Journal articles on the topic 'Graphene Nanoribbons'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Graphene Nanoribbons.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Barkov, Pavel V., and Olga E. Glukhova. "Carboxylated Graphene Nanoribbons for Highly-Selective Ammonia Gas Sensors: Ab Initio Study." Chemosensors 9, no. 4 (April 18, 2021): 84. http://dx.doi.org/10.3390/chemosensors9040084.
Full textСавин, А. В., and М. А. Мазо. "Двумерная модель рулонных упаковок молекулярных нанолент." Физика твердого тела 60, no. 4 (2018): 821. http://dx.doi.org/10.21883/ftt.2018.04.45700.318.
Full textGuo, Hong, and Jing Wang. "Effect of Vacancy Defects on the Vibration Frequency of Graphene Nanoribbons." Nanomaterials 12, no. 5 (February 24, 2022): 764. http://dx.doi.org/10.3390/nano12050764.
Full textZhang, Ji, Tarek Ragab, and Cemal Basaran. "Comparison of fracture behavior of defective armchair and zigzag graphene nanoribbons." International Journal of Damage Mechanics 28, no. 3 (March 27, 2018): 325–45. http://dx.doi.org/10.1177/1056789518764282.
Full textTian, Wenchao, and Wenhua Li. "Molecular Dynamics Study on Vibrational Properties of Graphene Nanoribbon Resonator." Journal of Computational and Theoretical Nanoscience 13, no. 10 (October 1, 2016): 7460–66. http://dx.doi.org/10.1166/jctn.2016.5740.
Full textSavin A. V. and Klinov A. P. "Delamination of multilayer graphene nanoribbons on flat substrates." Physics of the Solid State 64, no. 10 (2022): 1573. http://dx.doi.org/10.21883/pss.2022.10.54252.390.
Full textKolli, Venkata Sai Pavan Choudary, Vipin Kumar, Shobha Shukla, and Sumit Saxena. "Electronic Transport in Oxidized Zigzag Graphene Nanoribbons." MRS Advances 2, no. 02 (2017): 97–101. http://dx.doi.org/10.1557/adv.2017.55.
Full textZhang, Jian, Liu Qian, Gabriela Borin Barin, Abdalghani H. S. Daaoub, Peipei Chen, Klaus Müllen, Sara Sangtarash, et al. "Contacting individual graphene nanoribbons using carbon nanotube electrodes." Nature Electronics 6, no. 8 (August 14, 2023): 572–81. http://dx.doi.org/10.1038/s41928-023-00991-3.
Full textСавин, А. В. "Краевые колебания нанолент графана." Физика твердого тела 60, no. 5 (2018): 1029. http://dx.doi.org/10.21883/ftt.2018.05.45808.328.
Full textFülep, Dávid, Ibolya Zsoldos, and István László. "Position Sensitivity Study in Molecular Dynamics Simulations of Self-Organized Development of 3D Nanostructures." Materials Science Forum 885 (February 2017): 216–21. http://dx.doi.org/10.4028/www.scientific.net/msf.885.216.
Full textDOBRINSKY, A., A. SADRZADEH, B. I. YAKOBSON, and J. XU. "ELECTRONIC STRUCTURE OF GRAPHENE NANORIBBONS SUBJECTED TO TWIST AND NONUNIFORM STRAIN." International Journal of High Speed Electronics and Systems 20, no. 01 (March 2011): 153–60. http://dx.doi.org/10.1142/s0129156411006489.
Full textPaudel, Raj Kumar, Chung-Yuan Ren, and Yia-Chung Chang. "Semi-Empirical Pseudopotential Method for Graphene and Graphene Nanoribbons." Nanomaterials 13, no. 14 (July 13, 2023): 2066. http://dx.doi.org/10.3390/nano13142066.
Full textWang, Hanxi, Yuanzhi Ding, Guojun Li, and Yuxuan Song. "Construction and properties analysis of Z-A-Z graphene nanoribbons transistors." Journal of Physics: Conference Series 2313, no. 1 (July 1, 2022): 012015. http://dx.doi.org/10.1088/1742-6596/2313/1/012015.
