Academic literature on the topic 'Graph Mining'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Graph Mining.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Graph Mining"
Et. al., M. Sailaja,. "Ensemble Distributed Search-FSGM-CRD Compressed Cache Algorithm for Large Datasets." Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, no. 2 (April 11, 2021): 2854–58. http://dx.doi.org/10.17762/turcomat.v12i2.2317.
Full textChakrabarti, Deepayan, and Christos Faloutsos. "Graph mining." ACM Computing Surveys 38, no. 1 (June 29, 2006): 2. http://dx.doi.org/10.1145/1132952.1132954.
Full textErgenç Bostanoğlu, Belgin, and Nourhan Abuzayed. "Dynamic frequent subgraph mining algorithms over evolving graphs: a survey." PeerJ Computer Science 10 (October 8, 2024): e2361. http://dx.doi.org/10.7717/peerj-cs.2361.
Full textKashyap, Navneet Kr, B. K. Pandey, H. L. Mandoria, and Ashok Kumar. "Graph Mining Using gSpan: Graph-Based Substructure Pattern Mining." International Journal of Applied Research on Information Technology and Computing 7, no. 2 (2016): 132. http://dx.doi.org/10.5958/0975-8089.2016.00014.2.
Full textChen, Yuzhong, Zhenyu Liu, Yulin Liu, and Chen Dong. "Distributed Attack Modeling Approach Based on Process Mining and Graph Segmentation." Entropy 22, no. 9 (September 14, 2020): 1026. http://dx.doi.org/10.3390/e22091026.
Full textAcosta-Mendoza, Niusvel, Andrés Gago-Alonso, Jesús Ariel Carrasco-Ochoa, José Fco Martínez-Trinidad, and José E. Medina-Pagola. "Extension of Canonical Adjacency Matrices for Frequent Approximate Subgraph Mining on Multi-Graph Collections." International Journal of Pattern Recognition and Artificial Intelligence 31, no. 08 (May 9, 2017): 1750025. http://dx.doi.org/10.1142/s0218001417500252.
Full textRao, Bapuji, and Sarojananda Mishra. "A New Approach to Community Graph Partition Using Graph Mining Techniques." International Journal of Rough Sets and Data Analysis 4, no. 1 (January 2017): 75–94. http://dx.doi.org/10.4018/ijrsda.2017010105.
Full textSanei-Mehri, Seyed-Vahid, Apurba Das, Hooman Hashemi, and Srikanta Tirthapura. "Mining Largest Maximal Quasi-Cliques." ACM Transactions on Knowledge Discovery from Data 15, no. 5 (June 26, 2021): 1–21. http://dx.doi.org/10.1145/3446637.
Full textRehman, Saif Ur, Sohail Asghar, Yan Zhuang, and Simon Fong. "Performance Evaluation of Frequent Subgraph Discovery Techniques." Mathematical Problems in Engineering 2014 (2014): 1–6. http://dx.doi.org/10.1155/2014/869198.
Full textKemmar, Amina, Yahia Lebbah, and Samir Loudni. "Interval graph mining." International Journal of Data Mining, Modelling and Management 10, no. 1 (2018): 1. http://dx.doi.org/10.1504/ijdmmm.2018.089629.
Full textDissertations / Theses on the topic "Graph Mining"
Feng, Jing. "Information-theoretic graph mining." Diss., Ludwig-Maximilians-Universität München, 2015. http://nbn-resolving.de/urn:nbn:de:bvb:19-183384.
Full textKumar, Rohit 1986. "Temporal graph mining and distributed processing." Doctoral thesis, Universitat Politècnica de Catalunya, 2018. http://hdl.handle.net/10803/620623.
