Academic literature on the topic 'Graph covering'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Graph covering.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Graph covering"
GREEN, EDWARD L., SIBYLLE SCHROLL, and NICOLE SNASHALL. "GROUP ACTIONS AND COVERINGS OF BRAUER GRAPH ALGEBRAS." Glasgow Mathematical Journal 56, no. 2 (August 30, 2013): 439–64. http://dx.doi.org/10.1017/s0017089513000372.
Full textDogan, Derya, and Pinar Dundar. "The Average Covering Number of a Graph." Journal of Applied Mathematics 2013 (2013): 1–4. http://dx.doi.org/10.1155/2013/849817.
Full textCiesielski, Krzysztof, and Janusz Pawlikowski. "Small Coverings with Smooth Functions under the Covering Property Axiom." Canadian Journal of Mathematics 57, no. 3 (June 1, 2005): 471–93. http://dx.doi.org/10.4153/cjm-2005-020-8.
Full textPirzadaa, Shariefuddin, Hilal A. Ganieb, and Merajuddin Siddique. "On some covering graphs of a graph." Electronic Journal of Graph Theory and Applications 1, no. 2 (October 8, 2016): 132–47. http://dx.doi.org/10.5614/ejgta.2016.4.2.2.
Full textErdős, P., and L. Pyber. "Covering a graph by complete bipartite graphs." Discrete Mathematics 170, no. 1-3 (June 1997): 249–51. http://dx.doi.org/10.1016/s0012-365x(96)00124-0.
Full textKwon, Young Soo, and Jaeun Lee. "Enumerating Abelian Typical Cube-Free Fold Coverings of a Circulant Graph." Algebra Colloquium 27, no. 01 (February 25, 2020): 137–48. http://dx.doi.org/10.1142/s1005386720000127.
Full textWang, Shiping, Qingxin Zhu, William Zhu, and Fan Min. "Equivalent Characterizations of Some Graph Problems by Covering-Based Rough Sets." Journal of Applied Mathematics 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/519173.
Full textMa, Jicheng. "On 3-arc-transitive covers of the dodecahedron graph." Filomat 30, no. 13 (2016): 3493–99. http://dx.doi.org/10.2298/fil1613493m.
Full textSohn, Moo Young, and Jaeun Lee. "Characteristic polynomials of some weighted graph bundles and its application to links." International Journal of Mathematics and Mathematical Sciences 17, no. 3 (1994): 503–10. http://dx.doi.org/10.1155/s0161171294000748.
Full textVasanthi, R., and K. Subramanian. "On Vertex Covering Transversal Domination Number of Regular Graphs." Scientific World Journal 2016 (2016): 1–7. http://dx.doi.org/10.1155/2016/1029024.
Full textDissertations / Theses on the topic "Graph covering"
Bryant, Roy Dale. "Covering the de Bruijn graph." Thesis, Monterey, California. Naval Postgraduate School, 1986. http://hdl.handle.net/10945/21751.
Full textMaltais, Elizabeth Jane. "Graph-dependent Covering Arrays and LYM Inequalities." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/34434.
Full textMinei, Marvin. "Three block diagonalization methods for the finite Cayley and covering graph /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2000. http://wwwlib.umi.com/cr/ucsd/fullcit?p9974107.
Full textTanaka, Ryokichi. "Large deviation on a covering graph with group of polynomial growth." 京都大学 (Kyoto University), 2012. http://hdl.handle.net/2433/152534.
Full textYu, Nuo 1983. "Fixed parameter tractable algorithms for optimal covering tours with turns." Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=111595.
Full text許眞眞 and Zhenzhen Xu. "A min-max theorem on packing and covering cycles in graphs." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2002. http://hub.hku.hk/bib/B31226966.
Full textXu, Zhenzhen. "A min-max theorem on packing and covering cycles in graphs /." Hong Kong : University of Hong Kong, 2002. http://sunzi.lib.hku.hk/hkuto/record.jsp?B25155301.
Full textGibbins, Aliska L. "Automorphism Groups of Buildings Constructed Via Covering Spaces." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1373976456.
Full textLevy, Eythan. "Approximation algorithms for covering problems in dense graphs." Doctoral thesis, Universite Libre de Bruxelles, 2009. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210359.
