Academic literature on the topic 'Graphene'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Graphene.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Graphene"

1

Cao, Qiang, Xiao Geng, Huaipeng Wang, Pengjie Wang, Aaron Liu, Yucheng Lan, and Qing Peng. "A Review of Current Development of Graphene Mechanics." Crystals 8, no. 9 (September 6, 2018): 357. http://dx.doi.org/10.3390/cryst8090357.

Full text
Abstract:
Graphene, a two-dimensional carbon in honeycomb crystal with single-atom thickness, possesses extraordinary properties and fascinating applications. Graphene mechanics is very important, as it relates to the integrity and various nanomechanical behaviors including flexing, moving, rotating, vibrating, and even twisting of graphene. The relationship between the strain and stress plays an essential role in graphene mechanics. Strain can dramatically influence the electronic and optical properties, and could be utilized to engineering those properties. Furthermore, graphene with specific kinds of defects exhibit mechanical enhancements and thus the electronic enhancements. In this short review, we focus on the current development of graphene mechanics, including tension and compression, fracture, shearing, bending, friction, and dynamics properties of graphene from both experiments and numerical simulations. We also touch graphene derivatives, including graphane, graphone, graphyne, fluorographene, and graphene oxide, which carve some fancy mechanical properties out from graphene. Our review summarizes the current achievements of graphene mechanics, and then shows the future prospects.
APA, Harvard, Vancouver, ISO, and other styles
2

Inagaki, Michio, and Feiyu Kang. "Graphene derivatives: graphane, fluorographene, graphene oxide, graphyne and graphdiyne." J. Mater. Chem. A 2, no. 33 (2014): 13193–206. http://dx.doi.org/10.1039/c4ta01183j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kumar, Kamal, Nora H. de Leeuw, Jost Adam, and Abhishek Kumar Mishra. "Strain-induced bandgap engineering in 2D ψ-graphene materials: a first-principles study." Beilstein Journal of Nanotechnology 15 (November 20, 2024): 1440–52. http://dx.doi.org/10.3762/bjnano.15.116.

Full text
Abstract:
High mechanical strength, excellent thermal and electrical conductivity, and tunable properties make two-dimensional (2D) materials attractive for various applications. However, the metallic nature of these materials restricts their applications in specific domains. Strain engineering is a versatile technique to tailor the distribution of energy levels, including bandgap opening between the energy bands. ψ-Graphene is a newly predicted 2D nanosheet of carbon atoms arranged in 5,6,7-membered rings. The half and fully hydrogenated (hydrogen-functionalized) forms of ψ-graphene are called ψ-graphone and ψ-graphane. Like ψ-graphene, ψ-graphone has a zero bandgap, but ψ-graphane is a wide-bandgap semiconductor. In this study, we have applied in-plane and out-of-plane biaxial strain on pristine and hydrogenated ψ-graphene. We have obtained a bandgap opening (200 meV) in ψ-graphene at 14% in-plane strain, while ψ-graphone loses its zero-bandgap nature at very low values of applied strain (both +1% and −1%). In contrast, fully hydrogenated ψ-graphene remains unchanged under the influence of mechanical strain, preserving its initial characteristic of having a direct bandgap. This behavior offers opportunities for these materials in various vital applications in photodetectors, solar cells, LEDs, pressure and strain sensors, energy storage, and quantum computing. The mechanical strain tolerance of pristine and fully hydrogenated ψ-graphene is observed to be −17% to +17%, while for ψ-graphone, it lies within the strain span of −16% to +16%.
APA, Harvard, Vancouver, ISO, and other styles
4

Banerjee, Arghya Narayan. "Graphene and its derivatives as biomedical materials: future prospects and challenges." Interface Focus 8, no. 3 (April 20, 2018): 20170056. http://dx.doi.org/10.1098/rsfs.2017.0056.

Full text
Abstract:
Graphene and its derivatives possess some intriguing properties, which generates tremendous interests in various fields, including biomedicine. The biomedical applications of graphene-based nanomaterials have attracted great interests over the last decade, and several groups have started working on this field around the globe. Because of the excellent biocompatibility, solubility and selectivity, graphene and its derivatives have shown great potential as biosensing and bio-imaging materials. Also, due to some unique physico-chemical properties of graphene and its derivatives, such as large surface area, high purity, good bio-functionalizability, easy solubility, high drug loading capacity, capability of easy cell membrane penetration, etc., graphene-based nanomaterials become promising candidates for bio-delivery carriers. Besides, graphene and its derivatives have also shown interesting applications in the fields of cell-culture, cell-growth and tissue engineering. In this article, a comprehensive review on the applications of graphene and its derivatives as biomedical materials has been presented. The unique properties of graphene and its derivatives (such as graphene oxide, reduced graphene oxide, graphane, graphone, graphyne, graphdiyne, fluorographene and their doped versions) have been discussed, followed by discussions on the recent efforts on the applications of graphene and its derivatives in biosensing, bio-imaging, drug delivery and therapy, cell culture, tissue engineering and cell growth. Also, the challenges involved in the use of graphene and its derivatives as biomedical materials are discussed briefly, followed by the future perspectives of the use of graphene-based nanomaterials in bio-applications. The review will provide an outlook to the applications of graphene and its derivatives, and may open up new horizons to inspire broader interests across various disciplines.
APA, Harvard, Vancouver, ISO, and other styles
5

Dolina, Ekaterina S., Pavel A. Kulyamin, Anastasiya A. Grekova, Alexey I. Kochaev, Mikhail M. Maslov, and Konstantin P. Katin. "Thermal Stability and Vibrational Properties of the 6,6,12-Graphyne-Based Isolated Molecules and Two-Dimensional Crystal." Materials 16, no. 5 (February 27, 2023): 1964. http://dx.doi.org/10.3390/ma16051964.

Full text
Abstract:
We report the geometry, kinetic energy, and some optical properties of the 6,6,12-graphyne-based systems. We obtained the values of their binding energies and structural characteristics such as bond lengths and valence angles. Moreover, using nonorthogonal tight-binding molecular dynamics, we carried out a comparative analysis of the thermal stability of 6,6,12-graphyne-based isolated fragments (oligomer) and two-dimensional crystals constructed on its basis in a wide temperature range from 2500 to 4000 K. We found the temperature dependence of the lifetime for the finite graphyne-based oligomer as well as for the 6,6,12-graphyne crystal using a numerical experiment. From these temperature dependencies, we obtained the activation energies and frequency factors in the Arrhenius equation that determine the thermal stability of the considered systems. The calculated activation energies are fairly high: 1.64 eV for the 6,6,12-graphyne-based oligomer and 2.79 eV for the crystal. It was confirmed that the thermal stability of the 6,6,12-graphyne crystal concedes only to traditional graphene. At the same time, it is more stable than graphene derivatives such as graphane and graphone. In addition, we present data on the Raman and IR spectra of the 6,6,12-graphyne, which will help distinguish it from the other carbon low-dimensional allotropes in the experiment.
APA, Harvard, Vancouver, ISO, and other styles
6

Wu, Li Li, Xiang Lv, and Chao Can Zhang. "Preparation and Dispersion of Polyacrylamide-Grafting Graphene." Advanced Materials Research 306-307 (August 2011): 1360–63. http://dx.doi.org/10.4028/www.scientific.net/amr.306-307.1360.

