory variables can be numerical or categorical. This is a typical setup for a classification analysis, where we want to model the response based on the explanatory variables. Traditional statistical methods have been developed under certain assumptions such as: the explanatory variables are numeric only and! or the data follow a multivariate normal distribution. hl practice such assumptions are not always met. Different research fields generate data that have a mixed structure (categorical and numeric) and researchers are often interested using all these data in the analysis. hl recent years robust methods such as classification trees have become the substitute for traditional statistical methods when the above assumptions are violated. Classification trees are not only an effective classification method, but offer many other advantages. The aim of this thesis is to highlight the advantages of classification trees. hl the chapters that follow, the theory of and further developments on classification trees are discussed. This forms the foundation for the CART software which is discussed in Chapter 5, as well as other software in which classification tree modeling is possible. We will compare classification trees to parametric-, kernel- and k-nearest-neighbour discriminant analyses. A neural network is also compared to classification trees and finally we draw some conclusions on classification trees and its comparisons with other methods.
AFRIKAANSE OPSOMMING: Beskou 'n datastel met 'n kategoriese respons veranderlike en 'n stel verklarende veranderlikes. Die respons veranderlike kan twee of meer kategorieë hê en die verklarende veranderlikes kan numeries of kategories wees. Hierdie is 'n tipiese opset vir 'n klassifikasie analise, waar ons die respons wil modelleer deur gebruik te maak van die verklarende veranderlikes. Tradisionele statistiese metodes is ontwikkelonder sekere aannames soos: die verklarende veranderlikes is slegs numeries en! of dat die data 'n meerveranderlike normaal verdeling het. In die praktyk word daar nie altyd voldoen aan hierdie aannames nie. Verskillende navorsingsvelde genereer data wat 'n gemengde struktuur het (kategories en numeries) en navorsers wil soms al hierdie data gebruik in die analise. In die afgelope jare het robuuste metodes soos klassifikasie bome die alternatief geword vir tradisionele statistiese metodes as daar nie aan bogenoemde aannames voldoen word nie. Klassifikasie bome is nie net 'n effektiewe klassifikasie metode nie, maar bied baie meer voordele. Die doel van hierdie werkstuk is om die voordele van klassifikasie bome uit te wys. In die hoofstukke wat volg word die teorie en verdere ontwikkelinge van klassifikasie bome bespreek. Hierdie vorm die fondament vir die CART sagteware wat bespreek word in Hoofstuk 5, asook ander sagteware waarin klassifikasie boom modelering moontlik is. Ons sal klassifikasie bome vergelyk met parametriese-, "kernel"- en "k-nearest-neighbour" diskriminant analise. 'n Neurale netwerk word ook vergelyk met klassifikasie bome en ten slote word daar gevolgtrekkings gemaak oor klassifikasie bome en hoe dit vergelyk met ander metodes.
Altun, Gulsah. "Machine Learning and Graph Theory Approaches for Classification and Prediction of Protein Structure." Digital Archive @ GSU, 2008. http://digitalarchive.gsu.edu/cs_diss/31.
Full textJackson, Eugenie Marie. "Explorations in the classification of vertices as good or bad." [Johnson City, Tenn. : East Tennessee State University], 2001. http://etd-submit.etsu.edu/etd/theses/available/etd-0310101-153932/unrestricted/jacksone.pdf.
Full textSeeland, Madeleine [Verfasser], Burkhard [Akademischer Betreuer] Rost, and Stefan [Akademischer Betreuer] Kramer. "Structural Graph Clustering: Scalable Methods and Applications for Graph Classification and Regression / Madeleine Seeland. Gutachter: Burkhard Rost ; Stefan Kramer. Betreuer: Burkhard Rost." München : Universitätsbibliothek der TU München, 2014. http://d-nb.info/1058434500/34.
Full textRinke, Sebastian. "Analysis and Adaption of Graph Mapping Algorithms for Regular Graph Topologies." Master's thesis, Universitätsbibliothek Chemnitz, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200901453.