Full textCon el reciente crecimiento de las redes sociales y el deseo humano de interactuar con el mundo digital, una gran cantidad de datos de interacción humano-a-humano o humano-a-dispositivo se generan cada segundo. Con el auge de los dispositivos IoT, las interacciones dispositivo-a-dispositivo también están en alza. Todas estas interacciones no son más que una representación de como la red subyacente conecta distintas entidades en el tiempo. Modelar estas interacciones en forma de red de interacciones presenta una gran cantidad de oportunidades únicas para descubrir patrones interesantes y entender la dinamicidad de la red. Entender la dinamicidad de la red es clave ya que encapsula la forma en la que nos comunicamos, socializamos, consumimos información y somos influenciados. Para ello, en esta tesis doctoral, nos centramos en analizar una red de interacciones para entender como la red subyacente es usada. Definimos una red de interacciones como una sequencia de interacciones grabadas en el tiempo E sobre aristas de un grafo estático G=(V, E). Las redes de interacción se pueden usar para modelar gran cantidad de aplicaciones reales, por ejemplo en una red social o de comunicaciones cada interacción sobre una arista representa una interacción entre dos usuarios (correo electrónico, llamada, retweet), o en el caso de una red financiera una interacción entre dos cuentas para representar una transacción. Analizamos las redes de interacción bajo múltiples escenarios. En el primero, estudiamos las redes de interacción bajo un modelo de ventana deslizante. Asumimos que un nodo puede mandar información a otros nodos si estan conectados utilizando aristas presentes en una ventana temporal. En este modelo, estudiamos como la importancia o centralidad de un nodo evoluciona en el tiempo. En el segundo escenario añadimos restricciones adicionales respecto como la información fluye entre nodos. Asumimos que un nodo puede mandar información a otros nodos solo si existe un camino temporal entre ellos. Para restringir la longitud de los caminos temporales también asumimos una ventana temporal. Aplicamos este modelo para resolver este problema de maximización de influencia restringido temporalmente. Analizando los datos de la red de interacción bajo nuestro modelo intentamos descubrir los k nodos más influyentes. Examinamos nuestro modelo en interacciones humano-a-humano, usando datos de redes sociales, como en ubicación-a-ubicación usando datos de redes sociales basades en localización (LBSNs). En el mismo escenario también minamos camínos cíclicos temporales para entender los patrones de comunicación en una red. Existen múltiples aplicaciones para cíclos temporales y aparecen naturalmente en redes de comunicación donde una persona envía un mensaje y después de un tiempo reacciona a una cadena de reacciones de compañeros en el mensaje. En redes financieras, por otro lado, la presencia de un ciclo temporal puede indicar ciertos tipos de fraude. Proponemos algoritmos eficientes para todos nuestros análisis y evaluamos su eficiencia y efectividad en datos reales. Finalmente, dado que muchos de los algoritmos estudiados tienen una gran demanda computacional, también estudiamos los algoritmos de procesado distribuido de grafos. Un aspecto importante de procesado distribuido de grafos es el de correctamente particionar los datos del grafo entre distintas máquinas. Gran cantidad de investigación se ha realizado en estrategias para particionar eficientemente un grafo, pero no existe un particionamento bueno para todos los tipos de grafos y algoritmos. Escoger la mejor estrategia de partición no es trivial y es mayoritariamente un ejercicio de prueba y error. Con tal de abordar este problema, proporcionamos un modelo de costes para dar un mejor entendimiento en como una estrategia de particionamiento actúa dado un grafo y un algoritmo.
Kumar, Rohit. "Temporal Graph Mining and Distributed Processing." Doctoral thesis, Universite Libre de Bruxelles, 2018. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/271527.
Full textDoctorat en Sciences de l'ingénieur et technologie
info:eu-repo/semantics/nonPublished
Niggemann, Oliver. "Visual data mining of graph based data." [S.l. : s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=962400505.
Full textRunelöv, Martin. "Finding seminal scientific publications with graph mining." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-172382.
Full textI detta examensarbete undersöks det huruvida analys av citeringsgrafer kan användas för att finna betydelsefulla vetenskapliga publikationer. Framför allt studeras ”betweenness”-centralitet, den så kallade ”backbone”-grafen samt ”burstiness” av citeringar. Dessa mått utvärderas med hjälp av precisionsmått med avseende på guldstandarder baserade på ’fellow’-program samt via manuell annotering. Antal citeringar, PageRank, och slumpmässigt urval används som jämförelse. Resultaten visar att ”backbone”-grafen kan bidra till att eventuellt upptäcka betydelsefulla publikationer med ett lågt antal citeringar samt att en kombination av ”betweenness” och ”burstiness” ger resultat i nivå med de man får av att räkna antal citeringar.
Diot, Fabien. "Graph mining for object tracking in videos." Thesis, Saint-Etienne, 2014. http://www.theses.fr/2014STET4009/document.