Full text
Abstract:
Graphene has weak interface compatibility to its solvent, and it is easy to get agglomeration in the solvent. In this paper, graphehe is modified by grafting method to improve the aqueous dispersion. Oxidized graphene is firstly prepared by modified Hummer’s method and supersonic exfoliation. Then oxidized graphene is grafted by hydrophilic polymer polyacrylamide (PAM) and deoxidized into modified graphene. The product is characterized by TEM, FTIR, Raman spectroscopy and sedimentation test. And the result demonstrates a modified graphene is successfully synthesized and its compatibility to the media is enhanced as assumption. When the ratio between PAM and graphene is 1:10, the suspension absorbance is improved as twice as common graphene’s. Meanwhile the concentration of graphene in suspension can reach 0.05mg/ml without any agglomeration.
APA, Harvard, Vancouver, ISO, and other styles
7

Woellner, Cristiano Francisco, Pedro Alves da Silva Autreto, and Douglas S. Galvao. "One Side-Graphene Hydrogenation (Graphone): Substrate Effects." MRS Advances 1, no. 20 (2016): 1429–34. http://dx.doi.org/10.1557/adv.2016.196.

Full text
Abstract:
ABSTRACTRecent studies on graphene hydrogenation processes showed that hydrogenation occurs via island growing domains, however how the substrate can affect the hydrogenation dynamics and/or pattern formation has not been yet properly investigated. In this work we have addressed these issues through fully atomistic reactive molecular dynamics simulations. We investigated the structural and dynamical aspects of the hydrogenation of graphene membranes (one-side hydrogenation, the so called graphone structure) on different substrates (graphene, few-layers graphene, graphite and platinum). Our results also show that the observed hydrogenation rates are very sensitive to the substrate type. For all investigated cases, the largest fraction of hydrogenated carbon atoms was for platinum substrates. Our results also show that a significant number of randomly distributed H clusters are formed during the early stages of the hydrogenation process, regardless of the type of substrate. These results suggest that, similarly to graphane formation, large perfect graphone-like domains are unlikely to be formed. These findings are especially important since experiments have showed that cluster formation influences the electronic transport properties in hydrogenated graphene.
APA, Harvard, Vancouver, ISO, and other styles
8

Liang, Hanyang. "Research Progress of Graphene Thin Films for Heat Dissipation Applications in Electronic Devices." Academic Journal of Science and Technology 12, no. 1 (August 20, 2024): 347–50. http://dx.doi.org/10.54097/20shxr21.

Full text
Abstract:
Owing to its superior thermal conductivity, graphen e films excel in heat transfer and dispersion, enhancing the efficiency of electronic devices in dissipating heat. Various graphene-based composite materials are created by blending with other substances, catering to diverse needs. Currently, graphene's production process is well-established, with several composites performing well. Nonetheless, achieving widespread production and production of graphene, along with the effective management and refinement of interfacial thermal resistance, remains a challenge.
APA, Harvard, Vancouver, ISO, and other styles
9

Mihet, Maria, Monica Dan, and Mihaela D. Lazar. "CO2 Hydrogenation Catalyzed by Graphene-Based Materials." Molecules 27, no. 11 (May 24, 2022): 3367. http://dx.doi.org/10.3390/molecules27113367.

Full text
Abstract:
In the context of an increased interest in the abatement of CO2 emissions generated by industrial activities, CO2 hydrogenation processes show an important potential to be used for the production of valuable compounds (methane, methanol, formic acid, light olefins, aromatics, syngas and/or synthetic fuels), with important benefits for the decarbonization of the energy sector. However, in order to increase the efficiency of the CO2 hydrogenation processes, the selection of active and selective catalysts is of utmost importance. In this context, the interest in graphene-based materials as catalysts for CO2 hydrogenation has significantly increased in the last years. The aim of the present paper is to review and discuss the results published until now on graphene-based materials (graphene oxide, reduced graphene oxide, or N-dopped graphenes) used as metal-free catalysts or as catalytic support for the thermocatalytic hydrogenation of CO2. The reactions discussed in this paper are CO2 methanation, CO2 hydrogenation to methanol, CO2 transformation into formic acid, CO2 hydrogenation to high hydrocarbons, and syngas production from CO2. The discussions will focus on the effect of the support on the catalytic process, the involvement of the graphene-based support in the reaction mechanism, or the explanation of the graphene intervention in the hydrogenation process. Most of the papers emphasized the graphene’s role in dispersing and stabilizing the metal and/or oxide nanoparticles or in preventing the metal oxidation, but further investigations are needed to elucidate the actual role of graphenes and to propose reaction mechanisms.
APA, Harvard, Vancouver, ISO, and other styles
10

RAO, C. N. R., K. S. SUBRAHMANYAM, H. S. S. RAMAKRISHNA MATTE, and A. GOVINDARAJ. "GRAPHENE: SYNTHESIS, FUNCTIONALIZATION AND PROPERTIES." Modern Physics Letters B 25, no. 07 (March 20, 2011): 427–51. http://dx.doi.org/10.1142/s0217984911025961.

Full text
Abstract:
Graphenes with varying number of layers can be synthesized by different strategies. Thus, single-layer graphene is obtained by the reduction of single layer graphene oxide, CVD and other methods besides micromechanical cleavage. Few-layer graphenes are prepared by the conversion of nanodiamond, arc-discharge of graphite and other means. We briefly present the various methods of synthesis and the nature of graphenes obtained. We then discuss the various properties of graphenes. The remarkable property of graphene of quenching fluorescence of aromatic molecules is shown to be associated with photo-induced electron transfer, on the basis of fluorescence decay and time-resolved transient absorption spectroscopic measurements. The interaction of electron donor and acceptor molecules with few-layer graphene samples has been discussed. Decoration of metal nano-particles on graphene sheets and the resulting changes in electronic structure are examined. Few-layer graphenes exhibit ferromagnetic features along with antiferromagnetic properties, independent of the method of preparation. Graphene-like MoS 2 and WS 2 have been prepared by chemical methods, and the materials are characterized by electron microscopy, atomic force microscopy (AFM) and other methods. Boron nitride analogues of graphene have been obtained by a simple chemical procedure starting with boric acid and urea and have been characterized by various techniques.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Graphene"

1

Geng, Yan. "Preparation and characterization of graphite nanoplatelet, graphene and graphene-polymer nanocomposites /." View abstract or full-text, 2009. http://library.ust.hk/cgi/db/thesis.pl?MECH%202009%20GENG.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Yu. "Graphenide solutions and graphene films." Thesis, Bordeaux, 2014. http://www.theses.fr/2014BORD0161/document.

