To see the other types of publications on this topic, follow the link: Graphs theory.

Journal articles on the topic 'Graphs theory'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Graphs theory.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

M, Jerlin Seles, and Dr U. Mary. "Strategy on Disaster Recovery Management based on Graph Theory Concepts." International Journal of Recent Technology and Engineering (IJRTE) 10, no. 4 (2021): 31–34. http://dx.doi.org/10.35940/ijrte.d6535.1110421.

Full text
Abstract:
The COVID-19 pandemic has asserted major baseline facts from disaster anthropology during the last three decades. Resilience could be based on the solution to the question: "What is the maximum amount of destruction, if any, that the graph (a network) can sustain while ensuring that at least one of each technology type remains and that the remaining induced subgraph is properly colored?" The concept of a graph's Chromatic Core Subgraph is a solution to the stated problem. In this paper, the pandemic graphs and certain sequential graphs are developed. For these graphs, the Chromatic core subgraph is obtained. The results of the pandemic graphs' Chromatic core subgraph are used to develop a disaster recovery strategy for the COVID-19 pandemic.
APA, Harvard, Vancouver, ISO, and other styles
2

Nada A Laabi. "Subring in Graph Theory." Advances in Nonlinear Variational Inequalities 27, no. 4 (2024): 284–87. http://dx.doi.org/10.52783/anvi.v27.1526.

Full text
Abstract:
In our study, we delved into the intricacies of graph theory by exploring the properties of subrings within various types of graphs. By focusing on prime graphs and simple graphs, we unraveled the complex relationship between subring-prime graphs. Additionally, we delved into the concept of homomorphism within both simple subring graphs and prime subring graphs, adding depth to our analysis.
APA, Harvard, Vancouver, ISO, and other styles
3

Prajapati, Rajeshri, Amit Parikh, and Pradeep Jha. "Exploring Novel Edge Connectivity in Graph Theory and its Impact on Eulerian Line Graphs." International Journal of Science and Research (IJSR) 12, no. 11 (2023): 1515–19. http://dx.doi.org/10.21275/sr231120155230.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fujita, Takaaki, and Florentin Smarandache. "Antipodal Turiyam Neutrosophic Graphs." Neutrosophic Optimization and Intelligent Systems 5 (November 17, 2024): 1–13. http://dx.doi.org/10.61356/j.nois.2025.5422.

Full text
Abstract:
Graph theory, a mathematical field, investigates the relationships between entities through vertices and edges [29]. Within this discipline, Uncertain Graph Theory emerges to model uncertainties in realworld networks. This paper presents the concept of the Antipodal Turiyam Neutrosophic Graph. In an Antipodal Graph, two nodes are connected if their shortest path distance equals the graph's diameter, emphasizing connections between the farthest nodes. Turiyam Neutrosophic Graphs extend traditional graphs by introducing four membership values-truth, indeterminacy, falsity, and liberal state-assigned to each vertex and edge, enabling a more nuanced representation of complex relationships.
APA, Harvard, Vancouver, ISO, and other styles
5

Vidyashree H. R. "Some Derived Graphs of Ananta-Graphs." Panamerican Mathematical Journal 35, no. 3s (2025): 522–27. https://doi.org/10.52783/pmj.v35.i3s.4246.

Full text
Abstract:
Graph theory provides powerful tools for analyzing mathematical structures and sequences. The Ananta-graph, derived from the Collatz conjecture, represents integer transformations through directed edges, capturing number relationships under n→3n+1 and n→n/2 operations. This paper explores several derived graphs from the Ananta-graph, including line, middle, Mycielskian, subdivision, total, core, power, splitting and kernel graph, analyzing their structural properties and mathematical significance. By analyzing these derived graphs, we provide deeper insights into the topological, algebraic and computational properties of the Ananta-graph, contributing to both graph theory and number theory applications. This research further provides new perspectives on integer sequences and transformation-based graph models.
APA, Harvard, Vancouver, ISO, and other styles
6