Full textPavuluri, Manoj Kumar. "Fuzzy decision tree classification for high-resolution satellite imagery /." free to MU campus, to others for purchase, 2003. http://wwwlib.umi.com/cr/mo/fullcit?p1418056.
Full textMarcusanu, Mihaela C. "The classification of l1-embeddable fullerenes." Bowling Green State University / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1180115123.
Full textSchenker, Adam. "Graph-Theoretic Techniques for Web Content Mining." [Tampa, Fla.] : University of South Florida, 2003. http://purl.fcla.edu/fcla/etd/SFE0000143.
Full textElsner, Ulrich. "Graph partitioning - a survey." Universitätsbibliothek Chemnitz, 2005. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200501047.
Full textNeggaz, Mohammed Yessin. "Automatic classification of dynamic graphs." Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0169/document.
Full textDynamic networks consist of entities making contact over time with one another. A major challenge in dynamic networks is to predict mobility patterns and decide whether the evolution of the topology satisfies requirements for the successof a given algorithm. The types of dynamics resulting from these networks are varied in scale and nature. For instance, some of these networks remain connected at all times; others are always disconnected but still offer some kind of connectivity over time and space (temporal connectivity); others are recurrently connected,periodic, etc. All of these contexts can be represented as dynamic graph classes corresponding to necessary or sufficient conditions for given distributed problems or algorithms. Given a dynamic graph, a natural question to ask is to which of the classes this graph belongs. In this work we provide a contribution to the automation of dynamic graphs classification. We provide strategies for testing membership of a dynamic graph to a given class and a generic framework to test properties in dynamic graphs. We also attempt to understand what can still be done in a context where no property on the graph is guaranteed through the distributed problem of maintaining a spanning forest in highly dynamic graphs
Trinks, Martin. "Graph polynomials and their representations." Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2012. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-94991.
Full textKarunaratne, Thashmee M. "Learning predictive models from graph data using pattern mining." Doctoral thesis, Stockholms universitet, Institutionen för data- och systemvetenskap, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-100713.
Full textVasilyeva, Elena, Maik Thiele, Christof Bornhövd, and Wolfgang Lehner. "Considering User Intention in Differential Graph Queries." IGI Global, 2015. https://tud.qucosa.de/id/qucosa%3A72931.
Full textDemco, Anthony A. "Graph kernel extensions and experiments with application to molecule classification, lead hopping and multiple targets." Thesis, University of Southampton, 2009. https://eprints.soton.ac.uk/66209/.
Full textHernández, Pérez Bernard. "Multi-View Object Recognition and Classification. Graph-BasedRepresentation of Visual Features and Structured Learning andPrediction." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-142486.
Full textDatorseende är ett delområde inom artificiell intelligens som innehåller metoder för förvärv, bildbehandling, analys och förståelse av bilder för att få resultat i numerisk eller symbolisk form. Informationen som resultatet ger används för att fatta beslut. Vi kan inte tala om visioner i isolering, samspel med andra områden är oundviklig och förtjänar särskild uppmärksamhet bildbehandling, mönsterigenkänning och maskininlärning. Huvudsyftet med detta projekt är att analysera beteendet hos visuella algoritmers särdragsextraktion och deras effektivitet i beslutsfattande. Upptäckten av ett objekt i en bild, dess klassificering och erkännande är den typ av beslut som studeras. Algoritmers särdragsextraktion tillämpas för att försöka erkänna objekts mång-vy. För att tackla detta problem har ett nytt tillvägagångssätt föreslgits. Detta tillvägagångssätt skapar en grafbaserad representation av objektet med hjälp av rekursiv klusteranalys. Noderna i grafen representerar de viktigaste fysiska komponenterna i objektet. Support Vector Machines (SVMs) används för att klassificera noderna, dessa klasser klassificeras självständigt. Slutligen, grafbaserad representation av objekt utnyttjas för att släppa antagandet om oberoende och hitta relationer mellan klasser genom att använda Structured Output - Support Vector Machines (SOSVMs).
Biyikoglu, Türker, Josef Leydold, and Peter F. Stadler. "Nodal Domain Theorems and Bipartite Subgraphs." Department of Statistics and Mathematics, Abt. f. Angewandte Statistik u. Datenverarbeitung, WU Vienna University of Economics and Business, 2005. http://epub.wu.ac.at/626/1/document.pdf.
