Dissertations / Theses on the topic 'Graphene NanoRibbon'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Graphene NanoRibbon.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Yu, Wenlong. "Infrared magneto-spectroscopy of graphite and graphene nanoribbons." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/54244.
Full textPaulla, Kirti Kant. "Conductance Modulation in Bilayer Graphene Nanoribbons." Wright State University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=wright1253023785.
Full textXu, Zhen. "On-surface synthesis of two-dimensional graphene nanoribbon networks." Kyoto University, 2020. http://hdl.handle.net/2433/254529.
Full textLi, Ke. "Sub-Lithographic Patterning of Ultra-Dense Graphene Nanoribbon Arrays." The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1250545004.
Full textPanapitiya, Gihan Uthpala. "Electronic Properties of Graphene and Boron Nitride Nanoribbon Junctions." University of Akron / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=akron1382986572.
Full textAkbari, Mahmood. "Uniaxial Strain Effect on Graphene-Nanoribbon Resonant Tunneling Transistors." Master's thesis, University of Cape Town, 2018. http://hdl.handle.net/11427/29314.
Full textReynolds, Jamie Dean. "Fabrication and characterisation of CVD-graphene nanoribbon single electron transistors." Thesis, University of Southampton, 2018. https://eprints.soton.ac.uk/419476/.
Full textDale, Joel Kelly. "Electric field lines and voltage potentials associated with graphene nanoribbon." Thesis, University of Iowa, 2013. https://ir.uiowa.edu/etd/2471.
Full textImperiale, Ilaria <1982>. "Numerical Modelling of Graphene Nanoribbon-fets for Analog and Digital Applications." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2012. http://amsdottorato.unibo.it/4949/1/Imperiale_Ilaria_tesi.pdf.
Full textImperiale, Ilaria <1982>. "Numerical Modelling of Graphene Nanoribbon-fets for Analog and Digital Applications." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2012. http://amsdottorato.unibo.it/4949/.
Full textChu, Hua-Wei. "Development of solution-processed methods for graphene synthesis and device fabrication." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/44738.
Full textLi, Yuntao. "Nanostructured graphene on Si-terminated SiC and its electronic properties." Diss., Georgia Institute of Technology, 2016. http://hdl.handle.net/1853/54964.
Full textCasao-Perez, J. A. "Edge States and Magnetization in Bernal-Stacked Trilayer Graphene Nanoribbons." Thesis, Sumy State University, 2015. http://essuir.sumdu.edu.ua/handle/123456789/42715.
Full textTan, Michael Loong Peng. "Device and circuit-level models for carbon nanotube and graphene nanoribbon transistors." Thesis, University of Cambridge, 2011. https://www.repository.cam.ac.uk/handle/1810/245117.
Full textAnindya, Khalid. "Interlayer Defect Effects on the Phonon Properties of Bilayer Graphene and its Nanoribbon." Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/40411.
Full textSmith, Christian W. "A study of charge carrier transport in graphene nanoribbons." Honors in the Major Thesis, University of Central Florida, 2010. http://digital.library.ucf.edu/cdm/ref/collection/ETH/id/1496.
Full textBachelors
Sciences
Physics
Shaotang, Song. "A study on the on-surface synthesis of novel carbon-based nanoribbon structures." Kyoto University, 2017. http://hdl.handle.net/2433/227651.
Full textSarkar, Parantap. "The ceramidonine and perkin approaches to aromatic nanoribbons." Thesis, Bordeaux 1, 2012. http://www.theses.fr/2012BOR14555/document.
Full textGraphene nanoribbons (GNRs) are promising materials for organic electronics, as they bridge the gap betweensingle-stranded conjugated polymers and carbon nanotubes. Two different synthetic approaches to GNRs aredeveloped and evaluated. The first approach is based on the acid-promoted cyclisation of arylaminoanthraquinonesto ceramidonines. Tetraazaarenes with two ceramidonine units are obtained, but the approachis found to be appropriate only to such small systems. The second approach is based on the condensation ofarylacetic acids with arenecarboxaldehydes or arylglyoxylic acids, followed either by quinone-assistedoxidative cyclodehydrogenation or palladium-catalysed dehydrodebromination to yield carboxy-substitutedelongated arenes. The quinone-based variant is found to be limited to reactive substrates such as thiophenederivatives and offers the perspective of partially rigidified carboxy-substituted poly(arenodithiophenes). Thepalladium-based variant is found to be more general, opening the prospect of obtaining a variety of ribbontypestructures with tunable electronic properties
Zheng, Yi. "Compact multiscale modeling of carbon-based nano-transistors." Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS518.