Full textMathew, Sobin, Saadman Abedin, Vladislav Kurtash, Sergei P. Lebedev, Alexander A. Lebedev, Bernd Hähnlein, Jaqueline Stauffenberg, Heiko O. Jacobs, and Jörg Pezoldt. "Evaluation of Hysteresis Response in Achiral Edges of Graphene Nanoribbons on Semi-Insulating SiC." Materials Science Forum 1089 (May 26, 2023): 15–22. http://dx.doi.org/10.4028/p-i2s1cm.
Full textKalosakas, George, Nektarios N. Lathiotakis, and Konstantinos Papagelis. "Width Dependent Elastic Properties of Graphene Nanoribbons." Materials 14, no. 17 (September 3, 2021): 5042. http://dx.doi.org/10.3390/ma14175042.
Full textYang, S. R. Eric. "Soliton Fractional Charges in Graphene Nanoribbon and Polyacetylene: Similarities and Differences." Nanomaterials 9, no. 6 (June 14, 2019): 885. http://dx.doi.org/10.3390/nano9060885.
Full textElias, Watheq, M. Elliott, and C. C. Matthai. "Electrical transport of zig-zag and folded graphene nanoribbons." MRS Proceedings 1549 (2013): 41–46. http://dx.doi.org/10.1557/opl.2013.950.
Full textLiu, Yang, Xuzhen Wang, Wubo Wan, Lingli Li, Yanfeng Dong, Zongbin Zhao, and Jieshan Qiu. "Multifunctional nitrogen-doped graphene nanoribbon aerogels for superior lithium storage and cell culture." Nanoscale 8, no. 4 (2016): 2159–67. http://dx.doi.org/10.1039/c5nr05909g.
Full textZhang, Ji, Tarek Ragab, and Cemal Basaran. "Influence of vacancy defects on the damage mechanics of graphene nanoribbons." International Journal of Damage Mechanics 26, no. 1 (July 28, 2016): 29–49. http://dx.doi.org/10.1177/1056789516645645.
Full textXue, Yuhua, Janice M. Baek, Hao Chen, Jia Qu, and Liming Dai. "N-doped graphene nanoribbons as efficient metal-free counter electrodes for disulfide/thiolate redox mediated DSSCs." Nanoscale 7, no. 16 (2015): 7078–83. http://dx.doi.org/10.1039/c4nr06969b.
Full textСавин, А. В., and О. И. Савина. "Влияние взаимодействия слоев на жесткость изгибных деформаций многослойных углеродных нанолент." Физика твердого тела 61, no. 4 (2019): 799. http://dx.doi.org/10.21883/ftt.2019.04.47433.329.
Full textWang, Hong Xia, Cheng Lai Yang, You Zhang Zhu, and Ni Chen Yang. "Tight-Binding Approximation Calculation on the Electronic Structure of Graphene and Graphene Nanoribbons." Applied Mechanics and Materials 341-342 (July 2013): 199–203. http://dx.doi.org/10.4028/www.scientific.net/amm.341-342.199.
Full textWu, Cheng-Wei, Xue Ren, Wu-Xing Zhou, and Guo-Feng Xie. "Theoretical study of anisotropy and ultra-low thermal conductance of porous graphene nanoribbons." Acta Physica Sinica 71, no. 2 (2022): 027803. http://dx.doi.org/10.7498/aps.71.20211477.
Full textNosrati, Hassan, Rasoul Sarraf-Mamoory, Amir Hossein Ahmadi, and Maria Canillas Perez. "Synthesis of Graphene Nanoribbons–Hydroxyapatite Nanocomposite Applicable in Biomedicine and Theranostics." Journal of Nanotheranostics 1, no. 1 (April 22, 2020): 6–18. http://dx.doi.org/10.3390/jnt1010002.
Full textZiliang, Guo. "A Study on Different Bandwidths and Rim Decorations’ Influence on the Mechanical Properties of Graphene Nanoribbon." Journal of Physics: Conference Series 2083, no. 2 (November 1, 2021): 022108. http://dx.doi.org/10.1088/1742-6596/2083/2/022108.
Full textTosic, Dragana, Zoran Markovic, Svetlana Jovanovic, Momir Milosavljevic, and Biljana Todorovic-Markovic. "Comparative analysis of different methods for graphene nanoribbon synthesis." Chemical Industry 67, no. 1 (2013): 147–56. http://dx.doi.org/10.2298/hemind120403056t.