Full text
Abstract:
Les travaux de recherche effectués lors de cette thèse s'articulent autour de matériaux graphène. Une méthode est développée pour produire graphène en masse avec solution de graphenure. Les études effectuées les solutions de graphenure sont basées sur les composés d'intercalation du grpahite (GICs) synthétisé avec du potassium et l'exfoliation de GIC dans un solvant organique. Différentes techniques d'analyse ont été employées pour caractériser les graphène produits. Afin de tirer parti des propriétés électriques du graphène, les solutions de graphenure ont ensuite été utilisées pour produire des films transparents conducteurs. Des traitements de recuit à sous atmosphère d'argon ont été effectués pour améliorer les propriétés électriques du film. Les résultats de caractérisation montrent que l'élimination des groupes fonctionnels contenant des atomes d'oxygène et l'amélioration structurale peuvent largement améliorer les propriétés électriques des films de graphène avec ce traitement de recuit
The graphene is promising materials in future industrial applications due to its excellent properties. In recent years, different production methods have been developed in order to pave the way for applications. One topic of this thesis focuses on graphenidesolutions, which provide an efficient route to produce graphene. Using this method, graphite intercalation compounds(GICs)can be exfoliated into negativelz charged grapheme organic solvent under inert atmosphere. Withits high conductivity and bendable feature, one of the promising applications of graphene is flexible transparent conductive films. The second main topic of this thesis consists in applying produced graphene to produce transparent conductive films.With mild thermal treatments, the electrical properties of graphene film can be largely improved
APA, Harvard, Vancouver, ISO, and other styles
3

Qiu, Xiaoyu. "Procédé d'exfoliation du graphite en phase liquide dans des laboratoires sur puce." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAI056/document.

Full text
Abstract:
L’exfoliation en phase liquide du graphite est un procédé simple susceptible de produire du graphène à faible coût. Ces dernières années, de nombreuses équipes ont exploité la cavitation acoustique et la cavitation hydrodynamique comme moyen d’exfoliation. La cavitation acoustique ne peut traiter qu’une quantité limitée de fluide et génère des défauts sur la structure du graphène,tandis que la cavitation hydrodynamique dans une solution en écoulement n’agit que localement pendant une durée très brève. Les équipes de recherche utilisant ce dernier procédé compensent cette brièveté en imposant à la solution chargée en graphite des différences de pression très fortes, et utilisent alors des infrastructures macroscopiques lourdes pour lesquelles il est difficile de distinguer le rôle du cisaillement de celui de la cavitation. Nous avons cherché à développer un nouveau procédé d’exfoliation basé sur l’utilisation de microsystèmes fluidiques capables de générer un écoulementcavitant avec un débit supérieur à 10 L/h pour une différence de pression modérée n’excédant pas 10 bar. Une nouvelle génération de laboratoires ‘sur puce’ a ainsi été imaginée et réalisée, permettant de traiter des solutions surfactées chargées en microparticules de graphite. Il est apparu que laconcentration solide et la durée de traitement sont des paramètres cruciaux pour l’efficacité du procédé. Par rapport à un écoulement monophasique laminaire microfluidique, l’écoulement cavitant produit plus de produits exfoliés et de graphène, avec un rendement de l’ordre de 6%. Ceci indique que l’implosion des bulles et la turbulence favorisent également les interactions entre particules. Ce procédé d’exfoliation microfluidique, qui ne nécessite une puissance que de quelques Watts, permet d’envisager à terme une production économe et écologique de graphène en suspension
Liquid phase exfoliation of graphite is a simple and low-cost process, that is likely to produce graphene. The last few years, many researchers have used acoustic or hydrodynamic cavitation as an exfoliating tool. Acoustic cavitation is limited to low volumes and defects are present on the graphenesheets ; hydrodynamic cavitation inside a flowing solution acts briefly. So, people are using big reactors running with high pressure drops, and it is difficult from a fundamental point of view to know the physical role of shear rate versus cavitation, in the exfoliation process. We have tried to develop a new process funded on hydrodynamic cavitation ’on a chip’, with flow rates above 10 L/h and pressure drop below 10 bar. A new generation of ’labs on a chip’ has been designed and performed, processing with aqueous surfactant graphite solutions. The solid concentration and the duration of the process have proved to be key parameters. Cavitating microflows have exhibited a better efficiency (up to ~6%) than laminar liquid microflows, for the production of graphene flakes. Collapsing bubbles and turbulence are also likely to enhance particles interactions. Such a microfluidic process, which requires an hydraulic power of a few Watt, makes possible a further low-cost and green production of graphene sheets
APA, Harvard, Vancouver, ISO, and other styles
4

Melios, Christos. "Graphene metrology : substrate and environmental effects on grapheme." Thesis, University of Surrey, 2017. http://epubs.surrey.ac.uk/845201/.

Full text
Abstract:
Graphene, a single layer of sp2-bonded carbon atoms, has received significant attention due to its exceptional opto-electronic properties and potentially scalable production processes. However, scalable graphene requires an underlying substrate, which is often a source of strain, doping and carrier scattering, limiting the mobility and quality of graphene. It was shown that by intercalating graphene on SiC by hydrogen, the interfacial layer, associated with n-doping and mobility degradation, is de-coupled from the substrate. The transformations of the H2-intercalation were demonstrated using Raman spectroscopy, while the SiC/interface changes were probed using surface enhanced Raman scattering. The H2-intercalation resulted in carrier type inversion, where the decoupled graphene change from n- to p-type, as well as showing mobility enhancement, up to more than four times, compared to as-grown graphene. Using calibrated Kelvin probe force microscopy, local work function maps were generated, demonstrating the changes in local electronic properties with nanoscale resolution. Furthermore, the layer structure, doping and strain induced by the underlying substrate are compared to CVD grown graphene transferred onto Si/SiO2. In addition to the substrate effects, the electronic properties of graphene are also significantly affected due to the direct exposure of π electrons to the environment. For the investigation of the environmental effects on graphene (i.e. H2O and NO2), a custom-built environmental transport properties measurement system was designed and developed, allowing magneto-transport measurements to be conducted in highly controlled environments. Using this system and calibrated local work function mapping, it is demonstrated that water withdraws electrons from graphene on SiC and SiO2 substrates, as well as acting as a source of impurity scattering. However, the sensitivity of graphene to water depends highly on the underlying substrate and substrate-induced doping. Moreover, it is shown that epitaxial graphene can successfully be used as the sensing material with detection down to 10 parts-per-billion molecules. Considering the environmental effects on the electronic properties of graphene, the importance of clearly reporting the measurement environmental conditions is high-lighted, whenever a routine characterisation for carrier concentration and mobility is reported.
APA, Harvard, Vancouver, ISO, and other styles
5

Nyangiwe, Nangamso Nathaniel. "Graphene based nano-coatings: synthesis and physical-chemical investigations." Thesis, UWC, 2012. http://hdl.handle.net/11394/3237.