Full textAmong emerging carbon materials, graphene has rapidly become an ideal candidate for nano-electronics. In this context, different methods have been proposed to transform its electric properties and remove the Dirac degeneracy point, leading to application to nano-transistors. In this thesis we apply a semi-analytical compact model to study two kinds of graphene-based nanotransistors: nanoribbon graphene transistor and nanomesh transistor. A tight-binding model is used to determine analytical expressions for the energy bands of a graphene nanoribbon. Comparisons are shown with ab-initio approaches and with measurements done on larger-scale transistors of the same kind. In the context of flexible electronics, mechanical stresses on circuits and subsequent geometric deformations of graphene-based components is an important issue. We investigate these effects on the conduction properties of nanoribbon transistors (both in ballistic and partially ballistic regimes). By assuming the presence of small deformations, a spectral scaling and a spectral shift due to the presence of a deformation can be taken into account analytically. This model leads to define in closed form effective quantities (masses, densities of states) used to numerically calculate potentials and currents in the nano-device. Numerical results are shown both in a ballistic and partially-ballistic regime, with and without the presence of Schottky contacts. The proposed results in Chapter 2 illustrate in a very simple way how the deformation of graphene nanoribbon influences the I-V characteristics of transistor. Another solution to realize graphene nanotransistor is the etching of nanoholes in a graphene sheet (thus realizing a nanomesh). If graphene nanomesh is properly shaped, the On/Off current ratio of transistor is expected to be enhanced. In Chapter 3, the semi-analytic method is used to evaluate the performance of nanomesh transistor with nanoribbon ones. The results are again compared with an ab-initio method. I-V characteristics of graphene nanomesh transistor are presented and compared with experimental results. The proposed results show how graphene nanomesh size influences the I-V characteristics of transistor. Given the simplicity and the reduced computation time of the approach, these results can lead to perform parametric analyses, optimizations and characterization of graphene nano-transistor when applied in larger-scale circuits
Wang, Chao. "Synthesis of Conjugated Polymers." University of Akron / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=akron1362783501.
Full textRhoads, Daniel Joseph. "A Mathematical Model of Graphene Nanostructures." University of Akron / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=akron1438978423.
Full textGuo, Zelei. "Mono-layer C-face epitaxial graphene for high frequency electronics." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/52268.
Full textPoumirol, Jean-Marie. "Etude des propriétés électroniques du graphène et des matériaux à base de graphène sous champs magnétiques intenses." Thesis, Toulouse, INSA, 2011. http://www.theses.fr/2011ISAT0012/document.
Full textThis thesis presents transport measurements on two-dimensional and one-dimensional graphene-based systems under pulsed magnetic field (60T). The objective of this work is to probe the dynamics of charge carriers by changing the density of states of the system by applying a strong magnetic field. The first part is devoted to the study of the influence of electron-hole pockets on the transport properties of graphene near the charge neutrality point. We found the appearance of fluctuations in the magneto-resistance due to the progressive transition of the electron/hole puddles of finite size in the quantum regime as the magnetic field increases. We have also shown that the variation of the Fermi energy, due to the increase of orbital Landau level degeneracy, is directly responsible of a change in the electron and hole ratio. The second part is devoted to the study of graphene nano-ribbons, we explored two different ranges of width. In the broad nano-ribbons of width W larger than 60 nm, the quantification of the resistance is observed, revealing a clear signature of the quantization of the energy spectrum into Landau levels. We show for the first time the effect of valley degeneracy lifting induced by the magnetic confinement of charge carriers at the edges of the armchair nano-ribbons. For narrower nano-ribbons (W <30 nm) in presence of edge defects and charged impurities, the progressive formation of chiral edge states leads to a positive magneto-conductance whatever the carrier density. Finally, the last part of this thesis deals with magneto-transport fingerprints in multi-layer graphene as we observed the quantum Hall effect in tri-layer graphene. A comparative study of the experimental results with numerical simulations was used to determine the rhombohedral stacking of three layers of graphene in the sample
Li, Yang. "Single Molecule Spintronics and Friction." Ohio University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou151561792063398.