Full textFarrokhi, Maryam, Rahim Faez, Saeed Haji Nasiri, and Bita Davoodi. "Effect of Varying Dielectric Constant on Relative Stability for Graphene Nanoribbon Interconnects." Applied Mechanics and Materials 229-231 (November 2012): 201–4. http://dx.doi.org/10.4028/www.scientific.net/amm.229-231.201.
Full textCorso, Martina, Rodrigo E. Menchón, Ignacio Piquero-Zulaica, Manuel Vilas-Varela, J. Enrique Ortega, Diego Peña, Aran Garcia-Lekue, and Dimas G. de Oteyza. "Band Structure and Energy Level Alignment of Chiral Graphene Nanoribbons on Silver Surfaces." Nanomaterials 11, no. 12 (December 6, 2021): 3303. http://dx.doi.org/10.3390/nano11123303.
Full textArmaghani, Sahar, Ali Rostami, and Peyman Mirtaheri. "Graphene Nanoribbon Bending (Nanotubes): Interaction Force between QDs and Graphene." Coatings 12, no. 9 (September 15, 2022): 1341. http://dx.doi.org/10.3390/coatings12091341.
Full textKAN, ERJUN, ZHENYU LI, and JINLONG YANG. "MAGNETISM IN GRAPHENE SYSTEMS." Nano 03, no. 06 (December 2008): 433–42. http://dx.doi.org/10.1142/s1793292008001350.
Full textArnold, Michael S. "Growth and Properties of Graphene and Graphene Nanoribbons on Ge." ECS Meeting Abstracts MA2022-02, no. 32 (October 9, 2022): 1179. http://dx.doi.org/10.1149/ma2022-02321179mtgabs.
Full textGorjizadeh, Narjes, and Yoshiyuki Kawazoe. "Chemical Functionalization of Graphene Nanoribbons." Journal of Nanomaterials 2010 (2010): 1–7. http://dx.doi.org/10.1155/2010/513501.
Full textChen, A. Qing. "Electronic Structure and Optical Property of Phosphorus Doped Semiconducting Graphene Nanoribbons." Applied Mechanics and Materials 328 (June 2013): 813–16. http://dx.doi.org/10.4028/www.scientific.net/amm.328.813.
Full textJeon, Sangheon, Pyunghwa Han, Jeonghwa Jeong, Wan Sik Hwang, and Suck Won Hong. "Highly Aligned Polymeric Nanowire Etch-Mask Lithography Enabling the Integration of Graphene Nanoribbon Transistors." Nanomaterials 11, no. 1 (December 25, 2020): 33. http://dx.doi.org/10.3390/nano11010033.
Full textBashirpour, Mohammad, Ali Kefayati, Mohammadreza Kolahdouz, and Hossein Aghababa. "Tuning the Electronic Properties of Symetrical and Asymetrical Boron Nitride Passivated Graphene Nanoribbons: Density Function Theory." Journal of Nano Research 54 (August 2018): 35–41. http://dx.doi.org/10.4028/www.scientific.net/jnanor.54.35.
Full textVacacela Gomez, Cristian, Michele Pisarra, Mario Gravina, and Antonello Sindona. "Tunable plasmons in regular planar arrays of graphene nanoribbons with armchair and zigzag-shaped edges." Beilstein Journal of Nanotechnology 8 (January 17, 2017): 172–82. http://dx.doi.org/10.3762/bjnano.8.18.
Full textWu, Jiaqi, Yinghui Zheng, Zhinan Zeng, and Ruxin Li. "High-order harmonic generation from zigzag graphene nanoribbons." Chinese Optics Letters 18, no. 10 (2020): 103201. http://dx.doi.org/10.3788/col202018.103201.
Full textShunaev, V. V., A. Yu Gerasimenko, and O. E. Glukhova. "Electronic Properties of Graphene Nanoribbons Doped with Pyrrole-Like Nitrogen." Proceedings of Universities. Electronics 26, no. 6 (December 2021): 447–58. http://dx.doi.org/10.24151/1561-5405-2021-26-6-447-458.