Full textSeries: Preprint Series / Department of Applied Statistics and Data Processing
Wappler, Markus. "On Graph Embeddings and a new Minor Monotone Graph Parameter associated with the Algebraic Connectivity of a Graph." Doctoral thesis, Universitätsbibliothek Chemnitz, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-115518.
Full textReiß, Susanna. "Optimizing Extremal Eigenvalues of Weighted Graph Laplacians and Associated Graph Realizations." Doctoral thesis, Universitätsbibliothek Chemnitz, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-93599.
Full textBocancea, Andreea. "Supervised Classification Leveraging Refined Unlabeled Data." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-119320.
Full textKerracher, Natalie. "Tasks and visual techniques for the exploration of temporal graph data." Thesis, Edinburgh Napier University, 2017. http://researchrepository.napier.ac.uk/Output/977758.
Full textCichocki, Radoslaw. "Classification of objects in images based on various object representations." Thesis, Blekinge Tekniska Högskola, Avdelningen för programvarusystem, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-5774.
Full textMail the author at radoslaw.cichocki(at)gmail.com
Mathieu, Bérangère. "Segmentation interactive multiclasse d'images par classification de superpixels et optimisation dans un graphe de facteurs." Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30290/document.
Full textImage segmentation is one of the main research topics in image analysis. It is the task of researching a partition into regions, i.e., into sets of connected pixels, meeting a given uniformity criterion. The goal of image segmentation is to find regions corresponding to the objects or the object parts appearing in the image. The choice of what objects are relevant depends on the application context. Manually locating these objects is a tedious but quite simple task. Designing an automatic algorithm able to achieve the same result is, on the contrary, a difficult problem. Interactive segmentation methods are semi-automatic approaches where a user guide the search of a specific segmentation of an image by giving some indications. There are two kinds of methods : boundary-based and region-based interactive segmentation methods. Boundary-based methods extract a single object corresponding to a unique region without any holes. The user guides the method by selecting some boundary points of the object. The algorithm search for a curve linking all the points given by the user, following the boundary of the object and having some intrinsic properties (regular curves are encouraged). Region-based methods group the pixels of an image into sets, by maximizing the similarity of pixels inside each set and the dissimilarity between pixels belonging to different sets. Each set can be composed of one or several connected components and can contain holes. The user guides the method by drawing colored strokes, giving, for each set, some pixels belonging to it. If the majority of region-based methods extract a single object from the background, some algorithms, proposed during the last decade, are able to solve multi-class interactive segmentation problems, i.e., to extract more than two sets of pixels. The main contribution of this work is the design of a new multi-class interactive segmentation method. This algorithm is based on the minimization of a cost function that can be represented by a factor graph. It integrates a supervised learning classification method checking that the produced segmentation is consistent with the indications given by the user, a new regularization term, and a preprocessing step grouping pixels into small homogeneous regions called superpixels. The use of an over-segmentation method to produce these superpixels is a key step in the proposed interactive segmentation method : it significantly reduces the computational complexity and handles the segmentation of images containing several millions of pixels, by keeping the execution time small enough to ensure comfortable use of the method. The second contribution of our work is an evaluation of over-segmentation algorithms. We provide a new dataset, with images of different sizes with a majority of big images. This review has also allowed us to design a new over-segmentation algorithm and to evaluate it
Srinivaasan, Gayathri. "Malicious Entity Categorization using Graph modelling." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-202980.