Full textJoshi, Shital. "Analysis and Optimization of Graphene FET based Nanoelectronic Integrated Circuits." Thesis, University of North Texas, 2016. https://digital.library.unt.edu/ark:/67531/metadc849755/.
Full textRigo, Vagner Alexandre. "Estudo teórico de nanofitas de grafeno dopadas com Ni e Mn." Universidade Federal de Santa Maria, 2010. http://repositorio.ufsm.br/handle/1/3890.
Full textIn this work we present the results of a systematic study of the stability, and the electronic, stuctural and magnetic properties of graphene nanoribbons doped with Ni (Ni/GNR) and Mn (Mn/GNR), through ab initio density functional theory (DFT) calculations. Further, we analyse the electronic transport properties through the non-equilibrium Greens functions formalism (NEGF) coupled with DFT. The electronics and energetics of Si graphene-like monolayers and nanoribbons have also been studied. We determined the possible configurations of a Ni atom both adsorbed and substitutional in GNRs with zigzag edges. We show that the Ni atoms adsorb on the edges of the GNRs. This configuration is seen to be 0.3 eV lower in energy that the adsorption at the midlle of the GNR. The magnetic moments at the carbon atoms change due to the presence of the Ni, decreasing rapidly as the distance of the Ni atom decrease, recovering the value of the ideal GNR at 9 °A from the Ni atom. We obtained Ni d-levels inside a 1.0 eV energy window around the Fermi energy, leading to spin-dependent charge transport in the Ni/GNR. For the case of two Ni atoms adsorbed at the different edges of the GNR s, the antiferromagnetic coupling between both Ni atoms is energetically favored. For the case of the substitucional Ni atom, the edge position is also the energeticaly favored. It gives place to a spin-dependent charge transport, and suggest the use of these materials for spintronic devices. For the Mn doping in zigzag and armchair nanoribbons, it is shown that the edge site are the energetically favorable for adsorbed and substitucional Mn atoms. For the adsorbed Mn dimers, our calculations show that the sites along the border of the GNRs are the most stables ones. The distance between two Mn atoms of the adsorbed Mn2 is shorter than that for the isolated Mn2 molecule. For the zigzag nanoribbons, the magnetic moment of the Mn2 is not affected by magnetic state of the substrate, with the ground state being antiferromagnetic. The dimer/GNR configurations, Mn2/ferro A and Mn2/ferro F, show different elecrtonic properties. The Mn2/ferro A is seen to be semiconductor, while the Mn2/ferro F is semi-mettalic. These properties point to two interesting consequences: (i) the use of these systems as nanomemories, with the reading process made by measure of the electronic current through the nanoribbons and (ii) a spin-polarized current through the Mn2/GNR, with the control of the magnetization of the dimers. Finally, are show that H-passivate diamond-like Si monolayer and nanoribbons are semiconducting with low formation energies. Similarly to graphene, the non-H passivated Si monolayers, both planar and buckled, present linear dispersion of the ¼/¼¤ levels that cross at the Fermi energy.