Bywaters, Timothy, and Stephan Tornier. "Willis theory via graphs." Groups, Geometry, and Dynamics 13, no. 4 (2019): 1335–72. http://dx.doi.org/10.4171/ggd/525.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sikora, Adam, and Bruce Westbury. "Confluence theory for graphs." Algebraic & Geometric Topology 7, no. 1 (2007): 439–78. http://dx.doi.org/10.2140/agt.2007.7.439.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Texier, Christophe, and Gilles Montambaux. "Scattering theory on graphs." Journal of Physics A: Mathematical and General 34, no. 47 (2001): 10307–26. http://dx.doi.org/10.1088/0305-4470/34/47/328.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hatcher, Allen, and Karen Vogtmann. "Cerf Theory for Graphs." Journal of the London Mathematical Society 58, no. 3 (1998): 633–55. http://dx.doi.org/10.1112/s0024610798006644.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Babson, Eric, Hélène Barcelo, Mark de Longueville, and Reinhard Laubenbacher. "Homotopy theory of graphs." Journal of Algebraic Combinatorics 24, no. 1 (2006): 31–44. http://dx.doi.org/10.1007/s10801-006-9100-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Talbi, Mohamed Elamine, and Djilali Benayat. "Homology Theory of Graphs." Mediterranean Journal of Mathematics 11, no. 2 (2013): 813–28. http://dx.doi.org/10.1007/s00009-013-0358-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Bumby, Richard T., and Dana May Latch. "Categorical constructions in graph theory." International Journal of Mathematics and Mathematical Sciences 9, no. 1 (1986): 1–16. http://dx.doi.org/10.1155/s0161171286000017.

Full text
Abstract:
This paper presents some graph-theoretic questions from the viewpoint of the portion of category theory which has become common knowledge. In particular, the reader is encouraged to consider whether there is only one natural category of graphs and how theories of directed graphs and undirected graphs are related.
APA, Harvard, Vancouver, ISO, and other styles
13

K B, Vidhyadharani, and Ramya M. "Graph Theory in Social Media Related to Whatsapp." International Journal for Research in Applied Science and Engineering Technology 10, no. 11 (2022): 1194–98. http://dx.doi.org/10.22214/ijraset.2022.47566.

Full text
Abstract:
Abstracts: Graphs are extensively used to model social structures based on different kinds of relationships between people or groups of people. WhatsApp media can conveniently be modelled using graphs, the connection between individuals in WhatsApp media can be described using graphs ranging from two individuals connected and communicating to different WhatsApp groups, this can be comfortably explained by graphs. The idea of directed graphs, undirected graphs and adjacent matrix as it’s related to WhatsApp groups has been presented.
APA, Harvard, Vancouver, ISO, and other styles
14

Alrawayati, Hawa Ahmed, and Ümit Tokeşer. "Laplacian Eigenvalues of Threshold Graphs and Majorization." Asian Journal of Mathematics and Computer Research 32, no. 2 (2025): 124–34. https://doi.org/10.56557/ajomcor/2025/v32i29169.

Full text
Abstract:
This paper investigates the relationship between Laplacian eigenvalues of threshold graphs and the concept of majorization. Threshold graphs, characterized by their simplicity and combinatorial properties, serve as a rich framework for exploring spectral graph theory. We analyze the Laplacian matrix of these graphs and derive conditions under which the eigenvalues exhibit majorization properties. By employing techniques from linear algebra and combinatorial optimization, we establish a set of inequalities that describe the distribution of the Laplacian eigenvalues in terms of the graph's structural parameters. Furthermore, we demonstrate how these relationships can be utilized to infer properties of the graph, such as connectedness and robustness. Our findings contribute to the broader understanding of spectral properties in graph theory and open avenues for further research into the implications of majorization in combinatorial structures. The results have potential applications in network analysis, particularly in assessing the resilience of networks modeled by threshold graphs.
APA, Harvard, Vancouver, ISO, and other styles
15

Fujita, Takaaki. "Permutation Graphs in Fuzzy and Neutrosophic Graphs." Multicriteria Algorithms with Applications 7 (April 2, 2025): 1–18. https://doi.org/10.61356/j.mawa.2025.7523.