Full textIdag, skadliga program inte bara skriva skadlig programvara men också använda förvirring, polymorfism, packning och ändlösa sådana undan tekniker för att fly detektering av antivirusprodukter (AVP). Förutom individens beteende av skadlig kod, de relationer som finns mellan dem spelar en viktig roll för att förbättra detektering av skadlig kod. Detta arbete syftar till att ge skadliga analytiker på F-Secure Labs att utforska olika sådana relationer mellan skadliga URL: er och fil prover i Förutom deras individuella beteende och aktivitet. De aktuella detektionsmetoder på F-Secure Labs analysera okända webbadresser och fil prover oberoende utan med beaktande av de korrelationer som kan finnas mellan dem. Sådan traditionella klassificeringsmetoder fungerar bra men är inte effektiva på att identifiera komplexa flerstegs skadlig kod som döljer sin aktivitet. Interaktioner mellan malware kan innefatta någon typ av nätverksaktivitet, släppa, nedladdning, etc. Till exempel, en okänd loader som ansluter till en skadlig webbplats som i sin tur släpper en skadlig nyttolast, bör verkligen vara svartlistad. En sådan analys kan hjälpa till att blockera malware infektion vid källan och även förstå hela infektion kedja. Resultatet av denna proof-of-concept studien är ett system som upptäcker ny skadlig kod med hjälp av diagram modellering för att sluta deras förhållande till kända skadliga program som en del av de skadliga klassificerings tjänster på F-Secure.
Mantrach, Amin. "Novel measures on directed graphs and applications to large-scale within-network classification." Doctoral thesis, Universite Libre de Bruxelles, 2010. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210033.
Full textLa première partie de cette thèse introduit une nouvelle mesure de similarité entre deux noeuds d’un réseau dirigé et pondéré :la covariance “sum-over-paths”. Celle-ci a une interprétation claire et précise :en dénombrant tous les chemins possibles deux noeuds sont considérés comme fortement corrélés s’ils apparaissent souvent sur un même chemin – de préférence court. Cette mesure dépend d’une distribution de probabilités, définie sur l’ensemble infini dénombrable des chemins dans le graphe, obtenue en minimisant l'espérance du coût total entre toutes les paires de noeuds du graphe sachant que l'entropie relative totale injectée dans le réseau est fixée à priori. Le paramètre d’entropie permet de biaiser la distribution de probabilité sur un large spectre :allant de marches aléatoires naturelles où tous les chemins sont équiprobables à des marches biaisées en faveur des plus courts chemins. Cette mesure est alors appliquée à des problèmes de classification semi-supervisée sur des réseaux de taille moyennes et comparée à l’état de l’art.
La seconde partie de la thèse introduit trois nouveaux algorithmes de classification de noeuds en sein d’un large réseau dont les noeuds sont partiellement étiquetés. Ces algorithmes ont un temps de calcul linéaire en le nombre de noeuds, de classes et d’itérations, et peuvent dés lors être appliqués sur de larges réseaux. Ceux-ci ont obtenus des résultats compétitifs en comparaison à l’état de l’art sur le large réseaux de citations de brevets américains et sur huit autres jeux de données. De plus, durant la thèse, nous avons collecté un nouveau jeu de données, déjà mentionné :le réseau de citations de brevets américains. Ce jeu de données est maintenant disponible pour la communauté pour la réalisation de tests comparatifs.
La partie finale de cette thèse concerne la combinaison d’un graphe de citations avec les informations présentes sur ses noeuds. De manière empirique, nous avons montré que des données basées sur des citations fournissent de meilleurs résultats de classification que des données basées sur des contenus textuels. Toujours de manière empirique, nous avons également montré que combiner les différentes sources d’informations (contenu et citations) doit être considéré lors d’une tâche de classification de textes. Par exemple, lorsqu’il s’agit de catégoriser des articles de revues, s’aider d’un graphe de citations extrait au préalable peut améliorer considérablement les performances. Par contre, dans un autre contexte, quand il s’agit de directement classer les noeuds du réseau de citations, s’aider des informations présentes sur les noeuds n’améliora pas nécessairement les performances.
La théorie, les algorithmes et les applications présentés dans cette thèse fournissent des perspectives intéressantes dans différents domaines.
In recent years, networks have become a major data source in various fields ranging from social sciences to mathematical and physical sciences. Moreover, the size of available networks has grow substantially as well. This has brought with it a number of new challenges, like the need for precise and intuitive measures to characterize and analyze large scale networks in a reasonable time.