Apresentamos neste trabalho os resultados do estudo sistemático da estabilidade energética e das propriedades estruturais, magnéticas e eletrônicas de nanofitas de grafeno (GNR) dopadas com Ni (Ni/GNR) e Mn (Mn/GNR), utilizando cálculos ab initio, realizados por meio da teoria do funcional da densidade (DFT). Também avaliamos as propriedades de transporte eletrônico dos sistemas por meio da metodologia de funções de Green fora do equilíbrio (NEGF), associadas a DFT. As propriedades eletrônicas, energéticas e magnéticas de monocamadas de Si, assim como de nanofitas de Si saturadas com H foram também estudadas. Avaliamos as configurações do átomo de Ni adsorvido e substitucional nas GNRs com bordas em formato zigzag. Nós obtivemos que os átomos de Ni adsorvem sobre as bordas da GNR, com uma diferença energética de aproximadamente 0.3 eV, quando comparadas com a adsorção no meio da nanofita. Os momentos magnéticos sobre os átomos de carbono da borda da nanofita se alteram pela presença do átomo de Ni, decrescendo rapidamente á medida que se aproximam do síıtio do Ni e recuperando os valores da nanofita pura a 9°A do átomo de Ni. Nós obtivemos estados d do Ni dentro de uma janela de energia de 1 eV acima e abaixo da energia de Fermi, os quais dão origem a um transporte de carga dependente do spin. Quando dois átomos de Ni são adsorvidos em bordas diferentes, a configuração com acoplamento antiferromagnetico entre os átomos de Ni é mais estável. O Ni substitucional na borda da nanofita é previsto como o sétio energeticamente mais favorável. Neste caso também obtivemos um transporte de carga dependente do spin, o que sugere a possibilidade de construção de dispositivos de filtro de spin baseados em GNRs com átomos de Ni adsorvidos ou substitucionais. Estudamos ainda a dopagem da GNR com Mn, onde foram consideradas as nanofitas com bordas zigzag e armchair. Em todas as nanofitas avaliadas, o Mn atômico apresenta maior estabilidade energética nos sítios junto à borda destas nanofitas. O mesmo se dá para as configurações com o Mn substitucional na nanofita. Para os d´ımeros de Mn adsorvidos sobre as nanofitas de carbono, nossos resultados revelam que existe uma preferência energética para os dímeros sobre sítios ao longo da borda das nanofitas. Nas configurações mais estáveis, os dímeros de Mn apresentam uma redução na distância de equilíbrio quando comparados ao Mn2 isolado. Para as nanofitas zigzag o estado da agnetização do dímero de Mn não é afetada pelo estado ferro F ou ferro A do substrato. Para ambas as configurações, o dímero de Mn na configuração antiferromagnética (AF) é o mais estável. As configurações dímero/nanofita: Mn2/ferro A e as Mn2/ferro F, apresentam propriedades eletrônicas distintas, sendo a primeira semicondutora (mantendo a característica eletrônica da nanofita ferro A não dopada), enquanto a última resulta semi-metálica. Estas propriedades eletrônicas apontam para duas consequências interessantes (i) o uso destes sistemas como nanomemórias, com um processo de leitura por meio da medida da corrente eletrônica através das nanofitas, e (ii) a obtenção de uma corrente com polarização de spin ao longo dos sistemas Mn2/nanofitas, através do controle da magnetização dos dímeros de Mn. Mostramos ainda que a monocamada e as nanofitas de Si passivadas com H, tipo diamante, são semicondutoras e apresentam uma reduzida energia de formação. De modo semelhante ao grafeno, a monocamada de Si não passivada planar e corrugada, apresenta dispersão linear dos níveis ¼/¼¤ que cruzam a energia de Fermi. A nanofita zigzag é obtida com os mesmos estados magnéticos da nanofita de grafeno correspondente.
Pierce, James Kevin. "Magnetic structure of chiral graphene nanoribbons." Thesis, University of British Columbia, 2016. http://hdl.handle.net/2429/57782.
Full textScience, Faculty of
Physics and Astronomy, Department of
Graduate
Wassmann, Tobias. "Graphene nanoribbons : towards carbon based electronics." Paris 6, 2013. http://www.theses.fr/2013PA066208.
Full textGraphene, a single layer of carbon atoms arranged in a honey-comb lattice, was first characterized in 2004 and immediately attracted a lot of attention. It exhibits unique electronic and transport properties and bears the potential to play a crucial role in a future generation of electronic devices. However, its gapless spectrum makes graphene unsuitable for direct application as semiconductor. One way to bypass this shortcoming consists in designing graphene nanoribbons (GNRs). In these systems, an electronic bandgap opens up as a function of the width and the edge configuration. In this thesis we present investigations of GNRs based on density functional theory (DFT). First we discuss the thermodynamic stability of a broad range of possible edge configurations and their electronic structures. Then, for the most relevant among them, we perform in-depth analyses of geometric aspects and simulated scanning tunneling microscope images. Throughout these investigations, we found Clar's theory of the aromatic sextet very useful to rationalize our DFT calculations. It is simple and elegant but still sophisticated enough to account for a large number of phenomena. Hence, we propose a classification scheme for GNRs based on their Clar formulae. This captures many properties better than a classification based on the crystallographic orientation. The last part of this thesis deals with a small extension to the DFT-framework Quantum Espresso. In particular, we discuss the implementation of the gradient corrections to the third order derivative of the electronic energy. This opens the way to extend investigations of anharmonic phenomena to the generalized gradient approximation
Bryan, Sarah Elizabeth. "Structural and electrical properties of epitaxial graphene nanoribbons." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47583.