Full text
Abstract:
Graph theory is a fundamental branch of mathematics that examines networks composed of nodes (vertices) and connections (edges). This paper explores the concepts of permutation graphs within the frameworks of fuzzy, intuitionistic fuzzy, neutrosophic, and Turiyam Neutrosophic graphs, all of which handle uncertainty in graph structures. We define permutation and bipartite permutation graphs in each context and investigate their properties. While permutation graphs have been studied extensively in classical graph theory, there has been limited exploration in fuzzy and neutrosophic settings.
APA, Harvard, Vancouver, ISO, and other styles
16

Broumi, Said, Florentin Smarandache, Mohamed Talea, and Assia Bakali. "An Introduction to Bipolar Single Valued Neutrosophic Graph Theory." Applied Mechanics and Materials 841 (June 2016): 184–91. http://dx.doi.org/10.4028/www.scientific.net/amm.841.184.

Full text
Abstract:
In this paper, we first define the concept of bipolar single neutrosophic graphs as the generalization of bipolar fuzzy graphs, N-graphs, intuitionistic fuzzy graph, single valued neutrosophic graphs and bipolar intuitionistic fuzzy graphs.
APA, Harvard, Vancouver, ISO, and other styles
17

Cvetkovic, Dragos, and Slobodan Simic. "Towards a spectral theory of graphs based on the signless Laplacian, I." Publications de l'Institut Math?matique (Belgrade) 85, no. 99 (2009): 19–33. http://dx.doi.org/10.2298/pim0999019c.

Full text
Abstract:
A spectral graph theory is a theory in which graphs are studied by means of eigenvalues of a matrix M which is in a prescribed way defined for any graph. This theory is called M-theory. We outline a spectral theory of graphs based on the signless Laplacians Q and compare it with other spectral theories, in particular with those based on the adjacency matrix A and the Laplacian L. The Q-theory can be composed using various connections to other theories: equivalency with A-theory and L-theory for regular graphs, or with L-theory for bipartite graphs, general analogies with A-theory and analogies with A-theory via line graphs and subdivision graphs. We present results on graph operations, inequalities for eigenvalues and reconstruction problems.
APA, Harvard, Vancouver, ISO, and other styles
18

Ustimenko, V. O. "On new results on extremal graph theory, theory of algebraic graphs, and their applications." Reports of the National Academy of Sciences of Ukraine, no. 4 (August 27, 2022): 25–32. http://dx.doi.org/10.15407/dopovidi2022.04.025.

Full text
Abstract:
New explicit constructions of infinite families of finite small world graphs of large girth with well-defined projective limits which is an infinite tree are described. The applications of these objects to constructions of LDPC codes and cryptographic algorithms are shortly observed. We define families of homogeneous algebraic graphs of large girth over the commutative ring K. For each commutative integrity ring K with |K| > 2, we introduce a family of bipartite homogeneous algebraic graphs of large girth over K formed by graphs with sets of points and lines isomorphic to Kn, n > 1, and cycle indicator ≥ 2n + 2 such that their projective limit is well defined and isomorphic to an infinite forest.
APA, Harvard, Vancouver, ISO, and other styles
19

Ratheesh, K. P. "On Soft Graphs and Chained Soft Graphs." International Journal of Fuzzy System Applications 7, no. 2 (2018): 85–102. http://dx.doi.org/10.4018/ijfsa.2018040105.

Full text
Abstract:
Soft set theory has a rich potential for application in many scientific areas such as medical science, engineering and computer science. This theory can deal uncertainties in nature by parametrization process. In this article, the authors explore the concepts of soft relation on a soft set, soft equivalence relation on a soft set, soft graphs using soft relation, vertex chained soft graphs and edge chained soft graphs and investigate various types of operations on soft graphs such as union, join and complement. Also, it is established that every fuzzy graph is an edge chained soft graph.
APA, Harvard, Vancouver, ISO, and other styles
20