The first part of this thesis introduces a novel measure between two nodes of a weighted directed graph: The sum-over-paths covariance. It has a clear and intuitive interpretation: two nodes are considered as highly correlated if they often co-occur on the same -- preferably short -- paths. This measure depends on a probability distribution over the (usually infinite) countable set of paths through the graph which is obtained by minimizing the total expected cost between all pairs of nodes while fixing the total relative entropy spread in the graph. The entropy parameter allows to bias the probability distribution over a wide spectrum: going from natural random walks (where all paths are equiprobable) to walks biased towards shortest-paths. This measure is then applied to semi-supervised classification problems on medium-size networks and compared to state-of-the-art techniques.
The second part introduces three novel algorithms for within-network classification in large-scale networks, i.e. classification of nodes in partially labeled graphs. The algorithms have a linear computing time in the number of edges, classes and steps and hence can be applied to large scale networks. They obtained competitive results in comparison to state-of-the-art technics on the large scale U.S.~patents citation network and on eight other data sets. Furthermore, during the thesis, we collected a novel benchmark data set: the U.S.~patents citation network. This data set is now available to the community for benchmarks purposes.
The final part of the thesis concerns the combination of a citation graph with information on its nodes. We show that citation-based data provide better results for classification than content-based data. We also show empirically that combining both sources of information (content-based and citation-based) should be considered when facing a text categorization problem. For instance, while classifying journal papers, considering to extract an external citation graph may considerably boost the performance. However, in another context, when we have to directly classify the network citation nodes, then the help of features on nodes will not improve the results.
The theory, algorithms and applications presented in this thesis provide interesting perspectives in various fields.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Günther, Manuel [Verfasser]. "Statistical Gabor Graph Based Techniques for the Detection, Recognition, Classification, and Visualization of Human Faces / Manuel Günther." Aachen : Shaker, 2012. http://d-nb.info/1069046140/34.
Full textGullstrand, Mattias, and Stefan Maraš. "Using Graph Neural Networks for Track Classification and Time Determination of Primary Vertices in the ATLAS Experiment." Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-288505.
Full textFrån och med 2027 kommer \textit{high-luminosity Large Hadron Collider} (HL-LHC) att tas i drift och möjliggöra mätningar med högre precision och utforskningar av nya fysikprocesser mellan elementarpartiklar. Ett centralt problem som uppstår i ATLAS-detektorn vid rekonstruktionen av partikelkollisioner är att separera sällsynta och intressanta interaktioner, så kallade \textit{hard-scatters} (HS) från ointressanta \textit{pileup}-interaktioner (PU) i den kompakta rumsliga dimensionen. Svårighetsgraden för detta problem ökar vid högre luminositeter. Med hjälp av den kommande \textit{High-Granularity Timing-detektorns} (HGTD) mätningar kommer även tidsinformation relaterat till interaktionerna att erhållas. I detta projekt används denna information för att beräkna tiden för enskillda interaktioner vilket därmed kan användas för att separera HS-interaktioner från PU-interaktioner. Den nuvarande metoden använder en trädregressionsmetod, s.k. boosted decision tree (BDT) tillsammans med tidsinformationen från HGTD för att bestämma en tid. Vi föreslår ett nytt tillvägagångssätt baserat på ett s.k. uppvaktande grafnätverk (GAT), där varje protonkollision representeras som en graf över partikelspåren och där GAT-egenskaperna tillämpas på spårnivå. Våra resultat visar att vi kan replikera de BDT-baserade resultaten och till och med förbättra resultaten på bekostnad av att öka osäkerheten i tidsbestämningarna. Vi drar slutsatsen att även om det finns potential för GAT-modeller att överträffa BDT-modeller, bör mer komplexa versioner av de förra tillämpas. Vi ger slutligen några förbättringsförslag som vi hoppas ska kunna inspirera till ytterligare studier och framsteg inom detta område, vilket visar lovande potential.
Guan, Xiao. "Deterministic and Flexible Parallel Latent Feature Models Learning Framework for Probabilistic Knowledge Graph." Thesis, Mittuniversitetet, Avdelningen för informationssystem och -teknologi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-35788.
Full textLong, Yangjing. "Graph Relations and Constrained Homomorphism Partial Orders." Doctoral thesis, Universitätsbibliothek Leipzig, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-154281.