Full textShylau, Artsem. "Electron transport, interaction and spin in graphene and graphene nanoribbons." Doctoral thesis, Linköpings universitet, Fysik och elektroteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-80621.
Full textPoole, Timothy. "Acoustoelectric properties of graphene and graphene nanostructures." Thesis, University of Exeter, 2017. http://hdl.handle.net/10871/29838.
Full textEl, Gemayel Mirella. "Graphene based supramolecular architectures and devices." Phd thesis, Université de Strasbourg, 2014. http://tel.archives-ouvertes.fr/tel-01070648.
Full textHankinson, John H. "Spin dependent current injection into epitaxial graphene nanoribbons." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53884.
Full textWang, Yichao. "Terahertz nonlinear optical response of armchair graphene nanoribbons." Diss., University of Iowa, 2016. https://ir.uiowa.edu/etd/2163.
Full textYang, Yinxiao. "Physical structural and behavioral integration of graphene devices." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47613.
Full textPemmaraju, Sri Krishna Divya. "Characterization, stability, and transport through defects in graphene nanoribbons." Wright State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=wright1363288707.
Full textTuzun, Burcu. "Structural Properties Of Defected Graphene Nanoribbons Under Tension: Molecular-dynamics Simulations." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614085/index.pdf.
Full textVargas, Morales Juan Manuel. "Towards a low temperature synthesis of graphene with small organic molecule precursors." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/50278.
Full textNiu, Wenhui, Junzhi Liu, Yiyong Mai, Klaus Müllen, and Xinliang Feng. "Synthetic Engineering of Graphene Nanoribbons with Excellent Liquid-Phase Processability." Elsevier, 2019. https://tud.qucosa.de/id/qucosa%3A74089.
Full textBaniahmad, Ata. "QUANTUM MECHANICAL Study and Modelling of MOLECULAR ELECTRONIC DEVICES." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13193/.
Full textChiu, Kuei-Lin. "Transport properties of graphene nanodevices - nanoribbons, quantum dots and double quantum dots." Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610526.
Full textBeyer, Doreen, Shiyong Wang, Carlo A. Pignedoli, Jason Melidonie, Bingkai Yuan, Can Li, Jan Wilhelm, et al. "Graphene Nanoribbons Derived from Zigzag Edge-Encased Poly(para-2,9-dibenzo[bc,kl]coronenylene) Polymer Chains." ACS Publications, 2019. https://tud.qucosa.de/id/qucosa%3A37010.
Full textNarita, Akimitsu [Verfasser]. "Bottom-up solution synthesis of structurally defined graphene nanoribbons / Akimitsu Narita." Mainz : Universitätsbibliothek Mainz, 2014. http://d-nb.info/1049217411/34.
Full textLiu, Junzhi [Verfasser]. "Controlling the edges: from nanographenes towards to graphene nanoribbons / Junzhi Liu." Mainz : Universitätsbibliothek der Johannes Gutenberg-Universität Mainz, 2016. http://d-nb.info/1225296668/34.
Full textAranha, Galves Lauren. "Fabrication and characterization of graphene nanoribbons epitaxially grown on SiC(0001)." Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19587.