Full textZakharova, Olga V., Elena E. Mastalygina, Kirill S. Golokhvast, and Alexander A. Gusev. "Graphene Nanoribbons: Prospects of Application in Biomedicine and Toxicity." Nanomaterials 11, no. 9 (September 17, 2021): 2425. http://dx.doi.org/10.3390/nano11092425.
Full textLiu, Wen, Fan-Hua Meng, Jian-Hua Zhao, and Xiao-Hui Jiang. "A first-principles study on the electronic transport properties of zigzag graphane/graphene nanoribbons." Journal of Theoretical and Computational Chemistry 16, no. 04 (April 25, 2017): 1750032. http://dx.doi.org/10.1142/s0219633617500328.
Full textWu, Xiang-Feng, Yang Sun, Jie Zhang, Jing Li, Yong-Ke Zhao, Ze-Hua Zhao, Shi-Da Fu, Xiao-Ying Yu, and Sen-Sen Zheng. "Preparation of Reduced-Graphene Nanoribbons via One-Step Solvothermal Process." Journal of Nanoscience and Nanotechnology 16, no. 4 (April 1, 2016): 4191–94. http://dx.doi.org/10.1166/jnn.2016.11715.
Full textGlukhova, O. E., I. N. Saliy, R. Y. Zhnichkov, I. A. Khvatov, A. S. Kolesnikova, and M. M. Slepchenkov. "Elastic properties of graphene-graphane nanoribbons." Journal of Physics: Conference Series 248 (November 1, 2010): 012004. http://dx.doi.org/10.1088/1742-6596/248/1/012004.
Full textLi, Hai Dong, and Jin Zhong Niu. "Electron Transport of Right-Angle Graphene Nanoribbons." Advanced Materials Research 295-297 (July 2011): 1451–55. http://dx.doi.org/10.4028/www.scientific.net/amr.295-297.1451.
Full textRashidian, Zeinab, Parvin Bayati, and Zeinab Lorestaniwiess. "Effects of Rashba spin–orbit coupling on the conductance of graphene-based nanoribbons." International Journal of Modern Physics B 31, no. 06 (March 5, 2017): 1750043. http://dx.doi.org/10.1142/s0217979217500436.
Full textZhang, Xian Bin, Ning Kang Deng, Wen Jie Wu, Xu Yan Wei, and Guan Qi Wang. "The Investigations of Electronic Structure in Armchair Graphene Nanoribbons Doped B at the Edge." Key Engineering Materials 787 (November 2018): 99–103. http://dx.doi.org/10.4028/www.scientific.net/kem.787.99.
Full textBradley, David. "Tuned graphene nanoribbons." Materials Today 20, no. 6 (July 2017): 289. http://dx.doi.org/10.1016/j.mattod.2017.05.014.
Full textSanaeepur, Majid. "Effect of substitutional defects on resonant tunneling diodes based on armchair graphene and boron nitride nanoribbons lateral heterojunctions." Beilstein Journal of Nanotechnology 11 (April 24, 2020): 688–94. http://dx.doi.org/10.3762/bjnano.11.56.
Full textZhang, Bo, Xiao Chun He, Ming Jun Gao, Xing Fa Ma, and Guang Li. "Entanglement of CeO2 Nanorods and Graphene Nanoribbons and their Properties Studies of Nanocomposites." Materials Science Forum 814 (March 2015): 153–60. http://dx.doi.org/10.4028/www.scientific.net/msf.814.153.
Full textSaraswat, Vivek, Austin J. Way, Xiaoqi Zheng, Robert M. Jacobberger, Sebastian Manzo, Nikhil Tiwale, Jonathan H. Dwyer, et al. "Bottom-up synthesis of mesoscale nanomeshes of graphene nanoribbons on germanium." APL Materials 11, no. 4 (April 1, 2023): 041123. http://dx.doi.org/10.1063/5.0134756.
Full textLi, Yinfeng, Simanta Lahkar, Qingyuan Wei, Pizhong Qiao, and Han Ye. "Strength nature of two-dimensional woven nanofabrics under biaxial tension." International Journal of Damage Mechanics 28, no. 3 (April 13, 2018): 367–79. http://dx.doi.org/10.1177/1056789518769343.
Full text