Dissertations / Theses on the topic 'Graph theory applications'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Graph theory applications.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Eggemann, Nicole. "Some applications of graph theory." Thesis, Brunel University, 2009. http://bura.brunel.ac.uk/handle/2438/3953.
Full textPappone, Francesco. "Graph neural networks: theory and applications." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23893/.
Full textAl-Shimary, Abbas. "Applications of graph theory to quantum computation." Thesis, University of Leeds, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.608359.
Full textRittenhouse, Michelle L. "Properties and Recent Applications in Spectral Graph Theory." VCU Scholars Compass, 2008. http://scholarscompass.vcu.edu/etd/1126.
Full textSimmons, Dayton C. (Dayton Cooper). "Applications of Rapidly Mixing Markov Chains to Problems in Graph Theory." Thesis, University of North Texas, 1993. https://digital.library.unt.edu/ark:/67531/metadc277740/.
Full textCohen, Nathann. "Three years of graphs and music : some results in graph theory and its applications." Phd thesis, Université Nice Sophia Antipolis, 2011. http://tel.archives-ouvertes.fr/tel-00645151.
Full textShiping, Liu. "Synthetic notions of curvature and applications in graph theory." Doctoral thesis, Universitätsbibliothek Leipzig, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-102197.
Full textSutinuntopas, Somporn. "Applications of Graph Theory and Topology to Combinatorial Designs." Thesis, University of North Texas, 1988. https://digital.library.unt.edu/ark:/67531/metadc331968/.
Full textMarchand-Maillet, Stephane. "Graph theory and discrete geometry for digital image analysis : theory and applications." Thesis, Imperial College London, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.267485.
Full textChen, Zhiqian. "Graph Neural Networks: Techniques and Applications." Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/99848.
Full textDoctor of Philosophy
Graph data is pervasive throughout most fields, including pandemic spread network, social network, transportation roads, internet, and chemical structure. Therefore, the applications modeled by graph benefit people's everyday life, and graph mining derives insightful opinions from this complex topology. This paper investigates an emerging technique called graph neural newton (GNNs), which is designed for graph data mining. There are two primary goals of this thesis paper: (1) understanding the GNNs in theory, and (2) apply GNNs for unexplored and values real-world scenarios. For the first goal, we investigate spectral theory and approximation theory, and a unified framework is proposed to summarize most GNNs. This direction provides a possibility that existing or newly proposed works can be compared, and the actual process can be measured. Specifically, this result demonstrates that most GNNs are either an approximation for a function of graph adjacency matrix or a function of eigenvalues. Different types of approximations are analyzed in terms of physical meaning, and the advantages and disadvantages are offered. Beyond that, we proposed a new optimization for a highly accurate but low efficient approximation. Evaluation of synthetic data proves its theoretical power, and the tests on two transportation networks show its potentials in real-world graphs. For the second goal, the circuit is selected as a novel application since it is crucial, but there are few works. Specifically, we focus on a security problem, a high-value real-world problem in industry companies such as Nvidia, Apple, AMD, etc. This problem is defined as a circuit graph as apply GNN to learn the representation regarding the prediction target such as attach runtime. Experiment on several benchmark circuits shows its superiority on effectiveness and efficacy compared with competitive baselines. This paper provides exploration in theory and application with GNNs, which shows a promising direction for graph mining tasks. Its potentials also provide a wide range of innovations in graph-based problems.
Ahadi, Moghaddam Masoumeh [Verfasser], and Dietmar [Akademischer Betreuer] Schweigert. "Graph Coloring Applications and Defining Sets in Graph Theory / Masoumeh Ahadi Moghaddam ; Betreuer: Dietmar Schweigert." Kaiserslautern : Technische Universität Kaiserslautern, 2017. http://d-nb.info/1127044435/34.
Full textRautiainen, Mikko [Verfasser]. "Sequence to graph alignment : theory, practice and applications / Mikko Rautiainen." Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2020. http://d-nb.info/1217656928/34.