Full textMonolayer graphene nanoribbons (GNRs) were synthesized on SiC(0001) substrates with two different miscut angles at temperatures ranging from 1410 to 1460 °C. The GNR growth in lower step heights is best described by an exponential growth rate, which is correlated with the energy barrier for Si out-diffusion. On the other hand, a non-exponential rate is observed for substrates with higher steps, which is associated with the formation of few-layer graphene on the step edges. Oxygen intercalation of epitaxial GNRs is investigated next by air annealing ribbons grown in different SiC(0001) substrates. Besides the conversion of monolayer into bilayer graphene near the step edges of SiC, the oxygen intercalation also leads to the formation of an oxide layer on the terraces of the substrate, leaving the bilayer GNRs electronically isolated from each other. Electrical characterization of bilayer GNRs reveals that the ribbons are electrically decoupled from the substrate by the oxygen treatment. A robust hole concentration of around 1x10¹³ cm-² and mobilities up to 700 cm²/(Vs) at room temperature are measured for GNRs whose typical width is 100 nm. Well defined mesa structures patterned by electron beam lithography on the surface of SiC substrates is lastly researched. Transport characterization of GNRs grown on the sidewalls of the patterned terraces shows a mobility in the range of 1000 – 2000 cm²/(Vs), which is homogeneous for various structures throughout the sample, indicating the reproducibility of this fabrication method and its potential for implementation in future technologies based on epitaxially grown GNRs.
Camargo, B. C., Jesus R. F. de, B. V. Semenenko, and C. E. Precker. "Electrical properties of in-plane-implanted graphite nanoribbons." AIP Publishing, 2017. https://ul.qucosa.de/id/qucosa%3A31178.
Full textCarvalho, André Ricardo [Verfasser]. "Edge magnetization in chiral graphene nanoribbons and quantum anomalous Hall effect interfaces in graphene / André Ricardo Carvalho." Munich : GRIN Verlag, 2016. http://d-nb.info/1097573990/34.
Full textJunior, Alberto Torres Riera. "Defeitos em nanofitas de Grafeno zigzag." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-10032009-123202/.
Full textGraphene and graphene nanoribbons have been attracting a lot of interest from the scientific community because of their novel properties. In this work, a systematic research has been done on the stability and energetics of divacancy, vacancy and Stone-Wales defects in graphene and zigzag graphene nanoribbons. With this goal in mind, ab initio density functional calculations within the GGA approximation, using ultrasoft pseudopotentials and a plane wave basis were done. Also, STM images were simulated for some selected defects. Besides, two new defects, not published elsewhere (to the best knowledge of the author), with very low formation energy are reported.
Baldwin, Jack P. C. "Edge-perturbations and strain effects on the magnetic properties of graphene nanoribbons." Thesis, University of York, 2015. http://etheses.whiterose.ac.uk/13549/.
Full textMiao, Dandan, and Dandan Miao. "Bottom-up photochemical synthesis of structurally defined graphene nanoribbons and conjugated Polymers." Doctoral thesis, Université Laval, 2019. http://hdl.handle.net/20.500.11794/37138.
Full textLe graphène peut être considéré comme l'un des matériaux les plus prometteurs pour les composants électroniques pratiques en raison de ses excellentes propriétés de transport de charge, de sa surface spécifique très élevée, de sa conductivité thermique excellente et de sa grande résistance mécanique. Cependant, ce graphène bidimensionnel est un semiconducteur à bande interdite nulle, ce qui limite son application pratique dans les dispositifs électroniques. L'une des méthodes les plus prometteuses pour ouvrir une bande interdite est le confinement structurel du graphène en bandes étroites, définies comme des nanorubans de graphène (GNR). La bande interdite des GNR peut être contrôlée avec précision par la largeur et la configuration des bords, ce qui donne aux GNR des propriétés optiques et électroniques réglables. La synthèse ascendante en solution est l’une des stratégies les plus prometteuses pour préparer des GNR structurellement bien définis avec des propriétés optiques et électroniques ajustables. Contrairement aux méthodes descendantes, la stratégie ascendante permet un contrôle précis de la largeur et de la configuration des bords des GNR. Une stratégie couramment utilisée, la réaction de cyclodéshydrogénation catalysée par l'acide de Lewis, appelée réaction de Scholl, a été largement utilisée pour synthétiser une grande variété de GNR bien définis sur des précurseurs de polyphénylène. Cependant, la réaction de Scholl présente de sérieux inconvénients qui limitent la portée et la polyvalence de cette réaction. Le premier est sa faible régiosélectivité qui entraîne