Full textDomke, Jens. "Routing on the Channel Dependency Graph:." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-225902.
Full textKaram, Zahi Nadim. "Subspace and graph methods to leverage auxiliary data for limited target data multi-class classification, applied to speaker verification." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/66009.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 127-130).
Multi-class classification can be adversely affected by the absence of sufficient target (in-class) instances for training. Such cases arise in face recognition, speaker verification, and document classification, among others. Auxiliary data-sets, which contain a diverse sampling of non-target instances, are leveraged in this thesis using subspace and graph methods to improve classification where target data is limited. The auxiliary data is used to define a compact representation that maps instances into a vector space where inner products quantify class similarity. Within this space, an estimate of the subspace that constitutes within-class variability (e.g. the recording channel in speaker verification or the illumination conditions in face recognition) can be obtained using class-labeled auxiliary data. This thesis proposes a way to incorporate this estimate into the SVM framework to perform nuisance compensation, thus improving classification performance. Another contribution is a framework that combines mapping and compensation into a single linear comparison, which motivates computationally inexpensive and accurate comparison functions. A key aspect of the work takes advantage of efficient pairwise comparisons between the training, test, and auxiliary instances to characterize their interaction within the vector space, and exploits it for improved classification in three ways. The first uses the local variability around the train and test instances to reduce false-alarms. The second assumes the instances lie on a low-dimensional manifold and uses the distances along the manifold. The third extracts relational features from a similarity graph where nodes correspond to the training, test and auxiliary instances. To quantify the merit of the proposed techniques, results of experiments in speaker verification are presented where only a single target recording is provided to train the classifier. Experiments are preformed on standard NIST corpora and methods are compared using standard evalutation metrics: detection error trade-off curves, minimum decision costs, and equal error rates.
by Zahi Nadim Karam.
Ph.D.
Gross, Brandi Nicole. "Input of Factor Graphs into the Detection, Classification, and Localization Chain and Continuous Active SONAR in Undersea Vehicles." Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/56609.
Full textMaster of Science
Raveaux, Romain. "Fouille de graphes et classification de graphes : application à l’analyse de plans cadastraux." Thesis, La Rochelle, 2010. http://www.theses.fr/2010LAROS311/document.
Full textThis thesis tackles the problem of technical document interpretationapplied to ancient and colored cadastral maps. This subject is on the crossroadof different fields like signal or image processing, pattern recognition, artificial intelligence,man-machine interaction and knowledge engineering. Indeed, each of thesedifferent fields can contribute to build a reliable and efficient document interpretationdevice. This thesis points out the necessities and importance of dedicatedservices oriented to historical documents and a related project named ALPAGE.Subsequently, the main focus of this work: Content-Based Map Retrieval within anancient collection of color cadastral maps is introduced
Lima, Mendez Gipsi. "Towards in silico detection and classification of prokaryotic Mobile Genetic Elements." Doctoral thesis, Universite Libre de Bruxelles, 2008. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210578.
Full textIn the first contribution of this work, the relative contribution of those different protein families to the similarities between the phages is assessed using pair-wise similarity matrices. The modular character of phage genomes is readily visualized using heatmaps, which differ depending on the function of the proteins used to measure the similarity.
Next, I propose a framework that allows for a reticulate classification of phages based on gene content (with statistical assessment of the significance of number of shared genes). Starting from gene/protein families, we built a weighted graph, where nodes represent phages and edges represent phage-phage similarities in terms of shared families. The topology of the network shows that most dsDNA phages form an interconnected group, confirming that dsDNA phages share a common gene pool, as proposed earlier. Differences are observed between temperate and virulent phages in the values of several centrality measures, which may correlate with different constraints to rampant recombination dictated by the phage lifestyle, and thus with a distinct evolutionary role in the phage population.