Full textAndersen, Aaron. "GraphShop: An Interactive Software Environment for Graph Theory Research and Applications." DigitalCommons@USU, 2011. https://digitalcommons.usu.edu/etd/896.
Full textFreeman, Andre. "Dual-Eulerian graphs with applications to VLSI design." Link to electronic thesis, 2003. http://www.wpi.edu/Pubs/ETD/Available/etd-0430103-155731/.
Full textDonachy, Shaun. "Spiking Neural Networks: Neuron Models, Plasticity, and Graph Applications." VCU Scholars Compass, 2015. http://scholarscompass.vcu.edu/etd/3984.
Full textSo, Anthony Man-Cho. "A semidefinite programming approach to the graph realization problem : theory, applications and extensions /." May be available electronically:, 2007. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.
Full textMartinelli, Andres. "Advances in Functional Decomposition: Theory and Applications." Doctoral thesis, SICS, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-21180.
Full textMeeks, Kitty M. F. T. "Graph colourings and games." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:a805a379-f891-4250-9a7d-df109f9f52e2.
Full textReutter, Juan L. "Graph patterns : structure, query answering and applications in schema mappings and formal language theory." Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/8931.
Full textMartinelli, Andrés. "Advances in Functional Decomposition: Theory and Applications." Doctoral thesis, KTH, Mikroelektronik och Informationsteknik, IMIT, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4135.
Full textQC 20100909
Kohl, Florian [Verfasser]. "Lattice Polytopes - Applications and Properties : Ehrhart Theory, Graph Colorings, and Level Algebras / Florian Kohl." Berlin : Freie Universität Berlin, 2018. http://d-nb.info/1176639625/34.
Full textEspinosa, Kristofer, and Tam Vu. "Graph theory applications in the energy sector : From the perspective of electric utility companies." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279516.
Full textGrafteori är ett matematiskt område där objekt och deras parvisa relationer, även kända som noder respektive kanter, studeras. Grafteorins födsel anses ofta ha ägt rum år 1736 när Leonhard Euler försökte lösa ett problem som involverade sju broar i Königsberg i Preussen. På senare tid har grafer fått uppmärksamhet från företag inom flera branscher på grund av dess kraft att modellera och analysera stora nätverk. Detta arbete undersöker användningen av grafteori inom energisektorn för ett allmännyttigt företag, närmare bestämt Fortum, vars verksamhet består av, men inte är begränsad till, produktion och distribution av el och värme. Arbetet resulterar i en bred genomgång av grafteoretiska begrepp och deras tillämpningar inom både allmänna tekniska sammanhang och i synnerhet energisektorn, samt ett fallstudium där några begrepp sätts in i en djupare analys. Den valda fallstudien inom ramen för arbetet är variabelselektering för elprisprognostisering. Variabelselektering är en process för att minska antalet ingångsvariabler, vilket vanligtvis genomförs innan en regressions- modell skapas för att undvika överanpassning och öka modellens tydbarhet. Fem grafbaserade metoder för variabelselektering med olika ståndpunkter studeras. Experiment genomförs på realistiska datamängder med många ingångsvariabler för att verifiera metodernas giltighet. En av datamängderna ägs av Fortum och används för att prognostisera elpriset, bland andra viktiga kvantiteter. De erhållna resultaten ser lovande ut enligt flera utvärderingsmått och kan användas av Fortum som ett stödverktyg för att utveckla prediktionsmodeller. I allmänhet kan ett energiföretag sannolikt dra fördel av grafteori på många sätt och skapa värde i sin affär med hjälp av berikad matematisk kunskap
Inkmann, Torsten. "Tree-based decompositions of graphs on surfaces and applications to the traveling salesman problem." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/22583.
Full textCommittee Chair: Thomas, Robin; Committee Co-Chair: Cook, William J.; Committee Member: Dvorak, Zdenek; Committee Member: Parker, Robert G.; Committee Member: Yu, Xingxing.
Kissinger, Aleks. "Pictures of processes : automated graph rewriting for monoidal categories and applications to quantum computing." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:61fb3161-a353-48fc-8da2-6ce220cce6a2.