Full textDetecting and following the main objects of a video is necessary to describe its content in order to, for example, allow for a relevant indexation of the multimedia content by the search engines. Current object tracking approaches either require the user to select the targets to follow, or rely on pre-trained classifiers to detect particular classes of objects such as pedestrians or car for example. Since those methods rely on user intervention or prior knowledge of the content to process, they cannot be applied automatically on amateur videos such as the ones found on YouTube. To solve this problem, we build upon the hypothesis that, in videos with a moving background, the main objects should appear more frequently than the background. Moreover, in a video, the topology of the visual elements composing an object is supposed consistent from one frame to another. We represent each image of the videos with plane graphs modeling their topology. Then, we search for substructures appearing frequently in the database of plane graphs thus created to represent each video. Our contributions cover both fields of graph mining and object tracking. In the first field, our first contribution is to present an efficient plane graph mining algorithm, named PLAGRAM. This algorithm exploits the planarity of the graphs and a new strategy to extend the patterns. The next contributions consist in the introduction of spatio-temporal constraints into the mining process to exploit the fact that, in a video, the motion of objects is small from on frame to another. Thus, we constrain the occurrences of a same pattern to be close in space and time by limiting the number of frames and the spatial distance separating them. We present two new algorithms, DYPLAGRAM which makes use of the temporal constraint to limit the number of extracted patterns, and DYPLAGRAM_ST which efficiently mines frequent spatio-temporal patterns from the datasets representing the videos. In the field of object tracking, our contributions consist in two approaches using the spatio-temporal patterns to track the main objects in videos. The first one is based on a search of the shortest path in a graph connecting the spatio-temporal patterns, while the second one uses a clustering approach to regroup them in order to follow the objects for a longer period of time. We also present two industrial applications of our method
Wang, Guan. "Graph-Based Approach on Social Data Mining." Thesis, University of Illinois at Chicago, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3668648.
Full textPowered by big data infrastructures, social network platforms are gathering data on many aspects of our daily lives. The online social world is reflecting our physical world in an increasingly detailed way by collecting people's individual biographies and their various of relationships with other people. Although massive amount of social data has been gathered, an urgent challenge remain unsolved, which is to discover meaningful knowledge that can empower the social platforms to really understand their users from different perspectives.
Motivated by this trend, my research addresses the reasoning and mathematical modeling behind interesting phenomena on social networks. Proposing graph based data mining framework regarding to heterogeneous data sources is the major goal of my research. The algorithms, by design, utilize graph structure with heterogeneous link and node features to creatively represent social networks' basic structures and phenomena on top of them.
The graph based heterogeneous mining methodology is proved to be effective on a series of knowledge discovery topics, including network structure and macro social pattern mining such as magnet community detection (87), social influence propagation and social similarity mining (85), and spam detection (86). The future work is to consider dynamic relation on social data mining and how graph based approaches adapt from the new situations.
Giatsidis, Christos. "Graph Mining and Community Evaluation with Degeneracy." Palaiseau, Ecole polytechnique, 2013. http://pastel.archives-ouvertes.fr/docs/00/95/96/15/PDF/thesisA.pdf.
Full textThe study and analysis of social networks attract attention from a variety of Sciences (psychology, statistics, sociology). Among them, the field of Data Mining offers tools to automatically extract useful information on properties of those networks. More specifically, Graph Mining serves the need to model and investigate social networks especially in the case of large communities - usually found in online media - where social networks are prohibitively large for non-automated methodologies. The general modeling of a social network is based on graph structures. Nodes of the graph represent individuals and edges signify different actions or types of social connections between them. A community is defined as a subgraph (of a social network) and is characterized by dense connections. Various measures have been proposed to evaluate different quality aspects of such communities - in most cases ignoring various properties of the connections (e. G. Directionality). In the work presented here, the k-core concept is used as a means to evaluate communities and extract information. The k-core structure essentially measures the robustness of an undirected network through degeneracy. Further more extensions of degeneracy are introduced to networks that their edges offer more information than the undirected type. Starting point is the exploration of properties that can be extracted from undirected graphs (of social networks). On this, degeneracy is used to evaluate collaboration features - a property not captured by the single node metrics or by the established community evaluation metrics - of both individuals and the entire community. Next, this process is extended for weighted, directed and signed graphs offering a plethora of novel evaluation metrics for social networks. These new features offer measurement tools for collaboration in social networks where we can assign a weight or a direction to a connection and provide alternative ways to signify the importance of individuals within a community. For signed graphs the extension of degeneracy offers additional metrics that can be used for trust management. Moreover, a clustering approach is introduced which capitalizes on processing the graph in a hierarchical manner provided by its core expansion sequence, an ordered partition of the graph into different levels according to the k-core decomposition The graph theoretical models are then applied in real world graphs to investigate trends and behaviors. The datasets explored include scientific collaboration and citation graphs (DBLP and ARXIV), a snapshot of Wikipedia's inner graph and trust networks (e. G. Epinions and Slashdot). The findings on these datasets are interesting and the proposed models offer intuitive results
Schenker, Adam. "Graph-Theoretic Techniques for Web Content Mining." [Tampa, Fla.] : University of South Florida, 2003. http://purl.fcla.edu/fcla/etd/SFE0000143.