To this graph I applied a two-step clustering method to generate a fuzzy classification of phages. Using this methodology, each phage is associated with a membership vector, which quantitatively characterizes the membership of the phage to the clusters. Alternatively, genes were clustered based on their ‘phylogenetic profiles’ to define ‘evolutionary cohesive modules’. Phages can then be described as composite of a set of modules from the collection of modules of the whole phage population. The relationships between phages define a network based on module sharing. Unlike the first network built from statistical significant number of shared genes, this second network allows for a direct exploration of the nature of the functions shared between the connected phages. This functionality of the module-based network runs at the expense of missing links due to genes that are not part of modules, but which are encoded in the first network.
These approaches can easily focus on pre-defined modules for tracing one or several traits across the population. They provide an automatic and dynamic way to study relationships within the phage population. Moreover, they can be extended to the representation of populations of other mobile genetic elements or even to the entire mobilome.
Finally, to enrich the phage sequence space, which in turn allows for a better assessment of phage diversity and evolution, I devise a prophage prediction tool. With this methodology, approximately 800 prophages are predicted in 266 among 800 replicons screened. The comparison of a subset of these predictions with a manually annotated set shows a sensitivity of 79% and a positive predictive value of 91%, this later value suggesting that the procedure makes few false predictions. The preliminary analysis of the predicted prophages indicates that many may constitute novel phage types.
This work allows tracing guidelines for the classification and analysis of other mobile genetic elements. One can foresee that a pool of putative mobile genetic elements sequences can be extracted from the prokaryotic genomes and be further broken down in groups of related elements and evolutionary conserved modules. This would allow widening the picture of the evolutionary and functional relationships between these elements.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Ezzeddine, Diala. "A contribution to topological learning and its application in Social Networks." Thesis, Lyon 2, 2014. http://www.theses.fr/2014LYO22011/document.
Full textSupervised Learning is a popular field of Machine Learning that has made recent progress. In particular, many methods and procedures have been developed to solve the classification problem. Most classical methods in Supervised Learning use the density estimation of data to construct their classifiers.In this dissertation, we show that the topology of data can be a good alternative in constructing classifiers. We propose using topological graphs like Gabriel graphs (GG) and Relative Neighborhood Graphs (RNG) that can build the topology of data based on its neighborhood structure. To apply this concept, we create a new method called Random Neighborhood Classification (RNC).In this method, we use topological graphs to construct classifiers and then apply Ensemble Methods (EM) to get all relevant information from the data. EM is well known in Machine Learning, generates many classifiers from data and then aggregates these classifiers into one. Aggregate classifiers have been shown to be very efficient in many studies, because it leverages relevant and effective information from each generated classifier. We first compare RNC to other known classification methods using data from the UCI Irvine repository. We find that RNC works very well compared to very efficient methods such as Random Forests and Support Vector Machines. Most of the time, it ranks in the top three methods in efficiency. This result has encouraged us to study the efficiency of RNC on real data like tweets. Twitter, a microblogging Social Network, is especially useful to mine opinion on current affairs and topics that span the range of human interest, including politics. Mining political opinion from Twitter poses peculiar challenges such as the versatility of the authors when they express their political view, that motivate this study. We define a new attribute, called couple, that will be very helpful in the process to study the tweets opinion. A couple is an author that talk about a politician. We propose a new procedure that focuses on identifying the opinion on tweet using couples. We think that focusing on the couples's opinion expressed by several tweets can overcome the problems of analysing each single tweet. This approach can be useful to avoid the versatility, language ambiguity and many other artifacts that are easy to understand for a human being but not automatically for a machine.We use classical Machine Learning techniques like KNN, Random Forests (RF) and also our method RNC. We proceed in two steps : First, we build a reference set of classified couples using Naive Bayes. We also apply a second alternative method to Naive method, sampling plan procedure, to compare and evaluate the results of Naive method. Second, we evaluate the performance of this approach using proximity measures in order to use RNC, RF and KNN. The expirements used are based on real data of tweets from the French presidential election in 2012. The results show that this approach works well and that RNC performs very good in order to classify opinion in tweets.Topological Learning seems to be very intersting field to study, in particular to address the classification problem. Many concepts to get informations from topological graphs need to analyse like the ones described by Aupetit, M. in his work (2005). Our work show that Topological Learning can be an effective way to perform classification problem
Dunn, Sarah, and Sean M. Wilkinson. "Increasing the resilience of air traffic networks using a network graph theory approach." Elsevier, 2015. https://publish.fid-move.qucosa.de/id/qucosa%3A72825.