Full textBurkhart, Craig. "Approval Voting Theory with Multiple Levels of Approval." Scholarship @ Claremont, 2012. https://scholarship.claremont.edu/hmc_theses/26.
Full textVellambi, Badri Narayanan. "Applications of graph-based codes in networks: analysis of capacity and design of improved algorithms." Diss., Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/37091.
Full textBarr, Samuel Frederic. "Courcelle's Theorem: Overview and Applications." Oberlin College Honors Theses / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=oberlin1589552348499388.
Full textAbuali, Faris Nabih. "Using determinant and cycle basis schemes in genetic algorithms for graph and network applications /." Access abstract and link to full text, 1995. http://0-wwwlib.umi.com.library.utulsa.edu/dissertations/fullcit/9529027.
Full textVu, Duc Tam. "Applications of graph theory in the energy sector, demonstrated with feature selection in electricity price forecasting." Thesis, KTH, Optimeringslära och systemteori, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-276482.
Full textGrafteori är ett matematiskt område där objekt och deras parvisa relationer, även kallade noder respektive kanter, studeras. Grafteorins födsel anses ofta äga rum år 1736 när den schweiziske matematikern Leonhard Euler försökte lösa ett vägsökningsproblem som involverade sju broar av Königsberg i Preussen. På senare tid har grafteori fått uppmärksamhet från företag inom flera branscher på grund av dess kraft att modellera och analysera väsentligt stora nätverk. Detta arbete undersöker användningen av grafteori inom energisektorn för ett allmännyttigt företag, närmare bestämt Fortum vars verksamhet består av, dock ej begränsat till, produktion och distribution av elektricitet och värme. Arbetet resulterar i en bred översiktlig genomgång av grafteoretiska begrepp och deras praktiska tillämpningar, samt ett fallstudium där några begrepp sätts in i en djupare analys. Det valda fallstudiet inom ramen för arbetet är variabelselektering - en process för att minska antalet ingångsvariabler, vilket vanligtvis genomförs innan en regressionsmodell skapas för att undvika överanpassning och öka modellens tydbarhet. Fem grafbaserade metoder för variabelselektering med olika ståndpunkter studeras. Experiment genomförs på realistiska datamängder med många ingångsvariabler för att verifiera metodernas giltighet. En av datamängderna ägs av Fortum och används för att prognostisera elpriset, bland andra viktiga kvantiteter. De erhållna resultaten ser lovande ut enligt flera utvärderingsmått och kan användas av Fortum som ett stödverktyg för att utveckla prediktionsmodeller. I allmänhet kan ett energiföretag sannolikt dra fördel av grafteori på många sätt och skapa värde i sin affär med hjälp av berikad matematisk kunskap.
Curado, Manuel. "Structural Similarity: Applications to Object Recognition and Clustering." Doctoral thesis, Universidad de Alicante, 2018. http://hdl.handle.net/10045/98110.
Full textMinisterio de Economía, Industria y Competitividad (Referencia TIN2012-32839 BES-2013-064482)
Saha, Sudip. "Containing Cascading Failures in Networks: Applications to Epidemics and Cybersecurity." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/82711.
Full textPh. D.
Molari, Marco. "Statistical mechanics of polymer models: rigorous results and applications." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/10429/.
Full textPassuello, Alberto. "Semidefinite programming in combinatorial optimization with applications to coding theory and geometry." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2013. http://tel.archives-ouvertes.fr/tel-00948055.
Full textWang, Jiayuan. "Algorithms for Guaranteed Denoising of Data and Their Applications." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1577966043088083.
Full textShiping, Liu [Verfasser], Jürgen [Akademischer Betreuer] Jost, Jürgen [Gutachter] Jost, and Karl-Theodor [Gutachter] Sturm. "Synthetic notions of curvature and applications in graph theory / Liu Shiping ; Gutachter: Jürgen Jost, Karl-Theodor Sturm ; Betreuer: Jürgen Jost." Leipzig : Universitätsbibliothek Leipzig, 2013. http://d-nb.info/1238242057/34.