Penz, Markus, and Robert van Leeuwen. "Density-functional theory on graphs." Journal of Chemical Physics 155, no. 24 (2021): 244111. http://dx.doi.org/10.1063/5.0074249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Sinha, Deepa. "Theory of Domination in Graphs." Journal of Discrete Mathematical Sciences and Cryptography 18, no. 6 (2015): 903–4. http://dx.doi.org/10.1080/09720529.2015.1109844.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Inoue, Takuya, and Yusuke Nakamura. "Ehrhart theory on periodic graphs." Algebraic Combinatorics 7, no. 4 (2024): 969–1010. http://dx.doi.org/10.5802/alco.367.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Biggs, Norman. "Algebraic Potential Theory on Graphs." Bulletin of the London Mathematical Society 29, no. 6 (1997): 641–82. http://dx.doi.org/10.1112/s0024609397003305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Ayala, R., L. M. Fernández, D. Fernández-Ternero, and J. A. Vilches. "Discrete Morse theory on graphs." Topology and its Applications 156, no. 18 (2009): 3091–100. http://dx.doi.org/10.1016/j.topol.2009.01.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Yanpei, Liu. "A polyhedral theory on graphs." Acta Mathematica Sinica 10, no. 2 (1994): 136–42. http://dx.doi.org/10.1007/bf02580420.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Zörnig, Peter. "A theory of degeneracy graphs." Annals of Operations Research 46-47, no. 2 (1993): 541–56. http://dx.doi.org/10.1007/bf02023113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Bertossi, Alan A. "Planned graphs: Theory and algorithms." European Journal of Operational Research 39, no. 3 (1989): 350–51. http://dx.doi.org/10.1016/0377-2217(89)90175-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Frieze, Alan, and Colin McDiarmid. "Algorithmic theory of random graphs." Random Structures and Algorithms 10, no. 1-2 (1997): 5–42. http://dx.doi.org/10.1002/(sici)1098-2418(199701/03)10:1/2<5::aid-rsa2>3.0.co;2-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Siconolfi, Antonio, and Alfonso Sorrentino. "Aubry–Mather theory on graphs." Nonlinearity 36, no. 11 (2023): 5819–59. http://dx.doi.org/10.1088/1361-6544/acf6ef.

Full text
Abstract:
Abstract We formulate Aubry–Mather theory for Hamiltonians/Lagrangians defined on graphs, study the structure of minimizing measures, and discuss the relationship with weak KAM theory developed in Siconolfi and Sorrentino (2018 Anal. PDE 1 171–211). Moreover, we describe how to transport and interpret these results on networks.
APA, Harvard, Vancouver, ISO, and other styles
30

Akram, Muhammad, Wieslaw A. Dudek, and M. Murtaza Yousaf. "Regularity in Vague Intersection Graphs and Vague Line Graphs." Abstract and Applied Analysis 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/525389.

Full text
Abstract:
Fuzzy graph theory is commonly used in computer science applications, particularly in database theory, data mining, neural networks, expert systems, cluster analysis, control theory, and image capturing. A vague graph is a generalized structure of a fuzzy graph that gives more precision, flexibility, and compatibility to a system when compared with systems that are designed using fuzzy graphs. In this paper, we introduce the notion of vague line graphs, and certain types of vague line graphs and present some of their properties. We also discuss an example application of vague digraphs.
APA, Harvard, Vancouver, ISO, and other styles
31

Pardo-Guerra, Sebastian, Vivek Kurien George, Vikash Morar, Joshua Roldan, and Gabriel Alex Silva. "Extending Undirected Graph Techniques to Directed Graphs via Category Theory." Mathematics 12, no. 9 (2024): 1357. http://dx.doi.org/10.3390/math12091357.

Full text
Abstract:
We use Category Theory to construct a ‘bridge’ relating directed graphs with undirected graphs, such that the notion of direction is preserved. Specifically, we provide an isomorphism between the category of simple directed graphs and a category we call ‘prime graphs category’; this has as objects labeled undirected bipartite graphs (which we call prime graphs), and as morphisms undirected graph morphisms that preserve the labeling (which we call prime graph morphisms). This theoretical bridge allows us to extend undirected graph techniques to directed graphs by converting the directed graphs into prime graphs. To give a proof of concept, we show that our construction preserves topological features when applied to the problems of network alignment and spectral graph clustering.
APA, Harvard, Vancouver, ISO, and other styles
32

Manthiram, Bramila, and Meenakshi Annamalai. "Some Standard Seidel Energy Results of the Minimum Maximal Dominating Graphs." Indian Journal Of Science And Technology 17, no. 12 (2024): 1231–36. http://dx.doi.org/10.17485/ijst/v17i12.52.

