Academic literature on the topic 'Graphical Method'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Graphical Method.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Graphical Method"
Li, Ying, and Ye Tang. "Design on Intelligent Feature Graphics Based on Convolution Operation." Mathematics 10, no. 3 (January 26, 2022): 384. http://dx.doi.org/10.3390/math10030384.
Full textZhang, Hong, Gui Ying Zhu, and Peng Zhang. "Dispatching Automation System Graphics File Checksum Methods." Applied Mechanics and Materials 543-547 (March 2014): 1270–73. http://dx.doi.org/10.4028/www.scientific.net/amm.543-547.1270.
Full textMillar, Cameron, Allan McRobie, and William Baker. "A Graphical Method for Determining Truss Stability." Journal of the International Association for Shell and Spatial Structures 61, no. 4 (December 1, 2020): 285–95. http://dx.doi.org/10.20898/j.iass.2020.011.
Full textСтульнікова, Ю. О. "УНІВЕРСАЛЬНІСТЬ ОРНАМЕНТАЛЬНО-ГРАФІЧНОЇ МОВИ СУЧАСНОЇ ВИТИНАНКИ." Art and Design, no. 3 (November 13, 2020): 98–110. http://dx.doi.org/10.30857/2617-0272.2020.3.8.
Full textZhang, Zhi Fang, Krishna Shankar, Murat Tahtali, and Evgeny V. Morozov. "Graphical Detection Method for Delaminations." Applied Mechanics and Materials 66-68 (July 2011): 1410–15. http://dx.doi.org/10.4028/www.scientific.net/amm.66-68.1410.
Full textLiao, Lin Zhi, Qi Chen, Ni Yan Wu, and Hong Rong Chen. "Sheet Metal Deployment Diagram Application of Oblique Elliptic Cylinder Based on Mastercam and CAGD Graphical Method." Applied Mechanics and Materials 336-338 (July 2013): 1336–39. http://dx.doi.org/10.4028/www.scientific.net/amm.336-338.1336.
Full textЖилкина and Anna ZHilkina. "Graphical Method of Financial Analysis As Effective Instrument for Real Economy’s Financial Management." Administration 3, no. 4 (December 10, 2015): 10–17. http://dx.doi.org/10.12737/16692.
Full textBoiroju, Naveen Kumar. "A Graphical Method for Model Selection." Pakistan Journal of Statistics and Operation Research 8, no. 4 (November 8, 2012): 767. http://dx.doi.org/10.18187/pjsor.v8i4.427.
Full textKhalid A. Zakaria, Dr, and Mohammad Hatem Mohammad. "Graphical Method of Concrete Mix Design." AL-Rafdain Engineering Journal (AREJ) 19, no. 3 (June 28, 2011): 1–12. http://dx.doi.org/10.33899/rengj.2011.26991.
Full textSkorupski, Andrzej. "Graphical Method of Reversible Circuits Synthesis." International Journal of Electronics and Telecommunications 63, no. 3 (August 28, 2017): 235–40. http://dx.doi.org/10.1515/eletel-2017-0031.
Full textDissertations / Theses on the topic "Graphical Method"
Ravi, Sudharshan, and Quang Vu. "Graphical Editor for Diagnostic Method Development." Thesis, Linköpings universitet, Interaktiva och kognitiva system, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-107514.
Full textBerry, Maresi (Maresi Ann) 1969. "Graphical method for airport noise impact analysis." Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/50429.
Full textIncludes bibliographical references (p. 99-102).
by Maresi Berry.
S.M.
Kim, Bo Hung. "A graphical preprocessing interface for non-conforming spectral element solvers." [College Station, Tex. : Texas A&M University, 2006. http://hdl.handle.net/1969.1/ETD-TAMU-1819.
Full textJakuben, Benedict J. "Improving Graphical User Interface (GUI) Design Using the Complete Interaction Sequence (CIS) Testing Method." Case Western Reserve University School of Graduate Studies / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=case1291093142.
Full textVuchi, Aditya. "Graphical user interface for three-dimensional FE modeling of composite steel bridges." Morgantown, W. Va. : [West Virginia University Libraries], 2005. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=4389.
Full textTitle from document title page. Document formatted into pages; contains xi, 188 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 111-115).
Guven, Deniz. "Development Of A Graphical User Interface For Composite Bridge Finite Element Analysis." Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/12608094/index.pdf.
Full textMirsad, Ćosović. "Distributed State Estimation in Power Systems using Probabilistic Graphical Models." Phd thesis, Univerzitet u Novom Sadu, Fakultet tehničkih nauka u Novom Sadu, 2019. https://www.cris.uns.ac.rs/record.jsf?recordId=108459&source=NDLTD&language=en.