Full textGenevois, Anthony. "Cubical-like geometry of quasi-median graphs and applications to geometric group theory." Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0569/document.
Full textThe class of quasi-median graphs is a generalisation of median graphs, or equivalently of CAT(0) cube complexes. The purpose of this thesis is to introduce these graphs in geometric group theory. In the first part of our work, we extend the definition of hyperplanes from CAT(0) cube complexes, and we show that the geometry of a quasi-median graph essentially reduces to the combinatorics of its hyperplanes. In the second part, we exploit the specific structure of the hyperplanes to state combination results. The main idea is that if a group acts in a suitable way on a quasi-median graph so that clique-stabilisers satisfy some non-positively curved property P, then the whole group must satisfy P as well. The properties we are interested in are mainly (relative) hyperbolicity, (equivariant) lp-compressions, CAT(0)-ness and cubicality. In the third part, we apply our general criteria to several classes of groups, including graph products, Guba and Sapir's diagram products, some wreath products, and some graphs of groups. Graph products are our most natural examples, where the link between the group and its quasi-median graph is particularly strong and explicit; in particular, we are able to determine precisely when a graph product is relatively hyperbolic
Gutekunst, Samuel C. "Characterizing Forced Communication in Networks." Scholarship @ Claremont, 2014. http://scholarship.claremont.edu/hmc_theses/56.
Full textMantrach, Amin. "Novel measures on directed graphs and applications to large-scale within-network classification." Doctoral thesis, Universite Libre de Bruxelles, 2010. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210033.
Full textLa première partie de cette thèse introduit une nouvelle mesure de similarité entre deux noeuds d’un réseau dirigé et pondéré :la covariance “sum-over-paths”. Celle-ci a une interprétation claire et précise :en dénombrant tous les chemins possibles deux noeuds sont considérés comme fortement corrélés s’ils apparaissent souvent sur un même chemin – de préférence court. Cette mesure dépend d’une distribution de probabilités, définie sur l’ensemble infini dénombrable des chemins dans le graphe, obtenue en minimisant l'espérance du coût total entre toutes les paires de noeuds du graphe sachant que l'entropie relative totale injectée dans le réseau est fixée à priori. Le paramètre d’entropie permet de biaiser la distribution de probabilité sur un large spectre :allant de marches aléatoires naturelles où tous les chemins sont équiprobables à des marches biaisées en faveur des plus courts chemins. Cette mesure est alors appliquée à des problèmes de classification semi-supervisée sur des réseaux de taille moyennes et comparée à l’état de l’art.
La seconde partie de la thèse introduit trois nouveaux algorithmes de classification de noeuds en sein d’un large réseau dont les noeuds sont partiellement étiquetés. Ces algorithmes ont un temps de calcul linéaire en le nombre de noeuds, de classes et d’itérations, et peuvent dés lors être appliqués sur de larges réseaux. Ceux-ci ont obtenus des résultats compétitifs en comparaison à l’état de l’art sur le large réseaux de citations de brevets américains et sur huit autres jeux de données. De plus, durant la thèse, nous avons collecté un nouveau jeu de données, déjà mentionné :le réseau de citations de brevets américains. Ce jeu de données est maintenant disponible pour la communauté pour la réalisation de tests comparatifs.
La partie finale de cette thèse concerne la combinaison d’un graphe de citations avec les informations présentes sur ses noeuds. De manière empirique, nous avons montré que des données basées sur des citations fournissent de meilleurs résultats de classification que des données basées sur des contenus textuels. Toujours de manière empirique, nous avons également montré que combiner les différentes sources d’informations (contenu et citations) doit être considéré lors d’une tâche de classification de textes. Par exemple, lorsqu’il s’agit de catégoriser des articles de revues, s’aider d’un graphe de citations extrait au préalable peut améliorer considérablement les performances. Par contre, dans un autre contexte, quand il s’agit de directement classer les noeuds du réseau de citations, s’aider des informations présentes sur les noeuds n’améliora pas nécessairement les performances.
La théorie, les algorithmes et les applications présentés dans cette thèse fournissent des perspectives intéressantes dans différents domaines.