Full text
Abstract:
Objectives: Let be a finite and connected graph with β points and d edges. In this research, introduced the graph's minimum maximal dominating seidel energy ( and the properties of the latent roots of the given parameters are discussed. Method: In this research, the seidel energy of several graphs and its properties are investigated. Examined its minimum maximal limits and computed a few conventional seidel energy outcomes for the minimum maximal dominating graphs. Finding: Using the minimum maximal dominating seidel energy of graphs, significant outcomes were achieved for complete graphs, complete bipartite graphs, and star graphs. The properties of the class of graphs were computed. The established upper and lower bound is . Novelty: The seidel energy of the proposed research findings is used in various graphs based on the research. The fundamental characteristics of a graph, such as its energy upper and lower bounds, have been determined, and this knowledge has found notable chemical applications in the conjugated molecular orbital theory. Recommendations for future energy-related research are presented and examined. Keywords: Connected graph, Dominating set, Latent roots, Minimum maximal, Seidel energy
APA, Harvard, Vancouver, ISO, and other styles
33

Park, Choonkil, Nasir Shah, Noor Rehman, Abbas Ali, Muhammad Irfan Ali, and Muhammad Shabir. "Soft covering based rough graphs and corresponding decision making." Open Mathematics 17, no. 1 (2019): 423–38. http://dx.doi.org/10.1515/math-2019-0033.

Full text
Abstract:
Abstract Soft set theory and rough set theory are two new tools to discuss uncertainty. Graph theory is a nice way to depict certain information. Particularly soft graphs serve the purpose beautifully. In order to discuss uncertainty in soft graphs, some new types of graphs called soft covering based rough graphs are introduced. Several basic properties of these newly defined graphs are explored. Applications of soft covering based rough graphs in decision making can be very fruitful. In this regard an algorithm has been proposed.
APA, Harvard, Vancouver, ISO, and other styles
34

Cvetkovic, Dragos, and Vesna Todorcevic. "Cospectrality graphs of Smith graphs." Filomat 33, no. 11 (2019): 3269–76. http://dx.doi.org/10.2298/fil1911269c.

Full text
Abstract:
Graphs whose spectrum belongs to the interval [-2,2] are called Smith graphs. The structure of a Smith graph with a given spectrum depends on a system of Diophantine linear algebraic equations. We have established in [1] several properties of this system and showed how it can be simplified and effectively applied. In this way a spectral theory of Smith graphs has been outlined. In the present paper we introduce cospectrality graphs for Smith graphs and study their properties through examples and theoretical consideration. The new notion is used in proving theorems on cospectrality of Smith graphs. In this way one can avoid the use of the mentioned system of Diophantine linear algebraic equations.
APA, Harvard, Vancouver, ISO, and other styles
35

Frenkel, Mark, Shraga Shoval, and Edward Bormashenko. "Fermat Principle, Ramsey Theory and Metamaterials." Materials 16, no. 24 (2023): 7571. http://dx.doi.org/10.3390/ma16247571.

Full text
Abstract:
Reinterpretation of the Fermat principle governing the propagation of light in media within the Ramsey theory is suggested. Complete bi-colored graphs corresponding to light propagation in media are considered. The vertices of the graphs correspond to the points in real physical space in which the light sources or sensors are placed. Red links in the graphs correspond to the actual optical paths, emerging from the Fermat principle. A variety of optical events, such as refraction and reflection, may be involved in light propagation. Green links, in turn, denote the trial/virtual optical paths, which actually do not occur. The Ramsey theorem states that within the graph containing six points, inevitably, the actual or virtual optical cycle will be present. The implementation of the Ramsey theorem with regard to light propagation in metamaterials is discussed. The Fermat principle states that in metamaterials, a light ray, in going from point S to point P, must traverse an optical path length L that is stationary with respect to variations of this path. Thus, bi-colored graphs consisting of links corresponding to maxima or minima of the optical paths become possible. The graphs, comprising six vertices, will inevitably demonstrate optical cycles consisting of the mono-colored links corresponding to the maxima or minima of the optical path. The notion of the “inverse graph” is introduced and discussed. The total number of triangles in the “direct” (source) and “inverse” Ramsey optical graphs is the same. The applications of “Ramsey optics” are discussed, and an optical interpretation of the infinite Ramsey theorem is suggested.
APA, Harvard, Vancouver, ISO, and other styles
36

Tola, Keneni Abera, V. N. Srinivasa Rao Repalle, and Mamo Abebe Ashebo. "Theory and Application of Interval-Valued Neutrosophic Line Graphs." Journal of Mathematics 2024 (March 19, 2024): 1–17. http://dx.doi.org/10.1155/2024/5692756.