Full textGlavni rezultati ove teze su dizajn i analiza novihalgoritama za rešavanje problema estimacije stanjabaziranih na faktor grafovima i „Belief Propagation“ (BP)algoritmu koji se mogu primeniti kao centralizovani ilidistribuirani estimatori stanja u elektroenergetskimsistemima. Na samom početku, definisan je postupak zarešavanje linearnog (DC) problema korišćenjem BPalgoritma. Pored samog algoritma data je analizakonvergencije i predloženo je rešenje za unapređenjekonvergencije. Algoritam se može jednostavnodistribuirati i paralelizovati, te je pogodan za estimacijustanja u realnom vremenu, pri čemu se informacije moguprikupljati na asinhroni način, zaobilazeći neke odpostojećih rutina, kao npr. provera observabilnostisistema. Proširenje algoritma za nelinearnu estimacijustanja je moguće unutar datog modela.Dalje se predlaže algoritam baziran na probabilističkimgrafičkim modelima koji je direktno primenjen nanelinearni problem estimacije stanja, što predstavljalogičan korak u tranziciji od linearnog ka nelinearnommodelu. Zbog nelinearnosti funkcija, izrazi za određenuklasu poruka ne mogu se dobiti u zatvorenoj formi, zbogčega rezultujući algoritam predstavlja aproksimativnorešenje. Nakon toga se predlaže distribuirani Gaus-Njutnov metod baziran na probabilističkim grafičkimmodelima i BP algoritmu koji postiže istu tačnost kao icentralizovana verzija Gaus-Njutnovog metoda zaestimaciju stanja, te je dat i novi algoritam za otkrivanjenepouzdanih merenja (outliers) prilikom merenjaelektričnih veličina. Predstavljeni algoritam uspostavljalokalni kriterijum za otkrivanje i identifikacijunepouzdanih merenja, a numerički je pokazano daalgoritam značajno poboljšava detekciju u odnosu nastandardne metode.
Hussin, Mahmud M. "Some studies of a graphical method in statistical data analysis : subjective judgments in the interpretation of boxplots." Thesis, Keele University, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.290317.
Full textBoussaid, Haithem. "Efficient inference and learning in graphical models for multi-organ shape segmentation." Thesis, Châtenay-Malabry, Ecole centrale de Paris, 2015. http://www.theses.fr/2015ECAP0002/document.
Full textThis thesis explores the use of discriminatively trained deformable contour models (DCMs) for shape-based segmentation in medical images. We make contributions in two fronts: in the learning problem, where the model is trained from a set of annotated images, and in the inference problem, whose aim is to segment an image given a model. We demonstrate the merit of our techniques in a large X-Ray image segmentation benchmark, where we obtain systematic improvements in accuracy and speedups over the current state-of-the-art. For learning, we formulate training the DCM scoring function as large-margin structured prediction and construct a training objective that aims at giving the highest score to the ground-truth contour configuration. We incorporate a loss function adapted to DCM-based structured prediction. In particular, we consider training with the Mean Contour Distance (MCD) performance measure. Using this loss function during training amounts to scoring each candidate contour according to its Mean Contour Distance to the ground truth configuration. Training DCMs using structured prediction with the standard zero-one loss already outperforms the current state-of-the-art method [Seghers et al. 2007] on the considered medical benchmark [Shiraishi et al. 2000, van Ginneken et al. 2006]. We demonstrate that training with the MCD structured loss further improves over the generic zero-one loss results by a statistically significant amount. For inference, we propose efficient solvers adapted to combinatorial problems with discretized spatial variables. Our contributions are three-fold:first, we consider inference for loopy graphical models, making no assumption about the underlying graph topology. We use an efficient decomposition-coordination algorithm to solve the resulting optimization problem: we decompose the model’s graph into a set of open, chain-structured graphs. We employ the Alternating Direction Method of Multipliers (ADMM) to fix the potential inconsistencies of the individual solutions. Even-though ADMMis an approximate inference scheme, we show empirically that our implementation delivers the exact solution for the considered examples. Second,we accelerate optimization of chain-structured graphical models by using the Hierarchical A∗ search algorithm of [Felzenszwalb & Mcallester 2007] couple dwith the pruning techniques developed in [Kokkinos 2011a]. We achieve a one order of magnitude speedup in average over the state-of-the-art technique based on Dynamic Programming (DP) coupled with Generalized DistanceTransforms (GDTs) [Felzenszwalb & Huttenlocher 2004]. Third, we incorporate the Hierarchical A∗ algorithm in the ADMM scheme to guarantee an efficient optimization of the underlying chain structured subproblems. The resulting algorithm is naturally adapted to solve the loss-augmented inference problem in structured prediction learning, and hence is used during training and inference. In Appendix A, we consider the case of 3D data and we develop an efficientmethod to find the mode of a 3D kernel density distribution. Our algorithm has guaranteed convergence to the global optimum, and scales logarithmically in the volume size by virtue of recursively subdividing the search space. We use this method to rapidly initialize 3D brain tumor segmentation where we demonstrate substantial acceleration with respect to a standard mean-shift implementation. In Appendix B, we describe in more details our extension of the Hierarchical A∗ search algorithm of [Felzenszwalb & Mcallester 2007] to inference on chain-structured graphs
Wytock, Matt. "Optimizing Optimization: Scalable Convex Programming with Proximal Operators." Research Showcase @ CMU, 2016. http://repository.cmu.edu/dissertations/785.
