Dissertations / Theses on the topic 'Graph covering'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 43 dissertations / theses for your research on the topic 'Graph covering.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Bryant, Roy Dale. "Covering the de Bruijn graph." Thesis, Monterey, California. Naval Postgraduate School, 1986. http://hdl.handle.net/10945/21751.
Full textMaltais, Elizabeth Jane. "Graph-dependent Covering Arrays and LYM Inequalities." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/34434.
Full textMinei, Marvin. "Three block diagonalization methods for the finite Cayley and covering graph /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2000. http://wwwlib.umi.com/cr/ucsd/fullcit?p9974107.
Full textTanaka, Ryokichi. "Large deviation on a covering graph with group of polynomial growth." 京都大学 (Kyoto University), 2012. http://hdl.handle.net/2433/152534.
Full textYu, Nuo 1983. "Fixed parameter tractable algorithms for optimal covering tours with turns." Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=111595.
Full text許眞眞 and Zhenzhen Xu. "A min-max theorem on packing and covering cycles in graphs." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2002. http://hub.hku.hk/bib/B31226966.
Full textXu, Zhenzhen. "A min-max theorem on packing and covering cycles in graphs /." Hong Kong : University of Hong Kong, 2002. http://sunzi.lib.hku.hk/hkuto/record.jsp?B25155301.
Full textGibbins, Aliska L. "Automorphism Groups of Buildings Constructed Via Covering Spaces." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1373976456.
Full textLevy, Eythan. "Approximation algorithms for covering problems in dense graphs." Doctoral thesis, Universite Libre de Bruxelles, 2009. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210359.
Full textFinally, we look at the CONNECTED VERTEX COVER (CVC) problem,for which we proposed new approximation results in dense graphs. We first analyze Carla Savage's algorithm, then a new variant of the Karpinski-Zelikovsky algorithm. Our results show that these algorithms provide the same approximation ratios for CVC as the maximal matching heuristic and the Karpinski-Zelikovsky algorithm did for VC. We provide tight examples for the ratios guaranteed by both algorithms. We also introduce a new invariant, the "price of connectivity of VC", defined as the ratio between the optimal solutions of CVC and VC, and showed a nearly tight upper bound on its value as a function of the weak density. Our last chapter discusses software aspects, and presents the use of the GRAPHEDRON software in the framework of approximation algorithms, as well as our contributions to the development of this system.
/
Nous présentons un ensemble de résultats d'approximation pour plusieurs problèmes de couverture dans les graphes denses. Ces résultats montrent que pour plusieurs problèmes, des algorithmes classiques à facteur d'approximation constant peuvent être analysés de manière plus fine, et garantissent de meilleurs facteurs d'aproximation constants sous certaines contraintes de densité. Nous montrons en particulier que l'heuristique du matching maximal approxime les problèmes VERTEX COVER (VC) et MINIMUM MAXIMAL MATCHING (MMM) avec un facteur constant inférieur à 2 quand la proportion d'arêtes présentes dans le graphe (densité faible) est supérieure à 3/4 ou quand le degré minimum normalisé (densité forte) est supérieur à 1/2. Nous montrons également que ce résultat peut être amélioré par un algorithme de type GREEDY, qui fournit un facteur constant inférieur à 2 pour des densités faibles supérieures à 1/2. Nous donnons également des familles de graphes extrémaux pour nos facteurs d'approximation. Nous nous somme ensuite intéressés à plusieurs algorithmes de la littérature pour les problèmes VC et SET COVER (SC). Nous avons présenté une approche unifiée et critique des algorithmes de Karpinski-Zelikovsky, Imamura-Iwama, et Bar-Yehuda-Kehat, identifiant un schéma général dans lequel s'intègrent ces algorithmes.
Nous nous sommes finalement intéressés au problème CONNECTED VERTEX COVER (CVC), pour lequel nous avons proposé de nouveaux résultats d'approximation dans les graphes denses, au travers de l'algorithme de Carla Savage d'une part, et d'une nouvelle variante de l'algorithme de Karpinski-Zelikovsky d'autre part. Ces résultats montrent que nous pouvons obtenir pour CVC les mêmes facteurs d'approximation que ceux obtenus pour VC à l'aide de l'heuristique du matching maximal et de l'algorithme de Karpinski-Zelikovsky. Nous montrons également des familles de graphes extrémaux pour les ratios garantis par ces deux algorithmes. Nous avons également étudié un nouvel invariant, le coût de connectivité de VC, défini comme le rapport entre les solutions optimales de CVC et de VC, et montré une borne supérieure sur sa valeur en fonction de la densité faible. Notre dernier chapitre discute d'aspects logiciels, et présente l'utilisation du logiciel GRAPHEDRON dans le cadre des algorithmes d'approximation, ainsi que nos contributions au développement du logiciel.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
El-Darzi, E. "Methods for solving the set covering and set partitioning problems using graph theoretic (relaxation) algorithms." Thesis, Brunel University, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.381678.