Full text
Abstract:
Magister Scientiae - MSc
It is well known that a lead pencil is made of graphite, a naturally form of carbon, this is important but not very exciting. The exciting part is that graphite contains stacked layers of graphene and each and every layer is one atom thick. Scientists believed that these graphene layers could not be isolated from graphite because they were thought to be thermodynamically unstable on their own and taking them out from the parent graphite crystal will lead them to collapse and not forming a layer. The question arose, how thin one could make graphite. Two scientists from University of Manchester answered this question by peeling layers from a graphite crystal by using sticky tape and then rubbing them onto a silicon dioxide surface. They managed to isolate just one atom thick layer from graphite for the first time using a method called micromechanical cleavage or scotch tape. In this thesis chemical method also known as Hummers method has been used to fabricate graphene oxide (GO) and reduced graphene oxide. GO was synthesized through the oxidation of graphite to graphene oxide in the presence of concentrated sulphuric acid, hydrochloric acid and potassium permanganate. A strong reducing agent known as hydrazine hydrate has also been used to reduce GO to rGO by removing oxygen functional groups, but unfortunately not all oxygen functional groups have been removed, that is why the final product is named rGO. GO and rGO solutions were then deposited on silicon substrates separately. Several characterization techniques in this work have been used to investigate the optical properties, the morphology, crystallography and vibrational properties of GO and rGO.
APA, Harvard, Vancouver, ISO, and other styles
6

Yu, Wenlong. "Infrared magneto-spectroscopy of graphite and graphene nanoribbons." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/54244.

Full text
Abstract:
The graphitic systems have attracted intensive attention recently due to the discovery of graphene, a single layer of graphite. The low-energy band structure of graphene exhibits an unusual linear dispersion relation which hosts massless Dirac fermions and leads to intriguing electronic and optical properties. In particular, due to the high mobility and tunability, graphene and graphitic materials have been recognized as promising candidates for future nanoelectronics and optoelectronics. Electron-phonon coupling (EPC) plays a significant role in electronic and optoelectronic devices. Therefore, it is crucial to understand EPC in graphitic materials and then manipulate it to achieve better device performance. In the first part of this thesis, we explore EPC between Dirac-like fermions and infrared active phonons in graphite via infrared magneto-spectroscopy. We demonstrate that the EPC can be tuned by varying the magnetic field. The second part of this thesis deals with magnetoplasmons in quasineutral graphene nanoribbons. Multilayer epitaxial graphene grown on the carbon terminated silicon carbide surface behaves like single layer graphene. Plasmons are excited in the nanoribbons of undoped multilayer epitaxial graphene. In a magnetic field, the cyclotron resonance can couple with the plasmon resonance forming the so-called upperhybrid mode. This mode exhibits a distinct dispersion relation, radically different from that expected for conventional two dimensional systems.
APA, Harvard, Vancouver, ISO, and other styles
7

Bleu, Yannick. "Graphene and doped graphene elaborated by pulsed laser deposition." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSES033.

Full text
Abstract:
Le graphène est, par définition, un matériau bidimensionnel, cristallin, constitué d’un réseau d’atomes de carbone en nid d’abeilles répartis sur une monocouche atomique. Le graphène a suscité un grand intérêt dans les communautés scientifiques au cours des 15 dernières années, en raison de propriétés remarquables, en particulier la conductivité électrique, la transparence optique, la résistance et la conductivité thermique, avec de nombreuses applications technologiques potentielles, comme les électrodes transparentes, l’émission de champs, les biocapteurs, les futures générations de batteries, les matériaux composites, etc. L’un des plus grands défis avec le graphène, demeure le contrôle et la reproductibilité de la synthèse sur de grandes surfaces, ainsi que l'étude analytique, à l’échelle nanométrique, de films si particuliers à une échelle très réduite, films constitués de l’élément carbone formant une ou plusieurs couches déposées sur des substrats adéquats en fonction des applications visées. Dans cette thèse, nous avons proposé une méthode de synthèse alternative basée sur un procédé physique (et non chimique), combinant le dépôt par laser pulsé (PLD) avec un recuit thermique rapide (Rapid Thermal Annealing). Cette approche particulière permet en particulier le dopage des couches de graphène par des atomes choisis, de manière contrôlée et reproductible. Nos travaux ont contribué à élargir les champs d'études de la PLD dans le domaine de la synthèse des couches minces. Aussi, Ils contribuent à une avancée des connaissances fondamentales sur la synthèse du graphène et du graphène dopé au bore, au cœur des efforts actuels de la recherche pour intégrer ces matériaux dans des applications technologiques exigeants des performances toujours plus élevées
Graphene is, by definition, a one-atom-thick pure carbon crystal with a honeycomb-like structure. Graphene has become of great interest in both scientific and engineering communities from the past 15 years, owing to its range of unique properties including high conductivity, transparency, strength, and thermal conductivity, with many potential applications in research and industry, as transparent electrodes, field emitters, biosensors, batteries, composites, and so on. One of the greatest challenges with graphene remains the control and reproducibility of the synthesis on large surfaces, as well as the analytical study, at the nanometric scale. In this thesis, we have proposed an alternative synthesis method based on a physical (and not chemical) process, combining pulsed laser deposition (PLD) with rapid thermal annealing (Rapid Thermal Annealing). This particular approach allows in particular the doping of the graphene layers with selected atoms, in a controlled and reproducible manner. Our work has contributed to broadening the fields of study of PLD in the field of thin-film synthesis. It also contribute to an advance in fundamental knowledge on the synthesis of graphene and boron-doped graphene, at the heart of current research efforts to integrate these materials into technological applications requiring ever-higher performance
APA, Harvard, Vancouver, ISO, and other styles
8

Li, Yuan. "New functionalized graphene nanocomposites for applications in energy storage and catalysis." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLN025.