Full text
Abstract:
Neutrosophic graphs are used to model inconsistent information and imprecise data about any real-life problem. It is regarded as a generalization of intuitionistic fuzzy graphs. Since interval-valued neutrosophic sets are more accurate, compatible, and flexible than single neutrosophic sets, interval-valued neutrosophic graphs (IVNGs) were defined. The interval-valued neutrosophic graph is a fundamental issue in graph theory that has wide applications in the real world. Also, problems may arise when partial ignorance exists in the datasets of membership [0, 1], and then, the concept of IVNG is crucial to represent the problems. Line graphs of neutrosophic graphs are significant due to their ability to represent and analyze uncertain or indeterminate information about edge relationships and complex networks in graphs. However, there is a research gap on the line graph of interval-valued neutrosophic graphs. In this paper, we introduce the theory of an interval-valued neutrosophic line graph (IVNLG) and its application. In line with that, some mathematical properties such as weak vertex isomorphism, weak edge isomorphism, effective edge, and other properties of IVNLGs are proposed. In addition, we defined the vertex degree of IVNLG with some properties, and by presenting several theorems and propositions, the relationship between fuzzy graph extensions and IVNLGs was explored. Finally, an overview of the algorithm used to solve the problems and the practical application of the introduced graphs were provided.
APA, Harvard, Vancouver, ISO, and other styles
37

Bramila, Manthiram, and Annamalai Meenakshi. "Some Standard Seidel Energy Results of the Minimum Maximal Dominating Graphs." Indian Journal of Science and Technology 17, no. 12 (2024): 1231–36. https://doi.org/10.17485/IJST/v17i12.52.

Full text
Abstract:
Abstract <strong>Objectives:</strong>&nbsp;Let be a finite and connected graph with &beta; points and d edges. In this research, introduced the graph's minimum maximal dominating seidel energy ( and the properties of the latent roots of the given parameters are discussed.&nbsp;<strong>Method:</strong>&nbsp;In this research, the seidel energy of several graphs and its properties are investigated. Examined its minimum maximal limits and computed a few conventional seidel energy outcomes for the minimum maximal dominating graphs.&nbsp;<strong>Finding:</strong>&nbsp;Using the minimum maximal dominating seidel energy of graphs, significant outcomes were achieved for complete graphs, complete bipartite graphs, and star graphs. The properties of the class of graphs were computed. The established upper and lower bound is .&nbsp;<strong>Novelty:</strong>&nbsp;The seidel energy of the proposed research findings is used in various graphs based on the research. The fundamental characteristics of a graph, such as its energy upper and lower bounds, have been determined, and this knowledge has found notable chemical applications in the conjugated molecular orbital theory. Recommendations for future energy-related research are presented and examined. <strong>Keywords:</strong> Connected graph, Dominating set, Latent roots, Minimum maximal, Seidel energy
APA, Harvard, Vancouver, ISO, and other styles
38

Fujita, Takaaki. "Claw-free Graph and AT-free Graph in Fuzzy, Neutrosophic, and Plithogenic Graphs." Information Sciences with Applications 5 (March 5, 2025): 40–55. https://doi.org/10.61356/j.iswa.2025.5502.

Full text
Abstract:
Graph theory studies networks consisting of nodes (vertices) and their connections (edges), with various graph classes being extensively researched. This paper focuses on three specific graph classes: AT-Free Graphs, Claw-Free Graphs, and Triangle-Free Graphs. Additionally, it examines uncertain graph models, including Fuzzy, Intuitionistic Fuzzy, Neutrosophic, and Plithogenic Graphs, which are designed to address uncertainty in diverse applications. In this study, we introduce and analyze AT-Free Graphs, Claw-Free Graphs, and Triangle-Free Graphs within the framework of Fuzzy Graphs, investigating their properties and relationships in uncertain graph theory.
APA, Harvard, Vancouver, ISO, and other styles
39

PERARNAU, G., та B. REED. "Existence of Spanning ℱ-Free Subgraphs with Large Minimum Degree". Combinatorics, Probability and Computing 26, № 3 (2016): 448–67. http://dx.doi.org/10.1017/s0963548316000328.