Full textBooks on the topic "Graphical Method"
Thoma, Jean Ulrich. Simulation by Bondgraphs: Introduction to a Graphical Method. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990.
Find full textReeb, J. E. Using the graphical method to solve linear programs. Corvallis, Or: Oregon State University Extension Service, 1998.
Find full textSengupta, Ashis. A likelihood integrated method for exploratory graphical analysis of change point problem with directional data. Ahmedabad: Indian Institute of Management, 2006.
Find full textHsu, Tai C. Fast walking tree method via recurrence reduction for biological string alignment. [Corvallis, OR: Oregon State University, Dept. of Computer Science, 2002.
Find full textKorneev, Viktor, Larisa Gagarina, and Mariya Korneeva. Visualization in scientific research. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1029660.
Full textRao, D. S. Prakash. Graphical methods in structural analysis. London: Sangam Books, 1997.
Find full textChambers, John McKinley. Graphical methods for data analysis. London: Chapman & Hall, 1998.
Find full textS. H. C. Du Toit. Graphical exploratory data analysis. New York: Springer-Verlag, 1986.
Find full textBook chapters on the topic "Graphical Method"
Chang, Yuan-chin Ivan, Haoran Hsu, and Lin-Yi Chou. "Graphical Features Selection Method." In Intelligent Data Engineering and Automated Learning — IDEAL 2002, 475–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45675-9_71.
Full textWintraecken, J. J. V. R. "Non-Graphical Constraints." In The NIAM Information Analysis Method, 353–81. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0451-4_16.
Full textKharudin, Wafa’ Mohd, Nur Fatehah Md Din, and Mohd Zalisham Jali. "Password Recovery Using Graphical Method." In Pattern Analysis, Intelligent Security and the Internet of Things, 11–20. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17398-6_2.
Full textHua, Loo-Keng, Yuan Wang, and J. G. C. Heijmans. "The Transportation Problem (Graphical Method)." In Popularizing Mathematical Methods in the People’s Republic of China, 159–72. Boston, MA: Birkhäuser Boston, 1989. http://dx.doi.org/10.1007/978-1-4684-6757-4_10.
Full textDíaz Garrido, Mercedes. "The Use of the Graphic Medium in the Method of the Urban Planner C.A. Doxiadis." In Graphical Heritage, 221–34. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47987-9_18.
Full textTournès, Dominique. "A Graphical Approach to Euler’s Method." In Let History into the Mathematics Classroom, 87–99. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57150-8_7.
Full textYongqing, Zheng, Kong Qing, and Dong Guoqing. "A Graphical Method for Reference Reconciliation." In Database Systems for Advanced Applications, 156–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14589-6_16.
Full textBalcar, Ewald, and Stephen W. Lovesey. "Basic Tools for the Graphical Method." In Springer Tracts in Modern Physics, 11–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03118-2_3.
Full textGupta, Richa. "Perceiving Sequences and Layouts Through Touch." In Haptics: Science, Technology, Applications, 283–91. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06249-0_32.
Full textWintraecken, J. J. V. R. "Graphical Constraints Involving Combinations of Roles." In The NIAM Information Analysis Method, 189–234. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0451-4_10.
Full textConference papers on the topic "Graphical Method"
Zujevs, Nikita. "Authentication by Graphical Passwords Method ‘Hope’." In 2019 International Conference on Computing, Electronics & Communications Engineering (iCCECE). IEEE, 2019. http://dx.doi.org/10.1109/iccece46942.2019.8941758.
Full textWrigley, J. Craig. "Requirements Decomposition using a Graphical method." In 2020 IEEE 15th International Conference of System of Systems Engineering (SoSE). IEEE, 2020. http://dx.doi.org/10.1109/sose50414.2020.9130462.
Full textTabbone, S., and D. Zuwala. "An Indexing Method for Graphical Documents." In Ninth International Conference on Document Analysis and Recognition (ICDAR 2007) Vol 2. IEEE, 2007. http://dx.doi.org/10.1109/icdar.2007.4377023.