Full textSabbir, Tarikul Alam Khan. "Topology sensitive algorithms for large scale uncapacitated covering problem." Thesis, Lethbridge, Alta. : University of Lethbridge, Dept. of Mathematics and Computer Science, c2011, 2011. http://hdl.handle.net/10133/3235.
Full textix, 89 leaves : ill. ; 29 cm
Akhoondian, Amiri Saeed [Verfasser], Stephan [Akademischer Betreuer] Kreutzer, Stephan [Gutachter] Kreutzer, Marcin [Gutachter] Pilipczuk, and Dimitrios [Gutachter] Thilikos. "Structural graph theory meets algorithms: covering and connectivity problems in graphs / Saeed Akhoondian Amiri ; Gutachter: Stephan Kreutzer, Marcin Pilipczuk, Dimitrios Thilikos ; Betreuer: Stephan Kreutzer." Berlin : Technische Universität Berlin, 2017. http://d-nb.info/1156182174/34.
Full textXia, Yan. "Packings and Coverings of Complete Graphs with a Hole with the 4-Cycle with a Pendant Edge." Digital Commons @ East Tennessee State University, 2013. https://dc.etsu.edu/etd/1173.
Full textHellmuth, Marc. "Local Prime Factor Decomposition of Approximate Strong Product Graphs." Doctoral thesis, Universitätsbibliothek Leipzig, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-38755.
Full textVandomme, Elise. "Contributions to combinatorics on words in an abelian context and covering problems in graphs." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GRENM010/document.
Full textThis dissertation is divided into two (distinct but connected) parts that reflect the joint PhD. We study and we solve several questions regarding on the one hand combinatorics on words in an abelian context and on the other hand covering problems in graphs. Each particular problem is the topic of a chapter. In combinatorics on words, the first problem considered focuses on the 2-regularity of sequences in the sense of Allouche and Shallit. We prove that a sequence satisfying a certain symmetry property is 2-regular. Then we apply this theorem to show that the 2-abelian complexity functions of the Thue--Morse word and the period-doubling word are 2-regular. The computation and arguments leading to these results fit into a quite general scheme that we hope can be used again to prove additional regularity results. The second question concerns the notion of return words up to abelian equivalence, introduced by Puzynina and Zamboni. We obtain a characterization of Sturmian words with non-zero intercept in terms of the finiteness of the set of abelian return words to all prefixes. We describe this set of abelian returns for the Fibonacci word but also for the Thue-Morse word (which is not Sturmian). We investigate the relationship existing between the abelian complexity and the finiteness of this set. In graph theory, the first problem considered deals with identifying codes in graphs. These codes were introduced by Karpovsky, Chakrabarty and Levitin to model fault-diagnosis in multiprocessor systems. The ratio between the optimal size of an identifying code and the optimal size of a fractional relaxation of an identifying code is between 1 and 2 ln(|V|)+1 where V is the vertex set of the graph. We focus on vertex-transitive graphs, since we can compute the exact fractional solution for them. We exhibit infinite families, called generalized quadrangles, of vertex-transitive graphs with integer and fractional identifying codes of order |V|^k with k in {1/4,1/3,2/5}. The second problem concerns (r,a,b)-covering codes of the infinite grid already studied by Axenovich and Puzynina. We introduce the notion of constant 2-labellings of weighted graphs and study them in four particular weighted cycles. We present a method to link these labellings with covering codes. Finally, we determine the precise values of the constants a and b of any (r,a,b)-covering code of the infinite grid with |a-b|>4. This is an extension of a theorem of Axenovich
Freitas, Lucas Ismaily Bezerra 1987. "A conjectura de Tuza sobre triângulos em grafos." [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/275522.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação
Made available in DSpace on 2018-08-25T17:05:58Z (GMT). No. of bitstreams: 1 Freitas_LucasIsmailyBezerra_M.pdf: 2067916 bytes, checksum: 77f11deab9d862fe9a10de2df94b447c (MD5) Previous issue date: 2014
Resumo: Neste trabalho estudamos a conjectura de Tuza, que relaciona cobertura mínima de triângulos por arestas com empacotamento máximo de triângulos aresta-disjuntos em grafos. Em 1981, Tuza conjecturou que para todo grafo, o número máximo de triângulos aresta-disjuntos é no máximo duas vezes o tamanho de uma cobertura mínima de triângulos por arestas. O caso geral da conjectura continua aberta. Contudo, diversas tentativas de prová-la surgiram na literatura, obtendo resultados para várias classes de grafos. Nesta dissertação, nós apresentamos os principais resultados obtidos da conjectura de Tuza. Atualmente, existem várias versões da conjectura. Contudo, ressaltamos que nosso foco está na conjectura aplicada a grafos simples. Apresentamos também uma conjectura que se verificada, implica na veracidade da conjectura de Tuza. Demonstramos ainda que se G é um contra-exemplo mínimo para a conjectura de Tuza, então G é 4-conexo. Deduzimos desse resultado que a conjectura de Tuza é válida para grafos sem minor do K_5