des défauts de structure et affecte les propriétés des GNR. Ensuite, les réarrangements indésirables et l'utilisation d'un catalyseur métallique peuvent conduire à la formation de sous-produits. De plus, l'introduction de groupes fonctionnels sensibles aux oxydants et d'hétérocycles riches en électrons est difficile à réaliser en raison des conditions de réaction difficiles, qui limitent la diversité des propriétés structurelles et électroniques des GNR. Notre groupe a récemment développé une synthèse de nanographènes et de GNR à l'aide de la réaction de cyclodéhydrochloration photochimique (CDHC) sur des précurseurs de polyphénylène polychlorés. La réaction CDHC possède une haute régiosélectivité et se déroule sans réarrangement ni formation de sous-produits. De plus, la réaction CDHC est conduite sans catalyseur métallique ni oxydant dans des conditions très douces, permettant ainsi l’introduction de différents groupes fonctionnels et hétérocycles sur le GNR afin de moduler leurs propriétés optoélectroniques. En comparant avec la réaction de Scholl, la réaction CDHC permet de mieux contrôler les configuration de bord des GNR. Cette thèse présente en détail l'utilisation de la réaction CDHC pour la préparation de GNR et étudie avec soin les propriétés structurelles et optoélectroniques des GNR produits. Tout d'abord, les GNR asymétriques et latéralement symétriques ont été préparés pour démontrer la régiosélectivité, le contrôle des configuration de bord et l'efficacité de la réaction photochimique CDHC. Ensuite, les GNR à bord thiophène ont été synthétisés pour montrer la polyvalence de la réaction CDHC et étudier l'influence de l'introduction de groupes fonctionnels riches en électrons sur les structures et les propriétés optoélectroniques des GNR. Ensuite, les polymères échelle conjugués (CLP) contenant des unités pyrrole riches en électrons ont été synthétisés pour montrer la compatibilité de la réaction du CDHC avec des groupes fonctionnels très riches en électrons et le rendement élevé de la réaction du CDHC. Enfin, divers dérivés d'ullazine fusionnés avec des hétérocycles riches en électrons ou pauvres en électrons ont été préparés et une série de polymères donneurs-accepteurs conjugués (D-A CP) ont été synthétisés et ces polymères ont été utilisés avec succès dans les cellules solaires à polymères et ont présenté des performances très prometteuse, indiquant l’efficacité, la polyvalence et le caractère pratique de la réaction photochimique CDHC
Graphene is considered as one of the most promising materials for practical electronic components because of its outstanding charge transport properties, very high specific surface area, excellent thermal conductivity, and high mechanical strength. However, this two dimensional graphene is a zero band gap semiconductor, which limits its practical application in electronic devices. One of the most promising methods to open a band gap is the structural confinement of graphene into narrow strips, which is defined as graphene nanoribbons (GNRs). The band gap of GNRs can be precisely controlled by the width and edge configuration, providing GNRs with tunable optical and electronic properties. Bottom-up, solution-phase synthesis is one of the most promising strategies to prepare structurally well-defined GNRs with tunable optical and electronic properties. Unlike the top-down methods, the bottom-up strategy allows a precise control over the width and edge configuration of GNRs. One of the most commonly used strategy, the Lewis acid catalyzed cyclodehydrogenation reaction, known as the Scholl reaction, has been widely used to synthesize a large variety of well-defined GNRs on polyphenylene precursors. However, the Scholl reaction possesses some serious drawbacks that limit the scope and versatility of this reaction. First is its poor regioselectivity that results in structural defects to affect the properties of GNRs. Then the undesired rearrangements and the use of a metal catalyst can lead to the formation of by-products. Moreover, the introduction of oxidant-sensitive functional groups and electron-rich heterocycles is difficult to achieve due to the harsh reaction conditions, which limits the diversity of structural and electronic properties of GNRs. Recently, our group reported the synthesis of nanographenes and GNRs using the photochemical cyclodehydrochlorination (CDHC) reaction on polychlorinated polyphenylene precursors. The CDHC reaction possesses high regioselectivity and it proceeds without rearrangements or the formation of side-products. Furthermore, the CDHC reaction is conducted without metal catalyst and oxidant under very mild conditions, thus enabling the introduction of different functional groups and heterocycles onto the GNRS to modulate their optoelectronic properties. And comparing with the Scholl reaction, the CDHC reaction provides better cont rol over the edge configuration