In recent years, networks have become a major data source in various fields ranging from social sciences to mathematical and physical sciences. Moreover, the size of available networks has grow substantially as well. This has brought with it a number of new challenges, like the need for precise and intuitive measures to characterize and analyze large scale networks in a reasonable time.
The first part of this thesis introduces a novel measure between two nodes of a weighted directed graph: The sum-over-paths covariance. It has a clear and intuitive interpretation: two nodes are considered as highly correlated if they often co-occur on the same -- preferably short -- paths. This measure depends on a probability distribution over the (usually infinite) countable set of paths through the graph which is obtained by minimizing the total expected cost between all pairs of nodes while fixing the total relative entropy spread in the graph. The entropy parameter allows to bias the probability distribution over a wide spectrum: going from natural random walks (where all paths are equiprobable) to walks biased towards shortest-paths. This measure is then applied to semi-supervised classification problems on medium-size networks and compared to state-of-the-art techniques.
The second part introduces three novel algorithms for within-network classification in large-scale networks, i.e. classification of nodes in partially labeled graphs. The algorithms have a linear computing time in the number of edges, classes and steps and hence can be applied to large scale networks. They obtained competitive results in comparison to state-of-the-art technics on the large scale U.S.~patents citation network and on eight other data sets. Furthermore, during the thesis, we collected a novel benchmark data set: the U.S.~patents citation network. This data set is now available to the community for benchmarks purposes.
The final part of the thesis concerns the combination of a citation graph with information on its nodes. We show that citation-based data provide better results for classification than content-based data. We also show empirically that combining both sources of information (content-based and citation-based) should be considered when facing a text categorization problem. For instance, while classifying journal papers, considering to extract an external citation graph may considerably boost the performance. However, in another context, when we have to directly classify the network citation nodes, then the help of features on nodes will not improve the results.
The theory, algorithms and applications presented in this thesis provide interesting perspectives in various fields.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Strang, Alexander. "Applications of the Helmholtz-Hodge Decomposition to Networks and Random Processes." Case Western Reserve University School of Graduate Studies / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=case1595596768356487.
Full textTran, The Truyen. "On conditional random fields: applications, feature selection, parameter estimation and hierarchical modelling." Curtin University of Technology, Dept. of Computing, 2008. http://espace.library.curtin.edu.au:80/R/?func=dbin-jump-full&object_id=18614.
Full textOn the theory side, the thesis addresses three important theoretical issues of CRFs: feature selection, parameter estimation and modelling recursive sequential data. These issues are all addressed under a general setting of partial supervision in that training labels are not fully available. For feature selection, we introduce a novel learning algorithm called AdaBoost.CRF that incrementally selects features out of a large feature pool as learning proceeds. AdaBoost.CRF is an extension of the standard boosting methodology to structured and partially observed data. We demonstrate that the AdaBoost.CRF is able to eliminate irrelevant features and as a result, returns a very compact feature set without significant loss of accuracy. Parameter estimation of CRFs is generally intractable in arbitrary network structures. This thesis contributes to this area by proposing a learning method called AdaBoost.MRF (which stands for AdaBoosted Markov Random Forests). As learning proceeds AdaBoost.MRF incrementally builds a tree ensemble (a forest) that cover the original network by selecting the best spanning tree at a time. As a result, we can approximately learn many rich classes of CRFs in linear time. The third theoretical work is on modelling recursive, sequential data in that each level of resolution is a Markov sequence, where each state in the sequence is also a Markov sequence at the finer grain. One of the key contributions of this thesis is Hierarchical Conditional Random Fields (HCRF), which is an extension to the currently popular sequential CRF and the recent semi-Markov CRF (Sarawagi and Cohen, 2004). Unlike previous CRF work, the HCRF does not assume any fixed graphical structures.