Full textDe, Lara Nathan. "Algorithmic and software contributions to graph mining." Electronic Thesis or Diss., Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAT029.
Full textSince the introduction of Google's PageRank method for Web searches in the late 1990s, graph algorithms have been part of our daily lives. In the mid 2000s, the arrival of social networks has amplified this phenomenon, creating new use-cases for these algorithms. Relationships between entities can be of multiple types: user-user symmetric relationships for Facebook or LinkedIn, follower-followee asymmetric ones for Twitter or even user-content bipartite ones for Netflix or Amazon. They all come with their own challenges and the applications are numerous: centrality calculus for influence measurement, node clustering for knowledge discovery, node classification for recommendation or embedding for link prediction, to name a few.In the meantime, the context in which graph algorithms are applied has rapidly become more constrained. On the one hand, the increasing size of the datasets with millions of entities, and sometimes billions of relationships, bounds the asymptotic complexity of the algorithms for industrial applications. On the other hand, as these algorithms affect our daily lives, there is a growing demand for explanability and fairness in the domain of artificial intelligence in general. Graph mining is no exception. For example, the European Union has published a set of ethics guidelines for trustworthy AI. This calls for further analysis of the current models and even new ones.This thesis provides specific answers via a novel analysis of not only standard, but also extensions, variants, and original graph algorithms. Scalability is taken into account every step of the way. Following what the Scikit-learn project does for standard machine learning, we deem important to make these algorithms available to as many people as possible and participate in graph mining popularization. Therefore, we have developed an open-source software, Scikit-network, which implements and documents the algorithms in a simple and efficient way. With this tool, we cover several areas of graph mining such as graph embedding, clustering, and semi-supervised node classification
Books on the topic "Graph Mining"
Chakrabarti, D., and C. Faloutsos. Graph Mining. Cham: Springer International Publishing, 2012. http://dx.doi.org/10.1007/978-3-031-01903-6.
Full textXuan, Qi, Zhongyuan Ruan, and Yong Min, eds. Graph Data Mining. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2609-8.
Full textCook, Diane J., and Lawrence B. Holder, eds. Mining Graph Data. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006. http://dx.doi.org/10.1002/0470073047.
Full text1963-, Cook Diane J., and Holder Lawrence B. 1964-, eds. Mining graph data. Hoboken, N.J: Wiley-Interscience, 2007.
Find full textKoutra, Danai, and Christos Faloutsos. Individual and Collective Graph Mining. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-031-01911-1.
Full textAggarwal, Charu C., and Haixun Wang, eds. Managing and Mining Graph Data. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-6045-0.
Full textAdam, Schenker, ed. Graph-theoretic techniques for web content mining. Hackensack, N.J: World Scientific, 2005.
Find full textVathy-Fogarassy, Ágnes. Graph-Based Clustering and Data Visualization Algorithms. London: Springer London, 2013.
Find full textZ, Maimon Oded, ed. Data mining with decision trees: Theroy and applications. Singapore: World Scientific, 2008.
Find full textBook chapters on the topic "Graph Mining"
Cheng, Hong, and Jeffrey Xu Yu. "Graph Mining." In Encyclopedia of Database Systems, 1–3. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4899-7993-3_80737-1.
Full textHadzic, Fedja, Henry Tan, and Tharam S. Dillon. "Graph Mining." In Mining of Data with Complex Structures, 287–300. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17557-2_11.
Full textZhang, Xinhua, Novi Quadrianto, Kristian Kersting, Zhao Xu, Yaakov Engel, Claude Sammut, Mark Reid, et al. "Graph Mining." In Encyclopedia of Machine Learning, 469–71. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-30164-8_350.
Full textRamon, Jan. "Graph Mining." In Encyclopedia of Systems Biology, 865–67. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_615.
Full textChakrabarti, Deepayan. "Graph Mining." In Encyclopedia of Machine Learning and Data Mining, 581–84. Boston, MA: Springer US, 2017. http://dx.doi.org/10.1007/978-1-4899-7687-1_350.
Full textCheng, Hong, and Jeffrey Xu Yu. "Graph Mining." In Encyclopedia of Database Systems, 1648–51. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4614-8265-9_80737.
Full textChakrabarti, D., and C. Faloutsos. "Introduction." In Graph Mining, 1–5. Cham: Springer International Publishing, 2012. http://dx.doi.org/10.1007/978-3-031-01903-6_1.