Full text
Abstract:
Matériaux à base de graphène et d’oxyde de graphène ont attiré une grande attention depuis sa découverte. Cependant, comme la feuille de graphène a une surface spécifique élevée, il tend à former un agglomérat irréversible ou même empiler pour former le graphite par π-π empilage et Van-der Waals interactions. Les modifications doivent être faites pour séparer les feuilles de graphène sans apporter trop de dégâts dans sa structure aromatique. Dans cette thèse, nous avons lancé deux méthodes pour faire la modification du graphène, réaction de substitution nucléophile pour l’oxyde de graphène avec un C/O ~ 2 (FGS2), tandis que la demande électronique inverse réaction de Diels-Alder pour l’oxyde de graphène avec un très faible teneur en oxygène C/O ~ 20 (FGS20). Comme dans le second cas, FGS20 fonctionnalisés par tetrazine possède une excellente conductivité, il a été en outre combiné avec un polypyrrole pour fabriquer un matériau de supercondensateur.Dans le chapitre 2, nous avons greffé de manière covalente des dérivés de tétrazine à l'oxyde de graphène par substitution nucléophile. Comme l'unité de tétrazine est électroactif et riche en azote, avec un potentiel de réduction sensible du type de substituant et degré de substitution, nous avons utilisé l'électrochimie et la spectroscopie de photoélectrons X pour démontrer des preuves claires pour le greffage par liaison covalente. La modification chimique a été soutenue par spectroscopie infrarouge à transformée de Fourier et analyse thermique. Tétrazines greffé sur l'oxyde de graphène affichent différentes pertes de masse par rapport à graphène non modifiée et sont plus stables que les précurseurs moléculaires. Enfin, un dérivé de pontage tétrazine a été greffée entre des feuilles d'oxyde de graphène pour démontrer que la distance de séparation entre les feuilles peut être maintenue lors de la conception de nouveaux matériaux à base de graphène, y compris les structures d'oxydo-réduction chimiquement liés, les structures d'oxydoréduction.Dans le chapitre 3, des molécules modèles de graphène ont été sélectionnés afin de déterminer les conditions optimales de réaction entre graphène et tétrazine dérivés. Toutes les molécules de tétrazine ont d'abord été étudiés par électrochimie et ensuite mis à réagir avec le graphène par la demande électronique inverse Diels-Alder (DAinv) réaction dans un réacteur à micro-ondes, la XPS a été réalisée pour étudier sa composition chimique et de prouver la modification avec succès du graphène. Ensuite, le matériau de graphène tétrazine fonctionnalisé a été appliqué sur une électrode en acier inoxydable et ses performances électrochimiques ont été évaluées par voltamétrie cyclique et les tests de charge-décharge. La plupart des tétrazine modifié matériaux de graphène a montré de très bonnes performances électrochimiques et une faible résistance due à une bonne accessibilité des ions, ce qui en fait l'un des matériaux d'électrodes les plus prometteuses pour les supercondensateurs jusqu'à présent. Dans le chapitre 4, polypyrrole (PPy)-graphène nanocomposites ont été synthétisés par polymérisation de PPy sur les feuilles de graphène fonctionnalisés par tétrazine. Le matériau de graphène modifié contient des unités pyridazine tel que démontré par XPS. Puis PPy a été déposé sur ce matériau de graphène fonctionnalisé soit par polymérisation chimique ou électrochimique. Cellules de pièces symétriques ont été faites pour mesurer la capacité dans une configuration à deux électrodes. Les nanocomposites de polypyrrole-graphène avec 40% PPy présentent les meilleures performances électrochimiques et une faible résistance en raison d'une bonne accessibilité des ions, ce qui en fait l'un des meilleurs matériaux d'électrodes pour supercapacitor jusqu'à présent
Graphene and graphene oxide based materials have attracted great attention since its discovery. However, as graphene sheet has a high specific surface area, it tends to form an irreversible agglomerates or even restack to form graphite through π–π stacking and van-der Waals interactions. Modifications need to be done to separate graphene sheets without bringing too much damage in its aromatic structure.In this thesis, two methods have been introduced to do the modification of graphene, nucleophilic substitution reaction for graphene oxide with a C/O~2 (FGS2), while inverse electron demand Diels-Alder reaction for graphene oxide with a very low oxygen content C/O~20 (FGS20). As in the latter case, tetrazine functionalized FGS20 has excellent conductivity, it has been further combined with polypyrrole to fabricate supercapacitor material.In chapter 2, we have covalently grafted tetrazine derivatives to graphene oxide through nucleophilic substitution. Since the tetrazine unit is electroactive and nitrogen-rich, with a reduction potential sensitive to the type of substituent and degree of substitution, we used electrochemistry and X-ray photoelectron spectroscopy to demonstrate clear evidence for grafting through covalent bonding. Chemical modification was supported by Fourier transform infrared spectroscopy and thermal analysis. Tetrazines grafted onto graphene oxide displayed different mass losses compared to unmodified graphene and were more stable than the molecular precursors. Finally, a bridging tetrazine derivative was grafted between sheets of graphene oxide to demonstrate that the separation distance between sheets can be maintained while designing new graphene-based materials, including chemically bound, redox structures.In chapter 3, model molecules of graphene were selected to determine the optimal reaction conditions between graphene and tetrazine derivatives. All tetrazine molecules were firstly studied by electrochemistry and then reacted with graphene through inverse electron demand Diels-Alder (DAinv) reaction in microwave reactor, X-ray photoelectron spectroscopy was carried out to study its chemical composition and prove the successfully modification of graphene. Then the tetrazine functionalized graphene material was coated on a Stainless Steel electrode and its electrochemical performances were assessed by cyclic voltammetry and charge-discharge experiments. Most of the tetrazine modified graphene materials showed very good electrochemical performance and a small resistance due to a good ion accessibility, which makes it one of the most promising electrode materials for supercapacitors so far.In chapter 4, polypyrrole (PPy)-graphene sheet nanocomposites have been synthesized by both chemical and in situ electrochemical polymerization of PPy on tetrazine derivatives functionalized graphene sheets. The modified graphene material contains pyridazine units as demonstrated by XPS. Then PPy was deposited on this functionalized graphene material either by chemical or electrochemical polymerization. Symmetrical coin cells were made to measure the capacitance in a two-electrode configuration. Polypyrrole-graphene nanocomposites with 40% PPy show the best electrochemical performances, with a very large capacitance per weight (326 F g-1 at 0.5 A g-1 and 250 F g-1 at 2 A g-1) and a small resistance due to a good ion accessibility, which makes it one of the best electrode materials for supercapacitors so far
APA, Harvard, Vancouver, ISO, and other styles
9

Poole, Timothy. "Acoustoelectric properties of graphene and graphene nanostructures." Thesis, University of Exeter, 2017. http://hdl.handle.net/10871/29838.