Full textPetzold, Maria. "Maximale Kantengewichte zusammenhängender Graphen." Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2012. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-89030.
Full textBehmo, Régis. "Visual feature graphs and image recognition." Phd thesis, Ecole Centrale Paris, 2010. http://tel.archives-ouvertes.fr/tel-00545419.
Full textReinwardt, Manja. "Combinatorial and graph theoretical aspects of two-edge connected reliability." Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2015. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-184297.
Full textLuqman, Muhammad Muzzamil. "Fuzzy multilevel graph embedding for recognition, indexing and retrieval of graphic document images." Thesis, Tours, 2012. http://www.theses.fr/2012TOUR4005/document.
Full textThis thesis addresses the problem of lack of efficient computational tools for graph based structural pattern recognition approaches and proposes to exploit computational strength of statistical pattern recognition. It has two fold contributions. The first contribution is a new method of explicit graph embedding. The proposed graph embedding method exploits multilevel analysis of graph for extracting graph level information, structural level information and elementary level information from graphs. It embeds this information into a numeric feature vector. The method employs fuzzy overlapping trapezoidal intervals for addressing the noise sensitivity of graph representations and for minimizing the information loss while mapping from continuous graph space to discrete vector space. The method has unsupervised learning abilities and is capable of automatically adapting its parameters to underlying graph dataset. The second contribution is a framework for automatic indexing of graph repositories for graph retrieval and subgraph spotting. This framework exploits explicit graph embedding for representing the cliques of order 2 by numeric feature vectors, together with classification and clustering tools for automatically indexing a graph repository. It does not require a labeled learning set and can be easily deployed to a range of application domains, offering ease of query by example (QBE) and granularity of focused retrieval
Douar, Brahim. "Fouille de sous-graphes fréquents à base d'arc consistance." Thesis, Montpellier 2, 2012. http://www.theses.fr/2012MON20108/document.
Full textWith the important growth of requirements to analyze large amount of structured data such as chemical compounds, proteins structures, social networks, to cite but a few, graph mining has become an attractive track and a real challenge in the data mining field. Because of the NP-Completeness of subgraph isomorphism test as well as the huge search space, frequent subgraph miners are exponential in runtime and/or memory use. In order to alleviate the complexity issue, existing subgraph miners have explored techniques based on the minimal support threshold, the description language of the examples (only supporting paths, trees, etc.) or hypothesis (search for shared trees or common paths, etc.). In this thesis, we are using a new projection operator, named AC-projection, which exhibits nice complexity properties as opposed to the graph isomorphism operator. This operator comes from the constraints programming field and has the advantage of a polynomial complexity. We propose two frequent subgraph mining algorithms based on the latter operator. The first one, named FGMAC, follows a breadth-first order to find frequent subgraphs and takes advantage of the well-known Apriori levelwise strategy. The second is a pattern-growth approach that follows a depth-first search space exploration strategy and uses powerful pruning techniques in order to considerably reduce this search space. These two approaches extract a set of particular subgraphs named AC-reduced frequent subgraphs. As a first step, we have studied the search space for discovering such frequent subgraphs and proved that this one is smaller than the search space of frequent isomorphic subgraphs. Then, we carried out experiments in order to prove that FGMAC and AC-miner are more efficient than the state-of-the-art algorithms. In the same time, we have studied the relevance of frequent AC-reduced subgraphs, which are much fewer than isomorphic ones, on classification and we conclude that we can achieve an important performance gain without or with non-significant loss of discovered pattern's quality
Grieshaber, Frank. "GODOT: graph of dated objects and texts: building a chronological gazetteer for antiquity." Epigraphy Edit-a-thon : editing chronological and geographic data in ancient inscriptions ; April 20-22, 2016 / edited by Monica Berti. Leipzig, 2016. Beitrag 6, 2016. https://ul.qucosa.de/id/qucosa%3A15468.
Full text