Full textChakrabarti, D., and C. Faloutsos. "Patterns in Weighted Graphs." In Graph Mining, 27–30. Cham: Springer International Publishing, 2012. http://dx.doi.org/10.1007/978-3-031-01903-6_4.
Full textChakrabarti, D., and C. Faloutsos. "Influence/Virus Propagation and Immunization." In Graph Mining, 123–33. Cham: Springer International Publishing, 2012. http://dx.doi.org/10.1007/978-3-031-01903-6_17.
Full textChakrabarti, D., and C. Faloutsos. "Community Detection." In Graph Mining, 113–22. Cham: Springer International Publishing, 2012. http://dx.doi.org/10.1007/978-3-031-01903-6_16.
Full textConference papers on the topic "Graph Mining"
Rakaraddi, Appan, Lam Siew-Kei, Mahardhika Pratama, and Marcus de Carvalho. "Graph Mining under Data scarcity." In 2024 International Joint Conference on Neural Networks (IJCNN), 1–7. IEEE, 2024. http://dx.doi.org/10.1109/ijcnn60899.2024.10651061.
Full textFaloutsos, Christos. "Graph mining." In the 8th ACM SIGCOMM conference. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1452520.1452521.
Full textRehman, Saif Ur, Asmat Ullah Khan, and Simon Fong. "Graph mining: A survey of graph mining techniques." In 2012 Seventh International Conference on Digital Information Management (ICDIM). IEEE, 2012. http://dx.doi.org/10.1109/icdim.2012.6360146.
Full textBorgwardt, Karsten Michael, and Xifeng Yan. "Graph Mining and Graph Kernels." In the 14th ACM SIGKDD international conference. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1401890.1551565.
Full textFaloutsos, Christos. "Large graph mining." In the 23rd international conference. New York, New York, USA: ACM Press, 2014. http://dx.doi.org/10.1145/2566486.2576889.
Full textKang, Jian, and Hanghang Tong. "Fair Graph Mining." In CIKM '21: The 30th ACM International Conference on Information and Knowledge Management. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3459637.3482030.
Full textBattaglino, Casey, Pienta Pienta, and Richard Vuduc. "GraSP: distributed streaming graph partitioning." In 1st High Performance Graph Mining workshop. Barcelona Supercomputing Center, 2015. http://dx.doi.org/10.5821/hpgm15.3.
Full textJin, Wei. "Graph Mining with Graph Neural Networks." In WSDM '21: The Fourteenth ACM International Conference on Web Search and Data Mining. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3437963.3441673.
Full textRajani, Nazneen, Rajani McArdle, and Inderjit S. Dhillon. "Parallel k nearest neighbor graph construction using tree-based data structures." In 1st High Performance Graph Mining workshop. Barcelona Supercomputing Center, 2015. http://dx.doi.org/10.5821/hpgm15.1.
Full textPennycuff, Corey, and Tim Weninger. "Fast, exact graph diameter computation with vertex programming." In 1st High Performance Graph Mining workshop. Barcelona Supercomputing Center, 2015. http://dx.doi.org/10.5821/hpgm15.2.
Full textReports on the topic "Graph Mining"
Henderson, Keith, Tina Eliassi-Rad, Christos Faloutsos, Leman Akoglu, Lei Li, Koji Maruhashi, B. Aditya Prakash, and H. Tong. MetricForensics: A Multi-Level Approach for Mining Volatile Graphs. Office of Scientific and Technical Information (OSTI), February 2010. http://dx.doi.org/10.2172/1114747.
Full textChau, Duen H. Data Mining Meets HCI: Making Sense of Large Graphs. Fort Belvoir, VA: Defense Technical Information Center, July 2012. http://dx.doi.org/10.21236/ada566568.
Full textKanner, Joseph, Mark Richards, Ron Kohen, and Reed Jess. Improvement of quality and nutritional value of muscle foods. United States Department of Agriculture, December 2008. http://dx.doi.org/10.32747/2008.7591735.bard.
Full textINVERSION METHOD OF UNCERTAIN PARAMETERS FOR TRUSS STRUCTURES BASED ON GRAPH NEURAL NETWORKS. The Hong Kong Institute of Steel Construction, December 2023. http://dx.doi.org/10.18057/ijasc.2023.19.4.5.
Full textMonetary Policy Report - January 2023. Banco de la República, June 2023. http://dx.doi.org/10.32468/inf-pol-mont-eng.tr1-2023.
Full text