Full text
Abstract:
The acoustoelectric effect in graphene and graphene nanoribbons (GNRs) on lithium niobate surface acoustic wave (SAW) devices was studied experimentally. Monolayer graphene produced by chemical vapour deposition was transferred to the SAW devices. The photoresponse of the acoustoelectric current (Iae) was characterised as a function of SAW frequency and intensity, and illumination wavelength (using 450 nm and 735 nm LEDs) and intensity. Under illumination, the measured Iae increased by more than the measured decrease in conductivity, while retaining a linear dependence on SAW intensity. The latter is consistent with the piezoelectric interaction between the graphene charge carriers and the SAWs being described by a relatively simple classical relaxation model. A larger increase in Iae under an illumination wavelength of 450 nm, compared to 735 nm at the same intensity, is consistent with the generation of a hot carrier distribution. The same classical relaxation model was found to describe Iae generated in arrays of 500 nm-wide GNRs. The measured acoustoelectric current decreases as the nanoribbon width increases, as studied for GNRs with widths in the range 200 – 600 nm. This reflects an increase in charge carrier mobility due to increased doping, arising from damage induced at the nanoribbon edges during fabrication. 2 Lastly, the acoustoelectric photoresponse was studied as a function of graphene nanoribbon width (350 – 600 nm) under an illumination wavelength of 450 nm. Under illumination, the nanoribbon conductivity decreased, with the largest percentage decrease seen in the widest GNRs. Iae also decreased under illumination, in contrast to the acoustoelectric photoresponse of continuous graphene. A possible explanation is that hot carrier effects under illumination lead to a greater decrease in charge carrier mobility than the increase in acoustoelectric attenuation coefficient. This causes the measured decrease in Iae.
APA, Harvard, Vancouver, ISO, and other styles
10

Huang, Xianjun. "Electromagnetic applications of graphene and graphene oxide." Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/electromagnetic-applications-of-graphene-and-graphene-oxide(873c9618-19a3-4818-b47a-9afbca39857c).html.

Full text
Abstract:
Since the isolation of graphene in 2004, a large amount of research has been directed at 2D materials and their applications due to their unique characteristics. This thesis delivers pioneering developments on the applications of graphene and graphene oxide (GO) on electromagnetic ranges such as radio frequency, microwave frequency and THz bands, and specifically 2D materials based antennas, absorbers, sensors and etc. This thesis focuses on exploring electromagnetic applications of monolayer graphene, printed graphene and graphene oxide. In study of monolayer graphene applications, the theoretical and simulation studies are carried out to design tunable terahertz (THz) absorbers, tunable microwave wideband absorbers, and reconfigurable antennas, etc. These studies on the applications of monolayer graphene have proved prospective potentials of graphene in THz sensing, RCS reduction, and reconfigurable antennas. This thesis also presents pioneering advances on electromagnetic applications of printed graphene. Among these works, low-cost highly conductive and mechanically flexible printed graphene is developed for radio frequency (RF) applications. For the first time, effective RF radiation of printed graphene is experimentally demonstrated. Based on these results, applications of printed graphene including RFID (radio frequency identification) tags, anti-tampering RFID, EMI shielding, flexible microwave components such as transmission lines, resonators and antennas, conformable wideband radar absorbers, graphene oxide based wireless sensors, etc. are developed and experimentally demonstrated. This work significantly expands applications of graphene in electromagnetic areas.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Graphene"

1

1964-, Chan H. E., ed. Graphene and graphite materials. Hauppauge. NY: Nova Science Publishers, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

James, Baker, and Tallentire James. Graphene. New York: Jenny Stanford Publishing, 2022. http://dx.doi.org/10.1201/9781003200277.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, Tianrong. Graphene. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-4589-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sharon, Madhuri, and Maheshwar Sharon. Graphene. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781118842577.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rao, C. N. R., and A. K. Sood, eds. Graphene. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527651122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Subramaniam, Ramesh T., Ramesh Kasi, Shahid Bashir, and Sachin Sharma Ashok Kumar, eds. Graphene. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1206-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jain, Pallavi, Chandrabhan Verma, Anirudh Pratap Singh Raman, Kamlesh Kumari, and Prashant Singh. Biosensors Based on Graphene, Graphene Oxide and Graphynes for Early Detection of Cancer. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003491361.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Murali, Raghu, ed. Graphene Nanoelectronics. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-0548-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tiwari, Ashutosh, and Mikael Syväjärvi, eds. Graphene Materials. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119131816.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dimiev, Ayrat M., and Siegfried Eigler, eds. Graphene Oxide. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119069447.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Graphene"

1

Shabalin, Igor L. "Carbon (Graphene/Graphite)." In Ultra-High Temperature Materials I, 7–235. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-7587-9_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ghosh, Akash, Simran Sharma, Anil K. Bhowmick, and Titash Mondal. "Functionalization of Graphite and Graphene." In Graphene-Rubber Nanocomposites, 81–108. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003200444-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rao, C. N. R., Urmimala Maitra, and H. S. S. Ramakrishna Matte. "Synthesis, Characterization, and Selected Properties of Graphene." In Graphene, 1–47. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527651122.ch1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

El-Shall, M. Samy. "Heterogeneous Catalysis by Metal Nanoparticles Supported on Graphene." In Graphene, 303–38. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527651122.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bhattacharya, Santanu, and Suman K. Samanta. "Graphenes in Supramolecular Gels and in Biological Systems." In Graphene, 339–72. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527651122.ch11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Koyakutty, Manzoor, Abhilash Sasidharan, and Shantikumar Nair. "Biomedical Applications of Graphene: Opportunities and Challenges." In Graphene, 373–408. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527651122.ch12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sood, A. K., and Biswanath Chakraborty. "Understanding Graphene via Raman Scattering." In Graphene, 49–90. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527651122.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Baskaran, Ganapathy. "Physics of Quanta and Quantum Fields in Graphene." In Graphene, 91–129. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527651122.ch3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Enoki, Toshiaki. "Magnetism of Nanographene." In Graphene, 131–57. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527651122.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kochat, Vidya, Srijit Goswami, Atindra Nath Pal, and Arindam Ghosh. "Physics of Electrical Noise in Graphene." In Graphene, 159–95. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527651122.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Graphene"

1

Vermeulen, Nathalie. "Nonlinear Optics of Graphene and Other Post-2000 Materials." In CLEO: Applications and Technology, JW3G.2. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.jw3g.2.