Full text
Abstract:
Let ℱ be a family of graphs and letdbe large enough. For everyd-regular graphG, we study the existence of a spanning ℱ-free subgraph ofGwith large minimum degree. This problem is well understood if ℱ does not contain bipartite graphs. Here we provide asymptotically tight results for many families of bipartite graphs such as cycles or complete bipartite graphs. To prove these results, we study a locally injective analogue of the question.
APA, Harvard, Vancouver, ISO, and other styles
40

Haemers, W. H., and E. Spence. "Graphs cospectral with distance-regular graphs." Linear and Multilinear Algebra 39, no. 1-2 (1995): 91–107. http://dx.doi.org/10.1080/03081089508818382.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Furst, Veronika, and Howard Grotts. "Tight Frame Graphs Arising as Line Graphs." PUMP Journal of Undergraduate Research 4 (January 20, 2021): 1–19. http://dx.doi.org/10.46787/pump.v4i0.2415.

Full text
Abstract:
Dual multiplicity graphs are those simple, undirected graphs that have a weighted Hermitian adjacency matrix with only two distinct eigenvalues. From the point of view of frame theory, their characterization can be restated as which graphs have a representation by a tight frame. In this paper, we classify certain line graphs that are tight frame graphs and improve a previous result on the embedding of frame graphs in tight frame graphs.
APA, Harvard, Vancouver, ISO, and other styles
42

MACKIE, IAN, and DETLEF PLUMP. "Theory and applications of term graph rewriting: introduction." Mathematical Structures in Computer Science 17, no. 3 (2007): 361–62. http://dx.doi.org/10.1017/s0960129507006081.

Full text
Abstract:
Term graph rewriting is concerned with the representation of functional expressions as graphs and the evaluation of these expressions by rule-based graph transformation. The advantage of computing with graphs rather than terms is that common subexpressions can be shared, improving the efficiency of computations in space and time. Sharing is ubiquitous in implementations of programming languages: many functional, logic, object-oriented and concurrent calculi are implemented using term graphs.
APA, Harvard, Vancouver, ISO, and other styles
43

Lloyd, E. Keith, and Denes Konig. "Theory of Finite and Infinite Graphs." Mathematical Gazette 74, no. 470 (1990): 396. http://dx.doi.org/10.2307/3618160.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Guillemin, V., and C. Zara. "Equivariant de Rham theory and graphs." Surveys in Differential Geometry 7, no. 1 (2002): 221–57. http://dx.doi.org/10.4310/sdg.2002.v7.n1.a8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Larsen, J. C. "Electrical network theory of countable graphs." IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 44, no. 11 (1997): 1045–55. http://dx.doi.org/10.1109/81.641767.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Jensen, David. "Brill-Noether theory for metric graphs." ACM Communications in Computer Algebra 49, no. 2 (2015): 60. http://dx.doi.org/10.1145/2815111.2815151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Graña, Matías, and Vladimir Turaev. "Knot theory for self-indexed graphs." Transactions of the American Mathematical Society 357, no. 2 (2004): 535–53. http://dx.doi.org/10.1090/s0002-9947-04-03625-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Guerrini, Stefano. "A general theory of sharing graphs." Theoretical Computer Science 227, no. 1-2 (1999): 99–151. http://dx.doi.org/10.1016/s0304-3975(99)00050-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Biggs, Norman L. "Potential Theory on Distance-Regular Graphs." Combinatorics, Probability and Computing 2, no. 3 (1993): 243–55. http://dx.doi.org/10.1017/s096354830000064x.

Full text
Abstract:
A graph may be regarded as an electrical network in which each edge has unit resistance. We obtain explicit formulae for the effective resistance of the network when a current enters at one vertex and leaves at another in the distance-regular case. A well-known link with random walks motivates a conjecture about the maximum effective resistance. Arguments are given that point to the truth of the conjecture for all known distance-regular graphs.
APA, Harvard, Vancouver, ISO, and other styles
50

Füredi, Zoltán, and Douglas B. West. "Ramsey Theory and Bandwidth of Graphs." Graphs and Combinatorics 17, no. 3 (2001): 463–71. http://dx.doi.org/10.1007/pl00013410.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!