of the GNRs. This paper investigates in detail the usefulness of the CDHC reaction for the preparation of GNRs and carefully studies the structur al and optoelectronic properties of the GNRs produced. First the laterally symmetrical and unsymmetrical GNRs were prepared to demonstrate the regioselectivity edge configuration control, and efficiency of the photochemical CDHC reaction. Then the thiophene edged GNRs were synthesized to show the versatility of the CDHC reaction and study the i nfluence of the introduction of electron rich functional groups on the structures and optoelectronic properties of GNRs. Then, the conjugated ladder polymers (CLPs) containing electron rich pyrrole units were synthesized to show the compatibility of the CDHC reaction with very electron rich functional groups and the high efficiency of the CDHC reaction. Finally various extended ullazine derivatives fused with electron rich or electron poor heterocycles were prepared and a series of conjugated donor acceptor polymers (D A CPs) were synthesized and these polymers were successfully employed in the polymer solar cells and exhibited very promising performances, indicating the efficiency, versatility and practicality of the photochemical CDHC reactio n
Graphene is considered as one of the most promising materials for practical electronic components because of its outstanding charge transport properties, very high specific surface area, excellent thermal conductivity, and high mechanical strength. However, this two dimensional graphene is a zero band gap semiconductor, which limits its practical application in electronic devices. One of the most promising methods to open a band gap is the structural confinement of graphene into narrow strips, which is defined as graphene nanoribbons (GNRs). The band gap of GNRs can be precisely controlled by the width and edge configuration, providing GNRs with tunable optical and electronic properties. Bottom-up, solution-phase synthesis is one of the most promising strategies to prepare structurally well-defined GNRs with tunable optical and electronic properties. Unlike the top-down methods, the bottom-up strategy allows a precise control over the width and edge configuration of GNRs. One of the most commonly used strategy, the Lewis acid catalyzed cyclodehydrogenation reaction, known as the Scholl reaction, has been widely used to synthesize a large variety of well-defined GNRs on polyphenylene precursors. However, the Scholl reaction possesses some serious drawbacks that limit the scope and versatility of this reaction. First is its poor regioselectivity that results in structural defects to affect the properties of GNRs. Then the undesired rearrangements and the use of a metal catalyst can lead to the formation of by-products. Moreover, the introduction of oxidant-sensitive functional groups and electron-rich heterocycles is difficult to achieve due to the harsh reaction conditions, which limits the diversity of structural and electronic properties of GNRs. Recently, our group reported the synthesis of nanographenes and GNRs using the photochemical cyclodehydrochlorination (CDHC) reaction on polychlorinated polyphenylene precursors. The CDHC reaction possesses high regioselectivity and it proceeds without rearrangements or the formation of side-products. Furthermore, the CDHC reaction is conducted without metal catalyst and oxidant under very mild conditions, thus enabling the introduction of different functional groups and heterocycles onto the GNRS to modulate their optoelectronic properties. And comparing with the Scholl reaction, the CDHC reaction provides better cont rol over the edge configuration of the GNRs. This paper investigates in detail the usefulness of the CDHC reaction for the preparation of GNRs and carefully studies the structur al and optoelectronic properties of the GNRs produced. First the laterally symmetrical and unsymmetrical GNRs were prepared to demonstrate the regioselectivity edge configuration control, and efficiency of the photochemical CDHC reaction. Then the thiophene edged GNRs were synthesized to show the versatility of the CDHC reaction and study the i nfluence of the introduction of electron rich functional groups on the structures and optoelectronic properties of GNRs. Then, the conjugated ladder polymers (CLPs) containing electron rich pyrrole units were synthesized to show the compatibility of the CDHC reaction with very electron rich functional groups and the high efficiency of the CDHC reaction. Finally various extended ullazine derivatives fused with electron rich or electron poor heterocycles were prepared and a series of conjugated donor acceptor polymers (D A CPs) were synthesized and these polymers were successfully employed in the polymer solar cells and exhibited very promising performances, indicating the efficiency, versatility and practicality of the photochemical CDHC reactio n