Full text
Abstract:
Since 2000 various new nonlinear-optical materials have emerged, including 2D materials such as graphene. After highlighting graphene’s nonlinear response at optical and THz frequencies, I will briefly discuss a new data table for post-2000 nonlinear-optical materials.
APA, Harvard, Vancouver, ISO, and other styles
2

Wu, Leiming. "Graphdiyne Oxide as a Promising Candidate for Nonlinear Optical Switching Applications." In Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, JTu1A.39. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/bgpp.2024.jtu1a.39.

Full text
Abstract:
Graphene oxide demonstrates a significant nonlinear optical response with light intensity dependence upon stimulation by light waves. Taking advantage of this characteristic, graphyne oxide shows important application value in optical switching.
APA, Harvard, Vancouver, ISO, and other styles
3

Jovanovic, S., M. Yasir, W. Saeed, I. Spanopoulos, Z. Syrgiannis, M. Milenkovic, and D. Kepic. "Carbon-Based Nanomaterials in Electromagnetic Interference Shielding: Graphene Oxide, Reduced Graphene Oxide, Electrochemically Exfoliated Graphene, and Biomass-Derivated Graphene." In 2024 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/marss61851.2024.10612734.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bimsara, G. S. M. N., W. M. N. C. Wijerathnayake, W. A. N. M. Abeyrathna, P. Thayalan, D. M. D. O. K. Dissanayake, and S. U. Adikary. "Synthesis of graphene through electrochemical exfoliation of Sri Lankan graphite." In International Symposium on Earth Resources Management & Environment - ISERME 2023. Department of Earth Resources Engineering, 2023. http://dx.doi.org/10.31705/iserme.2023.19.

Full text
Abstract:
Graphene, a remarkable two-dimensional carbon allotrope characterized by a hexagonally arranged carbon lattice, has garnered significant attention due to its extraordinary properties and diverse range of applications. For the synthesis of graphene, multiple methods are available. In this research, we opted for the electrochemical exfoliation method due to its simplicity, scalability, and environmentally friendly attributes. This methodology follows a top-down paradigm, whereby graphene is derived from graphite. The experimental configuration involved the construction of an electrolytic cell, employing carbon electrodes fabricated from compacted graphite powder, with a 0.1M Na2SO4 solution serving as the electrolyte. By systematically varying the voltage, current, and spatial separation between the anode and cathode, five experimental trials were conducted. Subsequently, the electrolyte underwent filtration, and the resultant residue underwent a drying process. Morphological observation of the synthesized graphene samples was facilitated using scanning electron microscopy (SEM). Furthermore, the confirmation of graphene sample purity was achieved through energy dispersive x-ray spectroscopy (EDS). The x-ray diffraction (XRD) analysis revealed a distinct diffraction peak at 2θ=26.4°, corresponding to the (002) plane. Additionally, the absorption peak of graphene was identified at 230 nm. Our findings strongly suggest that electrochemical exfoliation represents a promising avenue for the synthesis of grapheme utilizing Sri Lankan graphite. However, further investigations are imperative to refine and optimise this method for the large-scale production of graphene.
APA, Harvard, Vancouver, ISO, and other styles
5

Miura, K., D. Tsuda, and N. Sasaki. "Superlubricity of C60 Intercalated Graphite Films (Keynote)." In World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-63930.

Full text
Abstract:
The frictional behavior of the C60 intercalated graphite films with a large size of 2.3×2.3mm2 is reported. The C60 intercalated graphite films consist of alternating close-packed C60 monolayers and graphite layers (graphenes), and thus many sliding planes are formed between each C60 monolayer and graphene. The intercalation of C60 molecules into graphite films results in superlubricity where frictional forces are observed to be stationarily zero.
APA, Harvard, Vancouver, ISO, and other styles
6

Ghosh, Suchismita, Denis L. Nika, Evgenni P. Pokatilov, Irene Calizo, and Alexander A. Balandin. "Extraordinary Thermal Conductivity of Graphene: Prospects of Thermal Management Applications." In 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-22348.

Full text
Abstract:
We have recently discovered experimentally that suspended graphene, which is an individual sheet of sp2-hybridized carbon bound in two dimensions (2D), reveal an extremely high thermal conductivity. The measurements were performed using a non-contact optical technique developed by us on the basis of Raman spectroscopy. A large number of graphene flakes were suspended across trenches in Si wafers and attached to heat sinks. The flakes were heated by the focused laser light in the middle of the suspended portion of graphene. The amount of laser power dissipated in graphene and corresponding local temperature rise were determined from the integrated intensity and spectral position of graphene’s Raman G mode. The position of the G peak as a function of the sample temperature was measured independently allowing the use of micro-Raman spectrometer as a “thermometer”. The experimental thermal conductivity values were in the range of ∼ 3000–5300 W/mK near room temperature (RT) and depended on the graphene flake sizes. The thermal conductivity of graphene is the highest among all materials known to date. In this review work we will describe the details of our measurement procedure and explain theoretically why the 2D thermal conductivity of graphene is higher than that of bulk graphite provided that the size of graphene flakes is sufficiently large. Our theory, which includes the phonon-mode dependent Gruneisen parameter and phonon scattering on edges and defects, gives results, which are in excellent agreement with the experiment. Superior thermal properties of graphene are beneficial for the proposed graphene electronic devices, and may pave the way for graphene’s thermal management applications.
APA, Harvard, Vancouver, ISO, and other styles
7

Ting Leng, Zhirun Hu, Xiao Zhang, and Xianjun Huang. "Design and modelling of graphene based attenuator." In Graphene-Based Technologies. Institution of Engineering and Technology, 2015. http://dx.doi.org/10.1049/ic.2015.0001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Williams, J. O. D., I. B. Hutchinson, M. Roy, and J. S. Lapington. "Graphene as a novel single photon counting optical and IR photodetector." In Graphene-Based Technologies. Institution of Engineering and Technology, 2015. http://dx.doi.org/10.1049/ic.2015.0002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhang, Jun-Fu, Jia-Han Li, and Tony Wen-Hann Sheu. "Anisotropic Permittivities and Transmittance of Double Layer Graphene." In JSAP-OSA Joint Symposia. Washington, D.C.: Optica Publishing Group, 2017. http://dx.doi.org/10.1364/jsap.2017.7p_a404_8.