Rather, it treats structure as an uncertain aspect and it can estimate the structure automatically from the data. The HCRF is motivated by Hierarchical Hidden Markov Model (HHMM) (Fine et al., 1998). Importantly, the thesis shows that the HHMM is a special case of HCRF with slight modification, and the semi-Markov CRF is essentially a flat version of the HCRF. Central to our contribution in HCRF is a polynomial-time algorithm based on the Asymmetric Inside Outside (AIO) family developed in (Bui et al., 2004) for learning and inference. Another important contribution is to extend the AIO family to address learning with missing data and inference under partially observed labels. We also derive methods to deal with practical concerns associated with the AIO family, including numerical overflow and cubic-time complexity. Finally, we demonstrate good performance of HCRF against rivals on two applications: indoor video surveillance and noun-phrase chunking.
Meek, Darrin Leigh. "On graph approximation heuristics : an application to vertex cover on planar graphs." Thesis, Georgia Institute of Technology, 1991. http://hdl.handle.net/1853/24088.
Full textBaumann, Annika. "Network Science – Applications in Technology, Business and Social Media." Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19216.
Full textNetworks constitute an integral part of our lives. One of the most important communication networks is the Internet which led to large changes in everyday life, which are examined in part in this dissertation. Overall, the present dissertation is subdivided into three areas, which are based on the traditional three dimensions of information systems, comprising perspectives technology, management and organization. At the core of this dissertation is the technological perspective, centered on an analysis of the structure and robustness of the Internet network using the mathematical-methodical aspect of graph theory. The second part of the thesis deals with the management perspective. The focus lies on the understanding and prediction of user behavior in the e-commerce context utilizing methods of predictive modeling. The third area includes the organizational perspective from the point of view of users. Here, two specific sub-areas are selected. The first sub-area revolves around social media websites, with the goal of understanding how sub-groups of users utilize them in different ways. The second area is centered around the aspect of how the propagation of mobile devices influences individuals in their personal and professional environments. Based on these three perspectives, a total of 18 studies were conducted within the scope of this dissertation, using different methodological applications to gain scientific insights with respect to the areas examined.
Dohmen, Klaus. "Improved Inclusion-Exclusion Identities and Bonferroni Inequalities with Applications to Reliability Analysis of Coherent Systems." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2001. http://dx.doi.org/10.18452/13732.
Full textMany problems in combinatorics, number theory, probability theory , reliability theory and statistics can be solved by applying a unifying method, which is known as the principle of inclusion-exclusion. The principle of inclusion-exclusion expresses the indicator function of a union of finitely many events as an alternating sum of indicator functions of their intersections. This thesis deals with improved inclusion-exclusion identities and improved Bonferroni inequalities that require the family of events to satisfy some structural restrictions. Examples of such well-structured families arise in problems of statistical inference, combinatorial reliability theory and chromatic graph theory.
Thwaites, Peter. "Chain event graphs : theory and application." Thesis, University of Warwick, 2008. http://wrap.warwick.ac.uk/49194/.
Full textFerrer, Sumsi Miquel. "Theory and Algorithms on the Median Graph. Application to Graph-based Classification and Clustering." Doctoral thesis, Universitat Autònoma de Barcelona, 2008. http://hdl.handle.net/10803/5788.
Full textEn el reconeixement estructural de patrons, els grafs han estat usats normalment per a representar objectes complexos. En el domini dels grafs, el concepte de mediana és conegut com median graph. Potencialment, té les mateixes aplicacions que el concepte de mediana per poder ser usat com a representant d'un conjunt de grafs.
Tot i la seva simple definició i les potencials aplicacions, s'ha demostrat que el seu càlcul és una tasca extremadament complexa. Tots els algorismes existents només han estat capaços de treballar amb conjunts petits de grafs, i per tant, la seva aplicació ha estat limitada en molts casos a usar dades sintètiques sense significat real. Així, tot i el seu potencial, ha restat com un concepte eminentment teòric.
L'objectiu principal d'aquesta tesi doctoral és el d'investigar a fons la teoria i l'algorísmica relacionada amb el concepte de medinan graph, amb l'objectiu final d'extendre la seva aplicabilitat i lliurar tot el seu potencial al món de les aplicacions reals. Per això, presentem nous resultats teòrics i també nous algorismes per al seu càlcul. Des d'un punt de vista teòric aquesta tesi fa dues aportacions fonamentals. Per una banda, s'introdueix el nou concepte d'spectral median graph. Per altra banda es mostra que certes de les propietats teòriques del median graph poden ser millorades sota determinades condicions. Més enllà de les aportacioncs teòriques, proposem cinc noves alternatives per al seu càlcul. La primera d'elles és una conseqüència directa del concepte d'spectral median graph. Després, basats en les millores de les propietats teòriques, presentem dues alternatives més per a la seva obtenció. Finalment, s'introdueix una nova tècnica per al càlcul del median basat en el mapeig de grafs en espais de vectors, i es proposen dos nous algorismes més.
L'avaluació experimental dels mètodes proposats utilitzant una base de dades semi-artificial (símbols gràfics) i dues amb dades reals (mollècules i pàgines web), mostra que aquests mètodes són molt més eficients que els existents. A més, per primera vegada, hem demostrat que el median graph pot ser un bon representant d'un conjunt d'objectes utilitzant grans quantitats de dades. Hem dut a terme experiments de classificació i clustering que validen aquesta hipòtesi i permeten preveure una pròspera aplicació del median graph a un bon nombre d'algorismes d'aprenentatge.
Given a set of objects, the generic concept of median is defined as the object with the smallest sum of distances to all the objects in the set. It has been often used as a good alternative to obtain a representative of the set.
In structural pattern recognition, graphs are normally used to represent structured objects. In the graph domain, the concept analogous to the median is known as the median graph. By extension, it has the same potential applications as the generic median in order to be used as the representative of a set of graphs.
Despite its simple definition and potential applications, its computation has been shown as an extremely complex task. All the existing algorithms can only deal with small sets of graphs, and its application has been constrained in most cases to the use of synthetic data with no real meaning. Thus, it has mainly remained in the box of the theoretical concepts.
The main objective of this work is to further investigate both the theory and the algorithmic underlying the concept of the median graph with the final objective to extend its applicability and bring all its potential to the world of real applications. To this end, new theory and new algorithms for its computation are reported. From a theoretical point of view, this thesis makes two main contributions. On one hand, the new concept of spectral median graph. On the other hand, we show that some of the existing theoretical properties of the median graph can be improved under some specific conditions. In addition to these theoretical contributions, we propose five new ways to compute the median graph. One of them is a direct consequence of the spectral median graph concept. In addition, we provide two new algorithms based on the new theoretical properties. Finally, we present a novel technique for the median graph computation based on graph embedding into vector spaces. With this technique two more new algorithms are presented.
The experimental evaluation of the proposed methods on one semi-artificial and two real-world datasets, representing graphical symbols, molecules and webpages, shows that these methods are much more ecient than the existing ones. In addition, we have been able to proof for the first time that the median graph can be a good representative of a class in large datasets. We have performed some classification and clustering experiments that validate this hypothesis and permit to foresee a successful application of the median graph to a variety of machine learning algorithms.
Hanaf, Anas. "Algorithmes distribués de consensus de moyenne et leurs applications dans la détection des trous de couverture dans un réseau de capteurs." Thesis, Reims, 2016. http://www.theses.fr/2016REIMS018/document.
Full textDistributed consensus algorithms are iterative algorithms of low complexity where neighboring sensors interact with each other to reach an agreement without coordinating unit. As the nodes in a wireless sensor network have limited computing power and limited battery, these distributed algorithms must reach a consensus in a short time and with little message exchange. The first part of this thesis is based on the study and comparison of different consensus algorithms synchronously and asynchronously in terms of convergence speed and communication rates. The second part of our work concerns the application of these consensus algorithms to the problem of detecting coverage holes in wireless sensor networks.This coverage problem also provides the context for the continuation of our work. This problem is described as how a region of interest is monitored by sensors. Different geometrical approaches have been proposed but are limited by the need to know exactly the position of the sensors; but this information may not be available if the locating devices such as GPS are not on the sensors. From the mathematical tool called algebraic topology, we have developed a distributed algorithm of coverage hole detection searching a harmonic function of a network, that is to say canceling the operator of the 1-dimensional Laplacian. This harmonic function is connected to the homology group H1 which identifies the coverage holes. Once a harmonic function obtained, detection of the holes is realized by a simple random walk in the network
Tetley, Romain. "Analyse mixte de protéines basée sur la séquence et la structure - applications à l'annotation fonctionnelle." Thesis, Université Côte d'Azur (ComUE), 2018. http://www.theses.fr/2018AZUR4111/document.
Full textIn this thesis, the focus is set on reconciling the realms of structure and sequence for protein analysis. Sequence analysis tools shine when faced with proteins presenting high sequence identity (≤ 30\%), but are lack - luster when it comes to remote homolog detection. Structural analysis tools present an interesting alternative, but solving structures - when at all possible- is a tedious and expensive process. These observations make the need for hybrid methods - which inject information obtained from available structures in a sequence model - quite clear. This thesis makes four main contributions toward this goal. First we present a novel structural measure, the RMSDcomb, based on local structural conservation patterns - the so called structural motifs. Second, we developed a method to identify structural motifs between two structures using a bootstrap method which relies on filtrations. Our approach is not a direct competitor to flexible aligners but can provide useful to perform a multiscale analysis of structural similarities. Third, we build upon the previous methods to design hybrid Hidden Markov Models which are biased towards regions of increased structural conservation between sets of proteins. We test this tool on the class II fusion viral proteins - particularly challenging because of their low sequence identity and mild structural homology. We find that we are able to recover known remote homologs of the viral proteins in the Drosophila and other organisms. Finally, formalizing a sub - problem encountered when comparing filtrations, we present a new theoretical problem - the D-family matching - on which we present various algorithmic results. We show - in a manner that is analogous to comparing parts of two protein conformations - how it is possible to compare two clusterings of the same data set using such a theoretical model
Yamak, Zaher Rabah. "Multiple identities detection in online social media." Thesis, Normandie, 2018. http://www.theses.fr/2018NORMIR01/document.
Full textSince 2004, online social medias have grown hugely. This fast development had interesting effects to increase the connection and information exchange between users, but some negative effects also appeared, including fake accounts number growing day after day. Sockpuppets are multiple fake accounts created by a same user. They are the source of several types of manipulation such as those created to praise, defend or support a person or an organization, or to manipulate public opinion. In this thesis, we present SocksCatch, a complete process to detect and group sockpuppets, which is composed of three main phases: the first phase objective is the process preparation and data pre-processing; the second phase objective is the detection of the sockpuppet accounts using machine learning algorithms; the third phase objective is the grouping of sockpuppet accounts created by a same user using community detection algorithms. These phases are declined in three stages: a model stage to represent online social medias, where we propose a general model of social media dedicated to the detection and grouping of sockpuppets; an adaptation stage to adjust the process to a particular social media, where we instantiate and evaluate the SocksCatch model on a selected social media; and a real-time stage to detect and group the sockpuppets online, where SocksCatch is deployed online on a selected social media. Experiments have been performed on the adaptation stage using real data crawled from English Wikipedia. In order to find the best machine learning algorithm for sockpuppet's detection phase, the results of six machine learning algorithms are compared. In addition, they are compared with the literature, and the results show that our proposition improves the accuracy of the detection of sockpuppets. Furthermore, the results of five community detection algorithms are compared for sockpuppet's grouping phase, in order to find the best community detecton algorithm that will be used in real-time stage
Wengle, Emil. "Modelling Hierarchical Structures in Networks Using Graph Theory : With Application to Knowledge Networks in Graph Curricula." Thesis, Uppsala universitet, Signaler och system, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-415044.
Full textKim, Pilho. "E-model event-based graph data model theory and implementation /." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/29608.
Full textCommittee Chair: Madisetti, Vijay; Committee Member: Jayant, Nikil; Committee Member: Lee, Chin-Hui; Committee Member: Ramachandran, Umakishore; Committee Member: Yalamanchili, Sudhakar. Part of the SMARTech Electronic Thesis and Dissertation Collection.