Abstract: In this thesis we study the conjecture of Tuza, which relates covering of triangles (by edges) with packing of edge-disjoint triangles in graphs. In 1981, Tuza conjectured that for any graph, the maximum number of edge-disjoint triangles is at most twice the size of a minimum cover of triangles by edges. The general case of the conjecture remains open. However, several attempts to prove it appeared in the literature, which contain results for several classes of graphs. In this thesis, we present the main known results for the conjecture of Tuza. Currently, there are several versions of Tuza's conjecture. Nevertheless, we emphasize that our focus is on conjecture applied to simple graphs. We also present a conjecture that, if verified, implies the validity of the conjecture of Tuza. We also show that if G is a mininum counterexample to the conjecture of Tuza, then G is 4-connected. We can deduce from this result that the conjecture of Tuza is valid for graphs with no K_5 minor
Mestrado
Ciência da Computação
Mestre em Ciência da Computação
Sheppard, Nicholas Paul. "Self-Reduction for Combinatorial Optimisation." University of Sydney. Computer Science, 2001. http://hdl.handle.net/2123/797.
Full textRaspaud, André. "Flots et couvertures par des cycles dans les graphes et les matroïdes." Phd thesis, Grenoble 1, 1985. http://tel.archives-ouvertes.fr/tel-00316071.
Full textMuller, Carole. "Minor-closed classes of graphs: Isometric embeddings, cut dominants and ball packings." Doctoral thesis, Universite Libre de Bruxelles, 2021. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/331629.
Full textA class of graphs is closed under taking minors if for each graph in the class and each minor of this graph, the minor is also in the class. By a famous result of Robertson and Seymour, we know that characterizing such a class can be done by identifying a finite set of minimal excluded minors, that is, graphs which do not belong to the class and are minor-minimal for this property.In this thesis, we study three problems in minor-closed classes of graphs. The first two are related to the characterization of some graph classes, while the third one studies a packing-covering relation for graphs excluding a minor.In the first problem, we study isometric embeddings of edge-weighted graphs into metric spaces. In particular, we consider ell_2- and ell_∞-spaces. Given a weighted graph, an isometric embedding maps the vertices of this graph to vectors such that for each edge of the graph the weight of the edge equals the distance between the vectors representing its ends. We say that a weight function on the edges of the graph is a realizable distance function if such an embedding exists. The minor-monotone parameter f_p(G) determines the minimum dimension k of an ell_p-space such that any realizable distance function of G is realizable in ell_p^k. We characterize graphs with large f_p(G) value in terms of unavoidable minors for p = 2 and p = ∞. Roughly speaking, a family of graphs gives unavoidable minors for a minor-monotone parameter if these graphs “explain” why the parameter is high.The second problem studies the minimal excluded minors of the class of graphs such that φ(G) is bounded by some constant k, where φ(G) is a parameter related to the cut dominant of a graph G. This unbounded polyhedron contains all points that are componentwise larger than or equal to a convex combination of incidence vectors of cuts in G. The parameter φ(G) is equal to the maximum right-hand side of a facet-defining inequality of the cut dominant of G in minimum integer form. We study minimal excluded graphs for the property φ(G) <= 4 and provide also a new bound of φ(G) in terms of the vertex cover number.The last problem has a different flavor as it studies a packing-covering relation in classes of graphs excluding a minor. Given a graph G, a ball of center v and radius r is the set of all vertices in G that are at distance at most r from v. Given a graph and a collection of balls, we can define a hypergraph H such that its vertices are the vertices of G and its edges correspond to the balls in the collection. It is well-known that, in the hypergraph H, the transversal number τ(H) is at least the packing number ν(H). We show that we can bound τ(H) from above by a linear function of ν(H) for every graphs G and ball collections H if the graph G excludes a minor, solving an open problem by Chepoi, Estellon et Vaxès.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Imbert, Michel. "Combinatoire des revêtements : cellulation des espaces de Hurwitz." Université Joseph Fourier (Grenoble), 1998. http://www.theses.fr/1998GRE10228.