Full text
Abstract:
Graphene is a two dimensional material consisted of honeycomb carbon lattices. Comparing to pure graphene, bilayer graphene is taking special interest due to the interlayer interactions. The interlayer coupling has the influences on the electronic and optical properties, which has crucial characteristics distinct from graphite. Ebernil et al. [1] reported that the single layer graphene has red-shifted surface plasmon modes from graphite at 4.7 eV and 14.6 eV. It illustrated that the dielectric function of graphene distinct from graphite. In this work, the permittivities of double layer graphene are numerically simulated using Density Functional Theory (DFT) method. Also, the transmittance of SiO2 substrate model, surface conductivity approach of graphene model, and DFT model are compared.
APA, Harvard, Vancouver, ISO, and other styles
10

Grayfer, E. D., V. G. Makotchenko, A. S. Nazarov, V. S. Danilovich, Y. A. Anikin, A. S. Chubov, K. V. Shpol'vind, Sung-Jin Kim, and V. E. Fedorov. "Graphene dispersion and graphene paper from highly exfoliated graphite." In 2011 IEEE Nanotechnology Materials and Devices Conference (NMDC 2011). IEEE, 2011. http://dx.doi.org/10.1109/nmdc.2011.6155361.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Graphene"

1

Ucak-Astarlioglu, Mine, Jedadiah Burroughs, Charles Weiss, Kyle Klaus, Stephen Murrell, Samuel Craig, Jameson Shannon, Robert Moser, Kevin Wyss, and James Tour. Graphene in cementitious materials. Engineer Research and Development Center (U.S.), December 2023. http://dx.doi.org/10.21079/11681/48033.

Full text
Abstract:
This project aims to determine the influence of laboratory-generated graphene (LGG) and commercial-grade graphene (CGG) on the chemical structure and compressive strength of graphene-cement mixtures. Determining the graphene-cement structure/processing/property relationships provides the most useful information for attaining the highest compressive strength. Graphene dose and particle size, speed of mixing, and dispersant agent were found to have important roles in graphene dispersion by affecting the adhesion forces between calcium silicate hydrate (CSH) gels and graphene surfaces that result in the enhanced strength of cement-graphene mixtures. X-ray diffraction (XRD), Raman, and scanning electron microscope (SEM) analyses were used to determine chemical microstructure, and compression testing for mechanical properties characterization, respectively. Based on observed results both LGG and CGG graphene cement mixtures showed an increase in the compressive strength over 7-, 14-, and 28-day age curing periods. Preliminary dispersion studies were performed to determine the most effective surfactant for graphene dispersion. Future studies will continue to research graphene—cement mortar and graphene—concrete composites using the most feasible graphene materials. These studies will prove invaluable for military programs, warfighter support, climate change, and civil works.
APA, Harvard, Vancouver, ISO, and other styles
2

Barkan, Terrance. The Role of Graphene in Achieving e-Mobility in Aerospace Applications. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, December 2022. http://dx.doi.org/10.4271/epr2022030.

Full text
Abstract:
<div class="section abstract"><div class="htmlview paragraph">Advanced two-dimensional (2D) materials discovered in the last two decades are now being produced at scale and are contributing to a wide range of performance enhancements in engineering applications. The most well-known of these novel materials is graphene, a nearly transparent nanomaterial comprising a single layer of bonded carbon atoms. In relative terms, it has the highest level of heat and electrical conductivity, protects against ultraviolet rays, and is strongest material ever measured. These properties have made graphene an attractive potential material for a variety of applications, particularly for transportation related uses, and especially for aerospace engineering. </div><div class="htmlview paragraph"><b>The Role of Graphene in Achieving e-Mobility in Aerospace Applications</b> reviews the current state of graphene-related aerospace applications and identifies the technological challenges facing engineers that look to benefit from graphene’s attractive properties.</div><div class="htmlview paragraph"><a href="https://www.sae.org/publications/edge-research-reports" target="_blank">Click here to access the full SAE EDGE</a><sup>TM</sup><a href="https://www.sae.org/publications/edge-research-reports" target="_blank"> Research Report portfolio.</a></div></div>
APA, Harvard, Vancouver, ISO, and other styles
3

O'Leary, Timothy Sean. Graphene. Office of Scientific and Technical Information (OSTI), April 2015. http://dx.doi.org/10.2172/1179074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dervishi, Enkeleda. Graphene Synthesis. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1473759.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pan, Wei, Taisuke Ohta, Laura Butler Biedermann, Carlos Gutierrez, C. M. Nolen, Stephen Wayne Howell, Thomas Edwin Beechem Iii, Kevin F. McCarty, and Anthony Joseph, III Ross. Enabling graphene nanoelectronics. Office of Scientific and Technical Information (OSTI), September 2011. http://dx.doi.org/10.2172/1029775.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

O'Leary, Timothy Sean. My Spring with Graphene. Office of Scientific and Technical Information (OSTI), June 2015. http://dx.doi.org/10.2172/1183958.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cortes, Andrea. Graphene Synthesis and Characterization. Fort Belvoir, VA: Defense Technical Information Center, April 2015. http://dx.doi.org/10.21236/ad1013226.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

De Heer, Walter A. Epitaxial Graphene Quantum Electronics. Fort Belvoir, VA: Defense Technical Information Center, May 2014. http://dx.doi.org/10.21236/ada604108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Geim, Andre, and Kostya Novoselov. Towards Graphene-Based Electronics. Fort Belvoir, VA: Defense Technical Information Center, January 2012. http://dx.doi.org/10.21236/ada554986.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Moghtadernejad, Sara, Ehsan Barjasteh, Ren Nagata, and Haia Malabeh. Enhancement of Asphalt Performance by Graphene-Based Bitumen Nanocomposites. Mineta Transportation Institute, June 2021. http://dx.doi.org/10.31979/mti.2021.1918.

Full text
Abstract:
As the State of California continues to grow, demand for enhanced infrastructure such as roadways and highways escalates. In view of the current average highway lifespan of 15–20 years, the improvement of asphalt binders leads to material sustainability by decreasing required maintenance and increasing the lifespan of roadways. In the present investigation, enhancement of asphalt binder properties was achieved by different methods of mixing varying compositions of graphene nanoparticles with an SBS polymer and asphalt binder. Additionally, experimental evaluation and comparison of the rheological and mechanical properties of each specimen is presented. Graphene nanoparticles have attracted great curiosity in the field of highway materials due to their incredible rigidity, even in small quantities. Addition of as little as 1.0%nanoparticles in combination with polymers in an asphalt binder is expected to increase the rigidity of the material while also maintaining the beneficial polymer characteristics. Evaluation of the effect of the mixing design established that the methods for application of graphene to the polymer-modified asphalt binder are critical in the improvement of a roadway, resulting in resistance to premature aging and strain from constant road operation.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography