Journal articles on the topic 'Graphene NanoRibbon'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Graphene NanoRibbon.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Zhang, Ji, Tarek Ragab, and Cemal Basaran. "Comparison of fracture behavior of defective armchair and zigzag graphene nanoribbons." International Journal of Damage Mechanics 28, no. 3 (March 27, 2018): 325–45. http://dx.doi.org/10.1177/1056789518764282.
Full textBarkov, Pavel V., and Olga E. Glukhova. "Carboxylated Graphene Nanoribbons for Highly-Selective Ammonia Gas Sensors: Ab Initio Study." Chemosensors 9, no. 4 (April 18, 2021): 84. http://dx.doi.org/10.3390/chemosensors9040084.
Full textСавин, А. В., and М. А. Мазо. "Двумерная модель рулонных упаковок молекулярных нанолент." Физика твердого тела 60, no. 4 (2018): 821. http://dx.doi.org/10.21883/ftt.2018.04.45700.318.
Full textKolli, Venkata Sai Pavan Choudary, Vipin Kumar, Shobha Shukla, and Sumit Saxena. "Electronic Transport in Oxidized Zigzag Graphene Nanoribbons." MRS Advances 2, no. 02 (2017): 97–101. http://dx.doi.org/10.1557/adv.2017.55.
Full textGuo, Hong, and Jing Wang. "Effect of Vacancy Defects on the Vibration Frequency of Graphene Nanoribbons." Nanomaterials 12, no. 5 (February 24, 2022): 764. http://dx.doi.org/10.3390/nano12050764.
Full textTian, Wenchao, and Wenhua Li. "Molecular Dynamics Study on Vibrational Properties of Graphene Nanoribbon Resonator." Journal of Computational and Theoretical Nanoscience 13, no. 10 (October 1, 2016): 7460–66. http://dx.doi.org/10.1166/jctn.2016.5740.
Full textСавин, А. В. "Краевые колебания нанолент графана." Физика твердого тела 60, no. 5 (2018): 1029. http://dx.doi.org/10.21883/ftt.2018.05.45808.328.
Full textKalosakas, George, Nektarios N. Lathiotakis, and Konstantinos Papagelis. "Width Dependent Elastic Properties of Graphene Nanoribbons." Materials 14, no. 17 (September 3, 2021): 5042. http://dx.doi.org/10.3390/ma14175042.
Full textPaudel, Raj Kumar, Chung-Yuan Ren, and Yia-Chung Chang. "Semi-Empirical Pseudopotential Method for Graphene and Graphene Nanoribbons." Nanomaterials 13, no. 14 (July 13, 2023): 2066. http://dx.doi.org/10.3390/nano13142066.
Full textSavin A. V. and Klinov A. P. "Delamination of multilayer graphene nanoribbons on flat substrates." Physics of the Solid State 64, no. 10 (2022): 1573. http://dx.doi.org/10.21883/pss.2022.10.54252.390.
Full textZhang, Jian, Liu Qian, Gabriela Borin Barin, Abdalghani H. S. Daaoub, Peipei Chen, Klaus Müllen, Sara Sangtarash, et al. "Contacting individual graphene nanoribbons using carbon nanotube electrodes." Nature Electronics 6, no. 8 (August 14, 2023): 572–81. http://dx.doi.org/10.1038/s41928-023-00991-3.
Full textLiu, Yang, Xuzhen Wang, Wubo Wan, Lingli Li, Yanfeng Dong, Zongbin Zhao, and Jieshan Qiu. "Multifunctional nitrogen-doped graphene nanoribbon aerogels for superior lithium storage and cell culture." Nanoscale 8, no. 4 (2016): 2159–67. http://dx.doi.org/10.1039/c5nr05909g.
Full textСавин, А. В., and О. И. Савина. "Влияние взаимодействия слоев на жесткость изгибных деформаций многослойных углеродных нанолент." Физика твердого тела 61, no. 4 (2019): 799. http://dx.doi.org/10.21883/ftt.2019.04.47433.329.
Full textZiliang, Guo. "A Study on Different Bandwidths and Rim Decorations’ Influence on the Mechanical Properties of Graphene Nanoribbon." Journal of Physics: Conference Series 2083, no. 2 (November 1, 2021): 022108. http://dx.doi.org/10.1088/1742-6596/2083/2/022108.
Full textElias, Watheq, M. Elliott, and C. C. Matthai. "Electrical transport of zig-zag and folded graphene nanoribbons." MRS Proceedings 1549 (2013): 41–46. http://dx.doi.org/10.1557/opl.2013.950.
Full textBashirpour, Mohammad, Ali Kefayati, Mohammadreza Kolahdouz, and Hossein Aghababa. "Tuning the Electronic Properties of Symetrical and Asymetrical Boron Nitride Passivated Graphene Nanoribbons: Density Function Theory." Journal of Nano Research 54 (August 2018): 35–41. http://dx.doi.org/10.4028/www.scientific.net/jnanor.54.35.
Full textXue, Yuhua, Janice M. Baek, Hao Chen, Jia Qu, and Liming Dai. "N-doped graphene nanoribbons as efficient metal-free counter electrodes for disulfide/thiolate redox mediated DSSCs." Nanoscale 7, no. 16 (2015): 7078–83. http://dx.doi.org/10.1039/c4nr06969b.
Full textFülep, Dávid, Ibolya Zsoldos, and István László. "Position Sensitivity Study in Molecular Dynamics Simulations of Self-Organized Development of 3D Nanostructures." Materials Science Forum 885 (February 2017): 216–21. http://dx.doi.org/10.4028/www.scientific.net/msf.885.216.
Full textYang, S. R. Eric. "Soliton Fractional Charges in Graphene Nanoribbon and Polyacetylene: Similarities and Differences." Nanomaterials 9, no. 6 (June 14, 2019): 885. http://dx.doi.org/10.3390/nano9060885.
Full textWang, Hanxi, Yuanzhi Ding, Guojun Li, and Yuxuan Song. "Construction and properties analysis of Z-A-Z graphene nanoribbons transistors." Journal of Physics: Conference Series 2313, no. 1 (July 1, 2022): 012015. http://dx.doi.org/10.1088/1742-6596/2313/1/012015.
Full textMathew, Sobin, Saadman Abedin, Vladislav Kurtash, Sergei P. Lebedev, Alexander A. Lebedev, Bernd Hähnlein, Jaqueline Stauffenberg, Heiko O. Jacobs, and Jörg Pezoldt. "Evaluation of Hysteresis Response in Achiral Edges of Graphene Nanoribbons on Semi-Insulating SiC." Materials Science Forum 1089 (May 26, 2023): 15–22. http://dx.doi.org/10.4028/p-i2s1cm.
Full textTosic, Dragana, Zoran Markovic, Svetlana Jovanovic, Momir Milosavljevic, and Biljana Todorovic-Markovic. "Comparative analysis of different methods for graphene nanoribbon synthesis." Chemical Industry 67, no. 1 (2013): 147–56. http://dx.doi.org/10.2298/hemind120403056t.
Full textLi, Wenhua, and Wenchao Tian. "Molecular Dynamics Analysis of Graphene Nanoelectromechanical Resonators Based on Vacancy Defects." Nanomaterials 12, no. 10 (May 18, 2022): 1722. http://dx.doi.org/10.3390/nano12101722.
Full textSaraswat, Vivek, Austin Way, Robert Jacobberger, and Michael Arnold. "CVD Synthesis of Graphene Nanomesh on Ge(001)." ECS Meeting Abstracts MA2022-01, no. 12 (July 7, 2022): 876. http://dx.doi.org/10.1149/ma2022-0112876mtgabs.
Full textArmaghani, Sahar, Ali Rostami, and Peyman Mirtaheri. "Graphene Nanoribbon Bending (Nanotubes): Interaction Force between QDs and Graphene." Coatings 12, no. 9 (September 15, 2022): 1341. http://dx.doi.org/10.3390/coatings12091341.
Full textDOBRINSKY, A., A. SADRZADEH, B. I. YAKOBSON, and J. XU. "ELECTRONIC STRUCTURE OF GRAPHENE NANORIBBONS SUBJECTED TO TWIST AND NONUNIFORM STRAIN." International Journal of High Speed Electronics and Systems 20, no. 01 (March 2011): 153–60. http://dx.doi.org/10.1142/s0129156411006489.
Full textKAN, ERJUN, ZHENYU LI, and JINLONG YANG. "MAGNETISM IN GRAPHENE SYSTEMS." Nano 03, no. 06 (December 2008): 433–42. http://dx.doi.org/10.1142/s1793292008001350.
Full textZhang, Ji, Tarek Ragab, and Cemal Basaran. "Influence of vacancy defects on the damage mechanics of graphene nanoribbons." International Journal of Damage Mechanics 26, no. 1 (July 28, 2016): 29–49. http://dx.doi.org/10.1177/1056789516645645.
Full textRashidian, Zeinab, Parvin Bayati, and Zeinab Lorestaniwiess. "Effects of Rashba spin–orbit coupling on the conductance of graphene-based nanoribbons." International Journal of Modern Physics B 31, no. 06 (March 5, 2017): 1750043. http://dx.doi.org/10.1142/s0217979217500436.
Full textДавыдов, С. Ю. "О магнитных состояниях зигзагообразной кромки графеновой наноленты." Физика твердого тела 62, no. 1 (2020): 180. http://dx.doi.org/10.21883/ftt.2020.01.48757.502.
Full textFarrokhi, Maryam, Rahim Faez, Saeed Haji Nasiri, and Bita Davoodi. "Effect of Varying Dielectric Constant on Relative Stability for Graphene Nanoribbon Interconnects." Applied Mechanics and Materials 229-231 (November 2012): 201–4. http://dx.doi.org/10.4028/www.scientific.net/amm.229-231.201.
Full textSlepchenkov, Michael M., Pavel V. Barkov, and Olga E. Glukhova. "Hybrid Films Based on Bilayer Graphene and Single-Walled Carbon Nanotubes: Simulation of Atomic Structure and Study of Electrically Conductive Properties." Nanomaterials 11, no. 8 (July 27, 2021): 1934. http://dx.doi.org/10.3390/nano11081934.
Full textRahmani, Meisam, Razali Ismail, Mohammad Taghi Ahmadi, Mohammad Javad Kiani, Mehdi Saeidmanesh, F. A. Hediyeh Karimi, Elnaz Akbari, and Komeil Rahmani. "The Effect of Bilayer Graphene Nanoribbon Geometry on Schottky-Barrier Diode Performance." Journal of Nanomaterials 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/636239.
Full textArmaghani, Sahar, Ali Rostami, and Peyman Mirtaheri. "Analysis and Simulation of the Optical Properties of a Quantum Dot on a Graphene Nanoribbon System." Photonics 9, no. 4 (March 27, 2022): 220. http://dx.doi.org/10.3390/photonics9040220.
Full textTene, Talia, Marco Guevara, Jiří Svozilík, Diana Coello-Fiallos, Jorge Briceño, and Cristian Vacacela Gomez. "Proving Surface Plasmons in Graphene Nanoribbons Organized as 2D Periodic Arrays and Potential Applications in Biosensors." Chemosensors 10, no. 12 (December 3, 2022): 514. http://dx.doi.org/10.3390/chemosensors10120514.
Full textCai, Jinming, Carlo A. Pignedoli, Leopold Talirz, Pascal Ruffieux, Hajo Söde, Liangbo Liang, Vincent Meunier, et al. "Graphene nanoribbon heterojunctions." Nature Nanotechnology 9, no. 11 (September 7, 2014): 896–900. http://dx.doi.org/10.1038/nnano.2014.184.
Full textRafiee, Mohammad A., Wei Lu, Abhay V. Thomas, Ardavan Zandiatashbar, Javad Rafiee, James M. Tour, and Nikhil A. Koratkar. "Graphene Nanoribbon Composites." ACS Nano 4, no. 12 (November 16, 2010): 7415–20. http://dx.doi.org/10.1021/nn102529n.
Full textMousavi, Hamze, and Marek Grabowski. "Graphene Nanoribbon Superconductor." Journal of Low Temperature Physics 193, no. 1-2 (June 26, 2018): 12–20. http://dx.doi.org/10.1007/s10909-018-2011-3.
Full textEzawa, Motohiko. "Graphene Nanoribbon and Graphene Nanodisk." Physica E: Low-dimensional Systems and Nanostructures 40, no. 5 (March 2008): 1421–23. http://dx.doi.org/10.1016/j.physe.2007.09.031.
Full textMajid, M. J., and M. H. Alaa. "Trembling motion of the wave packet in armchair graphene nanoribbons (AGNRs)." International Journal of Modern Physics B 32, no. 32 (December 30, 2018): 1850364. http://dx.doi.org/10.1142/s0217979218503642.
Full textCui, Xing-Qian, Qian Liu, Zhi-Qiang Fan, and Zhen-Hua Zhang. "Effects of oxygen adsorption on spin transport properties of single anthracene molecular devices." Acta Physica Sinica 69, no. 24 (2020): 248501. http://dx.doi.org/10.7498/aps.69.20201028.
Full textCammarata, Simone, Andrea Fontana, Ali Emre Kaplan, Samuele Cornia, Thu Ha Dao, Cosimo Lacava, Valeria Demontis, et al. "Polarization Control in Integrated Graphene-Silicon Quantum Photonics Waveguides." Materials 15, no. 24 (December 7, 2022): 8739. http://dx.doi.org/10.3390/ma15248739.
Full textAydin, Alhun, Altug Sisman, Jonas Fransson, Annica M. Black-Schaffer, and Paramita Dutta. "Thermodefect voltage in graphene nanoribbon junctions." Journal of Physics: Condensed Matter 34, no. 19 (March 14, 2022): 195304. http://dx.doi.org/10.1088/1361-648x/ac553b.
Full textLiu, Hongda, Jiongjiang Liu, Qi Liu, Yinghui Li, Guo Zhang, and Chunying He. "Conductometric Gas Sensor Based on MoO3 Nanoribbon Modified with rGO Nanosheets for Ethylenediamine Detection at Room Temperature." Nanomaterials 13, no. 15 (July 31, 2023): 2220. http://dx.doi.org/10.3390/nano13152220.
Full textYan, Zhendong, Qi Zhu, Xue Lu, Wei Du, Xingting Pu, Taoping Hu, Lili Yu, Zhong Huang, Pinggen Cai, and Chaojun Tang. "Multipolar Plasmonic Resonances of Aluminum Nanoantenna Tuned by Graphene." Nanomaterials 11, no. 1 (January 13, 2021): 185. http://dx.doi.org/10.3390/nano11010185.
Full textTamersit, Khalil, Jaya Madan, Abdellah Kouzou, Rahul Pandey, Ralph Kennel, and Mohamed Abdelrahem. "Role of Junctionless Mode in Improving the Photosensitivity of Sub-10 nm Carbon Nanotube/Nanoribbon Field-Effect Phototransistors: Quantum Simulation, Performance Assessment, and Comparison." Nanomaterials 12, no. 10 (May 11, 2022): 1639. http://dx.doi.org/10.3390/nano12101639.
Full textVacacela Gomez, Cristian, Michele Pisarra, Mario Gravina, and Antonello Sindona. "Tunable plasmons in regular planar arrays of graphene nanoribbons with armchair and zigzag-shaped edges." Beilstein Journal of Nanotechnology 8 (January 17, 2017): 172–82. http://dx.doi.org/10.3762/bjnano.8.18.
Full textBian, Baoan, Jingjuan Yang, Xiaoxiao Han, Peipei Yuan, and Yuqiang Ding. "Rectification in zigzag graphene/BN nanoribbon heterojunction." Modern Physics Letters B 32, no. 32 (November 20, 2018): 1850395. http://dx.doi.org/10.1142/s0217984918503955.
Full textUjjain, Sanjeev K., Preety Ahuja, and Raj Kishore Sharma. "Facile preparation of graphene nanoribbon/cobalt coordination polymer nanohybrid for non-enzymatic H2O2 sensing by dual transduction: electrochemical and fluorescence." Journal of Materials Chemistry B 3, no. 38 (2015): 7614–22. http://dx.doi.org/10.1039/c5tb00857c.
Full textKonobeeva, Natalia, and Mikhail Belonenko. "Conductivity of impurity graphene nanoribbons and gate electric field." Modern Physics Letters B 31, no. 36 (December 13, 2017): 1750340. http://dx.doi.org/10.1142/s0217984917503407.
Full text