Full textFinally, we look at the CONNECTED VERTEX COVER (CVC) problem,for which we proposed new approximation results in dense graphs. We first analyze Carla Savage's algorithm, then a new variant of the Karpinski-Zelikovsky algorithm. Our results show that these algorithms provide the same approximation ratios for CVC as the maximal matching heuristic and the Karpinski-Zelikovsky algorithm did for VC. We provide tight examples for the ratios guaranteed by both algorithms. We also introduce a new invariant, the "price of connectivity of VC", defined as the ratio between the optimal solutions of CVC and VC, and showed a nearly tight upper bound on its value as a function of the weak density. Our last chapter discusses software aspects, and presents the use of the GRAPHEDRON software in the framework of approximation algorithms, as well as our contributions to the development of this system.
/
Nous présentons un ensemble de résultats d'approximation pour plusieurs problèmes de couverture dans les graphes denses. Ces résultats montrent que pour plusieurs problèmes, des algorithmes classiques à facteur d'approximation constant peuvent être analysés de manière plus fine, et garantissent de meilleurs facteurs d'aproximation constants sous certaines contraintes de densité. Nous montrons en particulier que l'heuristique du matching maximal approxime les problèmes VERTEX COVER (VC) et MINIMUM MAXIMAL MATCHING (MMM) avec un facteur constant inférieur à 2 quand la proportion d'arêtes présentes dans le graphe (densité faible) est supérieure à 3/4 ou quand le degré minimum normalisé (densité forte) est supérieur à 1/2. Nous montrons également que ce résultat peut être amélioré par un algorithme de type GREEDY, qui fournit un facteur constant inférieur à 2 pour des densités faibles supérieures à 1/2. Nous donnons également des familles de graphes extrémaux pour nos facteurs d'approximation. Nous nous somme ensuite intéressés à plusieurs algorithmes de la littérature pour les problèmes VC et SET COVER (SC). Nous avons présenté une approche unifiée et critique des algorithmes de Karpinski-Zelikovsky, Imamura-Iwama, et Bar-Yehuda-Kehat, identifiant un schéma général dans lequel s'intègrent ces algorithmes.
Nous nous sommes finalement intéressés au problème CONNECTED VERTEX COVER (CVC), pour lequel nous avons proposé de nouveaux résultats d'approximation dans les graphes denses, au travers de l'algorithme de Carla Savage d'une part, et d'une nouvelle variante de l'algorithme de Karpinski-Zelikovsky d'autre part. Ces résultats montrent que nous pouvons obtenir pour CVC les mêmes facteurs d'approximation que ceux obtenus pour VC à l'aide de l'heuristique du matching maximal et de l'algorithme de Karpinski-Zelikovsky. Nous montrons également des familles de graphes extrémaux pour les ratios garantis par ces deux algorithmes. Nous avons également étudié un nouvel invariant, le coût de connectivité de VC, défini comme le rapport entre les solutions optimales de CVC et de VC, et montré une borne supérieure sur sa valeur en fonction de la densité faible. Notre dernier chapitre discute d'aspects logiciels, et présente l'utilisation du logiciel GRAPHEDRON dans le cadre des algorithmes d'approximation, ainsi que nos contributions au développement du logiciel.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
El-Darzi, E. "Methods for solving the set covering and set partitioning problems using graph theoretic (relaxation) algorithms." Thesis, Brunel University, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.381678.
Full textBooks on the topic "Graph covering"
El-Darzi, Elia. Methods for solving the set covering and set partitioning problems using graph theoretic (relaxation) algorithms. Uxbridge: Brunel University, 1988.
Find full textFujie, Futaba, and Ping Zhang. Covering Walks in Graphs. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0305-4.
Full textBarg, Alexander, and O. R. Musin. Discrete geometry and algebraic combinatorics. Providence, Rhode Island: American Mathematical Society, 2014.
Find full textWilson, Robin. Combinatorics: A Very Short Introduction. Oxford University Press, 2016. http://dx.doi.org/10.1093/actrade/9780198723493.001.0001.
Full textInstruction, Inc Video Aided. GED Math Review: An Intensive Review Course Covering Arithmetic, Charts & Graphs, Probability & Statistics, Algebra, Geometry, 1VHS, 2 Hours. Video Aided Instruction, Inc., 1988.
Find full textBook chapters on the topic "Graph covering"
Hjort Blindell, Gabriel. "Graph Covering." In Instruction Selection, 105–19. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-34019-7_5.
Full textDiestel, Reinhard. "Matching Covering and Packing." In Graph Theory, 35–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-642-14279-6_2.
Full textDiestel, Reinhard. "Matching Covering and Packing." In Graph Theory, 35–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-53622-3_2.
Full textVernadat, François, Pierre Azéma, and François Michel. "Covering step graph." In Application and Theory of Petri Nets 1996, 516–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/3-540-61363-3_28.
Full textRahman, Md Saidur. "Matching and Covering." In Basic Graph Theory, 63–75. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49475-3_5.
Full textDumitrescu, Adrian, and Csaba D. Tóth. "Covering Paths for Planar Point Sets." In Graph Drawing, 303–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36763-2_27.
Full textZhu, Binhai, and Xiaotie Deng. "On Computing and Drawing Maxmin-Height Covering Triangulation." In Graph Drawing, 464–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/3-540-37623-2_48.
Full textKratochvíl, Jan, Andrzej Proskurowski, and Jan Arne Telle. "Complexity of graph covering problems." In Graph-Theoretic Concepts in Computer Science, 93–105. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/3-540-59071-4_40.
Full textTorim, Ants, Marko Mets, and Kristo Raun. "Covering Concept Lattices with Concept Chains." In Graph-Based Representation and Reasoning, 190–203. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23182-8_14.
Full textVernadat, François, and François Michel. "Covering step graph preserving failure semantics." In Application and Theory of Petri Nets 1997, 253–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/3-540-63139-9_40.
Full textConference papers on the topic "Graph covering"
Dinneen, Michael J., and Richard Hua. "Formulating graph covering problems for adiabatic quantum computers." In ACSW 2017: Australasian Computer Science Week 2017. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3014812.3014830.
Full textIndumathi, R. S., M. R. Rajesh Kanna, and S. Roopa. "Minimum covering q-distance energy of a graph." In PROCEEDINGS OF INTERNATIONAL CONFERENCE ON ADVANCES IN MATERIALS RESEARCH (ICAMR - 2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0016782.
Full textKumar, R. Pradeep, and M. R. Rajesh Kanna. "Minimum covering color Laplacian energy of a graph." In PROCEEDINGS OF INTERNATIONAL CONFERENCE ON ADVANCES IN MATERIALS RESEARCH (ICAMR - 2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0016786.
Full textHan, Muhua, Leibo Liu, and Shaojun Wei. "A graph covering method for template based system partition." In 2008 International Conference on Communications, Circuits and Systems (ICCCAS). IEEE, 2008. http://dx.doi.org/10.1109/icccas.2008.4658022.
Full textYazdanbakhsh, Amir, Mostafa E. Salehi, and Sied Mehdi Fakhraie. "Architecture-Aware Graph-Covering Algorithm for Custom Instruction Selection." In 2010 5th International Conference on Future Information Technology. IEEE, 2010. http://dx.doi.org/10.1109/futuretech.2010.5482719.
Full textDörpinghaus, Jens, Sebastian Schaaf, Juliane Fluck, and Marc Jacobs. "Document Clustering using a Graph Covering with Pseudostable Sets." In 2017 Federated Conference on Computer Science and Information Systems. IEEE, 2017. http://dx.doi.org/10.15439/2017f84.
Full textGuo, Yuanqing, Gerard J. M. Smit, Hajo Broersma, and Paul M. Heysters. "A graph covering algorithm for a coarse grain reconfigurable system." In the 2003 ACM SIGPLAN conference. New York, New York, USA: ACM Press, 2003. http://dx.doi.org/10.1145/780732.780760.
Full textMotwani, R., A. Raghunathan, and H. Saran. "Covering orthogonal polygons with star polygons: the perfect graph approach." In the fourth annual symposium. New York, New York, USA: ACM Press, 1988. http://dx.doi.org/10.1145/73393.73415.
Full textMartini, T. S., M. Roswitha, and D. A. Lestari. "Cycle-supermagic covering on grid graph and K1,n+K¯2." In PROCEEDINGS OF THE 3RD INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES 2017 (ISCPMS2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5064194.
Full textBernáth, Attila, Roland Grappe, and Zoltán Szigeti. "Partition constrained covering of a symmetric crossing supermodular function by a graph." In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2010. http://dx.doi.org/10.1137/1.9781611973075.123.
Full text