Full textWagner, Andrew. "Eulerian Properties of Design Hypergraphs and Hypergraphs with Small Edge Cuts." Thesis, Université d'Ottawa / University of Ottawa, 2019. http://hdl.handle.net/10393/39092.
Full textSbihi, Amine M. (Amine Mohammed). "Covering times for random walks on graphs." Thesis, McGill University, 1990. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=74538.
Full textMeagher, Karen. "Covering arrays on graphs: Qualitative independence graphs and extremal set partition theory." Thesis, University of Ottawa (Canada), 2005. http://hdl.handle.net/10393/29234.
Full textZekaoui, Latifa. "Mixed covering arrays on graphs and tabu search algorithms." Thesis, University of Ottawa (Canada), 2006. http://hdl.handle.net/10393/27433.
Full textHur, Suhkjin. "The Kuratowski covering conjecture for graphs of order less than 10." Columbus, Ohio : Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1209141894.
Full textShumway, Alexander Jin. "Adding Limit Points to Bass-Serre Graphs of Groups." BYU ScholarsArchive, 2018. https://scholarsarchive.byu.edu/etd/6954.
Full textSurber, Wesley M. "Restricted and Unrestricted Coverings of Complete Bipartite Graphs with Hexagons." Digital Commons @ East Tennessee State University, 2013. https://dc.etsu.edu/etd/1136.
Full textIssac, Davis [Verfasser], and Andreas [Akademischer Betreuer] Karrenbauer. "On some covering, partition and connectivity problems in graphs / Davis Issac ; Betreuer: Andreas Karrenbauer." Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2019. http://d-nb.info/1196621233/34.
Full textIssac, Davis Verfasser], and Andreas [Akademischer Betreuer] [Karrenbauer. "On some covering, partition and connectivity problems in graphs / Davis Issac ; Betreuer: Andreas Karrenbauer." Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2019. http://d-nb.info/1196621233/34.
Full textHägglund, Jonas. "Snarks : Generation, coverings and colourings." Doctoral thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-53337.
Full textCooper, Melody Elaine. "Packings and Coverings of Various Complete Digraphs with the Orientations of a 4-Cycle." Digital Commons @ East Tennessee State University, 2007. https://dc.etsu.edu/etd/2031.
Full textHenack, Eric [Verfasser]. "Separability Properties and Finite-Sheeted Coverings of Graphs of Groups and 2-dimensional Orbifolds / Eric Henack." Kiel : Universitätsbibliothek Kiel, 2018. http://d-nb.info/115626443X/34.
Full textCantrell, Daniel Shelton. "Cyclic, f-Cyclic, and Bicyclic Decompositions of the Complete Graph into the 4-Cycle with a Pendant Edge." Digital Commons @ East Tennessee State University, 2009. https://dc.etsu.edu/etd/1872.
Full textLewenczuk, Janice Gail. "Decomposition, Packings and Coverings of Complete Digraphs with a Transitive-Triple and a Pendant Arc." Digital Commons @ East Tennessee State University, 2007. https://dc.etsu.edu/etd/2053.
Full textSantiago, Pinto Leonor. "Cobertura com restrições de conexidade." Doctoral thesis, Instituto Superior de Economia e Gestão, 2004. http://hdl.handle.net/10400.5/4705.
Full textDado um grafo bipartido com classes de bipartição V e U, uma cobertura é um subconjunto C Ç V em que cada vértice de U é adjacente a pelo menos um vértice de C. 0 problema da cobertura procura uma cobertura de cardinalidade mínima. No contexto da selecção de reservas para a con¬servação de espécies, V é o conjunto de povoamentos passíveis de serem seleccionados para integrar a reserva, U o conjunto de espécies a proteger e as arestas descrevem as ocorrências das espécies nos povoamentos. Algumas coberturas apresentam, no entanto, configurações espaciais que não são ade¬quadas do ponto de vista conservacionista. Por razões de sustentabilidade a fragmentação é considerada um atributo indesejável. Assim, a conexidade tem um papel importante na protecção da biodiversidade e vários autores têm recentemente proposto algoritmos que incorporam a conexidade. Nesta dissertação considera-se a introdução explícita da conexidade no problema da cobertura, de forma a dar resposta a questões relevantes em biologia da conservação.
Given a bipartite graph with bipartition V and U, a cover is a subset C C V such that each node of U is adjacent to at least one node in C. The set cov¬ering problem seeks a minimum cardinality cover. In the context of reserve selection for conservation of species, V is a set of candidate sites from a re¬serve network, U is the set of species to be protected, and the edges describe which species are represented in each site. Some covers however may assume spatial configurations which are not adequate for conservational purposes. For sustainability reasons the fragmentation of existing natural habitats should be avoided. Thus, connectivity appears to be an important issue for persistence of biodiversity, and several authors have recently proposed algorithms which incorporate connectivity. We address the issue of explic¬itly introducing connectivity in the set covering problem, with relevance for conservation biology.
Francetic, Nevena. "Covering Arrays with Row Limit." Thesis, 2012. http://hdl.handle.net/1807/34006.
Full textChen, Sheng-Hua, and 陳聖華. "Covering Problems in Graphs." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/16999152570419494427.
Full text國立臺灣大學
數學研究所
102
Covering problems in graphs are optimization problems about covering the vertex set V(G) or the edge set E(G) of a graph G under some additional restrictions. In other words, a emph{graph covering} of G is a collection of vertex/edge subsets of G such that each vertex/edge of G is belonged to at least one subset in this collection. Graph covering enjoys many practical applications as well as theoretical challenges. It is heavily used in various fields such as biochemistry (genomics), electrical engineering (communication networks and coding theory), computer science (algorithms and computation) and operations research (scheduling) etc. In this thesis, we consider six covering problems in graphs, which study the optimality of the following related functions. A it strong edge-coloring is a function that assigns to each edge a color such that any two edges within distance two apart receive different colors. An edge Roman dominating function is the edge version of a Roman dominating function, that is, a function f: E(G)->{0,1,2} such that every edge e with f(e)=0 is adjacent to some edge e'' with f(e'')=2. More generally, for a fixed positive integer k, a k-power Roman dominating function is a function f:V(G)->{0,1,...,k} such that every vertex u with f(u)=0 is adjacent to some vertex v with f(v)=i
Hsieh, Chi-Tsung, and 謝奇璁. "Covering Graphs with Directed Paths." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/98529606536829265565.
Full text國立交通大學
應用數學系所
97
In this thesis we study an oriented version of perfect path double cover (PPDC). An oriented perfect path double cover (OPPDC) of a graph G is a collection of oriented paths in the symmetric orientation S(G) of G such that each edge of S(G) lies in exactly one of the paths and for each vertex v ∈ V (G) there is a unique path which begins in v (and thus the same holds also for terminal vertices of the paths). First we show that if G has no components which isomorphism to K3 and G is a 3-degenerate graph, then G has an OPPDC. Next we also construct an OPPDC for complete bipartite graph Kn,n and multipartite graph Km(n) (n is odd and m ≠ 3, 5),respectively.
Yao, Mei-Yu, and 姚美玉. "Decompositions, Packings and Coverings of Graphs with 4-cycles (4-circuits)." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/70489867970762541779.
Full text嶺東科技大學
資訊科技應用研究所
97
ABSTRACT In this thesis we investigate the problem of finding maximum packings and minimum coverings of complete multidigraphs with 4-circuits and that of some special multicrowns with 4-cycles. The problem of decomposing multicrowns (resp. directed multicrowns) and circulant multigraphs (resp.circulant multidigraphs) into 4-cycles (resp. 4-circuits) are also studied. We give a complete solution to the maximum packing and minimum covering problem, and obtain some sufficient conditions on the existence of 4-cycle (resp. 4-circuit) decompositions of multicrowns (resp. directed multicrowns) and circulant multigraphs (resp. circulant multidigraphs)
Datta, Krupa R. "Generalization of Hitting, Covering and Packing Problems on Intervals." Thesis, 2017. http://etd.iisc.ernet.in/2005/3628.
Full text"Decompositions, Packings, and Coverings of Complete Directed Graphs with a 3-Circuit and a Pendent Arc." East Tennessee State University, 2007. http://etd-submit.etsu.edu/etd/theses/available/etd-0713107-135325/.
Full textVacek, Jan. "Pokrývací množiny ve steganografii." Master's thesis, 2013. http://www.nusl.cz/ntk/nusl-330343.
Full textLafreniere, Benjamin J. "Packing Unit Disks." Thesis, 2008. http://hdl.handle.net/10012/3907.
Full text