Full textBilgi, Basak, and Bulent Tugrul. "A Shoulder-Surfing Resistant Graphical Authentication Method." In 2018 International Conference on Artificial Intelligence and Data Processing (IDAP). IEEE, 2018. http://dx.doi.org/10.1109/idap.2018.8620934.
Full textPhan, Huy N., and Dereje Agonafer. "Thermoelectric Cooling Analysis Using Modified Graphical Method." In ASME 2009 InterPACK Conference collocated with the ASME 2009 Summer Heat Transfer Conference and the ASME 2009 3rd International Conference on Energy Sustainability. ASMEDC, 2009. http://dx.doi.org/10.1115/interpack2009-89077.
Full textSMITH, P. "A graphical method for improved eigenstructure assignment design." In Guidance, Navigation and Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1988. http://dx.doi.org/10.2514/6.1988-4103.
Full textInman, Matthew J., and Atef Z. Elsherbeni. "MATLAB graphical interface for GPU based FDTD method." In Exhibition. IEEE, 2008. http://dx.doi.org/10.1109/apemc.2008.4559808.
Full textScoditti, Adriano, and Wolfgang Stuerzlinger. "A new layout method for graphical user interfaces." In 2009 IEEE Toronto International Conference - Science and Technology for Humanity (TIC-STH 2009). IEEE, 2009. http://dx.doi.org/10.1109/tic-sth.2009.5444422.
Full textElmeadawy, Mohamed A., Ahmed H. Yakout, and Soliman M. El-Debeiky. "A graphical Controlled Islanding method for Blackout prevention." In 2016 Eighteenth International Middle East Power Systems Conference (MEPCON). IEEE, 2016. http://dx.doi.org/10.1109/mepcon.2016.7837018.
Full textBarri, Assad, and Sami Alnuaim. "A Graphical Method to Evaluate Multi-Reservoir Commingling." In SPE Saudi Arabia Section Technical Symposium and Exhibition. Society of Petroleum Engineers, 2014. http://dx.doi.org/10.2118/172194-ms.
Full textReports on the topic "Graphical Method"
Ghosh, Subir. On a New Graphical Method of Determining the Connectedness in Three Dimensional Design. Fort Belvoir, VA: Defense Technical Information Center, December 1985. http://dx.doi.org/10.21236/ada186299.
Full textGhosh, Subir. On a New Graphical Method of Determining the Connectedness in Three Dimensional Designs. Fort Belvoir, VA: Defense Technical Information Center, December 1985. http://dx.doi.org/10.21236/ada171811.
Full textPinet, N., P. Keating, P. Brouillette, D. J. Dion, and D. Lavoie. Production of a residual gravity anomaly map for Gaspésie (northern Appalachian Mountains), Quebec, by a graphical method. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2006. http://dx.doi.org/10.4095/223024.
Full textБакум, З. П., and Л. О. Цвіркун. Activation of Cognitive Activity of Future Engineers During Graphical Training. Криворізький державний педагогічний університет, 2014. http://dx.doi.org/10.31812/0564/430.
Full textWibowo, J., B. Amadei, S. Sture, A. B. Robertson, and R. H. Price. Effect of boundary conditions on the strength and deformability of replicas of natural fractures in welded tuff: Comparison between predicted and observed shear behavior using a graphical method; Yucca Mountain Site Characterization Project. Office of Scientific and Technical Information (OSTI), September 1993. http://dx.doi.org/10.2172/140081.
Full textVakaliuk, Tetiana A., Olha V. Korotun, and Serhiy O. Semerikov. The selection of cloud services for ER-diagrams construction in IT specialists databases teaching. CEUR Workshop Proceedings, June 2021. http://dx.doi.org/10.31812/123456789/4371.
Full textAntz, Hartwig, Stanimire Tomov, Jack Dongarra, and Vincent Heuveline. A Block-Asynchronous Relaxation Method for Graphics Processing Units. Office of Scientific and Technical Information (OSTI), November 2011. http://dx.doi.org/10.2172/1173288.
Full textCloutier, Robert. Graphical CONOPS Prototype to Demonstrate Emerging Methods, Processes, and Tools at ARDEC. Fort Belvoir, VA: Defense Technical Information Center, March 2012. http://dx.doi.org/10.21236/ada583515.
Full textVandenBerg, R. D., P. B. Kabanov, K E Dewing, and E. A. Atkinson. Geological and geochemical data from the Canadian Arctic Islands, part XVIII: XRF and TOC data, and formation tops in exploration wells from the Devonian clastic wedge and underlying strata, Northwest Territories and Nunavut. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/329642.
Full textMcDonald, J. A., F. O'Sullivan, and W. Stuetzle. Computing environments, interactive graphics and nonparametric methods for data analysis. Office of Scientific and Technical Information (OSTI), March 1992. http://dx.doi.org/10.2172/5159651.
Full text