Academic literature on the topic 'Grating sensor'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Grating sensor.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Grating sensor"

1

Bartelt, Hartmut. "Fiber Bragg Grating Sensors and Sensor Arrays." Advances in Science and Technology 55 (September 2008): 138–44. http://dx.doi.org/10.4028/www.scientific.net/ast.55.138.

Full text
Abstract:
Fiber Bragg gratings have found widespread application in sensor systems, e. g. for temperature, strain or refractive index measurements. The concept of fiber Bragg gratings allows also in a simple way the realisation of arrays of such sensors. The development of such optical fiber sensor systems often requires special fibers and grating structures which may go beyond more conventional Bragg grating structures in typical communication fibers. Concerning fibers there is, for example., a need of achieving fiber gratings in small diameter fibers and fiber tapers as well as in microstructured fibe
APA, Harvard, Vancouver, ISO, and other styles
2

Tian, Zhenhua, Lingyu Yu, Xiaoyi Sun, and Bin Lin. "Damage localization with fiber Bragg grating Lamb wave sensing through adaptive phased array imaging." Structural Health Monitoring 18, no. 1 (2018): 334–44. http://dx.doi.org/10.1177/1475921718755572.

Full text
Abstract:
Fiber Bragg gratings are known being immune to electromagnetic interference and emerging as Lamb wave sensors for structural health monitoring of plate-like structures. However, their application for damage localization in large areas has been limited by their direction-dependent sensor factor. This article addresses such a challenge and presents a robust damage localization method for fiber Bragg grating Lamb wave sensing through the implementation of adaptive phased array algorithms. A compact linear fiber Bragg grating phased array is configured by uniformly distributing the fiber Bragg gra
APA, Harvard, Vancouver, ISO, and other styles
3

Cao, Jianjun, Yuan Sun, Yan Kong, and Weiying Qian. "The Sensitivity of Grating-Based SPR Sensors with Wavelength Interrogation." Sensors 19, no. 2 (2019): 405. http://dx.doi.org/10.3390/s19020405.

Full text
Abstract:
In this paper, we derive the analytical expression for the sensitivity of grating-based surface plasmon resonance (SPR) sensors working in wavelength interrogation. The theoretical analysis shows that the sensitivity increases with increasing wavelength and is saturated beyond a certain wavelength for Au and Ag gratings, while it is almost constant for Al gratings in the wavelength range of 500 to 1000 nm. More importantly, the grating period (P) and the diffraction order (m) dominate the value of sensitivity. Higher sensitivity is possible for SPR sensors with a larger grating period and lowe
APA, Harvard, Vancouver, ISO, and other styles
4

Jiao, Fei, Yuqing Lei, Guozheng Peng, Funing Dong, Qing Yang, and Wei Liao. "Grating Spectrum Design and Optimization of GMM-FBG Current Sensor." Energies 16, no. 2 (2023): 997. http://dx.doi.org/10.3390/en16020997.

Full text
Abstract:
In this study, the performance of a current sensor based on giant magnetostrictive materials (GMM) and fiber Bragg grating (FBG) has been improved by optimizing the spectral characteristics of gratings. By analyzing the influence of FBG on the current sensor characteristics, three key parameters (gate region length, refractive index modulation depth, and toe cutting system) are selected for optimization. The optimal grating parameters are determined to improve the linearity and sensitivity of sensor output. Experimental tests reveal that after grating optimization, the current sensor shows exc
APA, Harvard, Vancouver, ISO, and other styles
5

Gao, Xiaoyu, Shengjie Cao, Yongqiu Zheng, and Jiandong Bai. "A Compact Fabry–Pérot Acoustic Sensor Based on Silicon Optical Waveguide Bragg Gratings." Photonics 10, no. 8 (2023): 861. http://dx.doi.org/10.3390/photonics10080861.

Full text
Abstract:
No membranous optical sensors have excellent development prospects in aerospace and other industrial fields due to their small size and anti-electromagnetic interference. Here, we proposed a novel Fabry–Pérot (FP) cavity acoustic sensor based on silicon optical waveguide Bragg gratings. The FP cavity consists of two Bragg gratings written on the silicon-based optical waveguide and a miniature air groove. When the sound signal acts on the miniature air groove, the sound pressure changes the density of air molecules near the waveguide grating’s evanescent field, causing variation in the air’s re
APA, Harvard, Vancouver, ISO, and other styles
6

Babu, Sachin, and Jeong-Bong Lee. "Axially-Anisotropic Hierarchical Grating 2D Guided-Mode Resonance Strain-Sensor." Sensors 19, no. 23 (2019): 5223. http://dx.doi.org/10.3390/s19235223.

Full text
Abstract:
Guided-mode resonance strain sensors are planar binary gratings that have fixed resonance positions and quality factors decided by material properties and grating parameters. If one is restricted by material choices, the quality factor can only be improved by adjusting the grating parameters. We report a new method to improve quality factor by applying a slotting design rule to a grating design. We investigate this design rule by first providing a theoretical analysis on how it works and then applying it to a previously studied 2D solid-disc guided-mode resonance grating strain sensor design t
APA, Harvard, Vancouver, ISO, and other styles
7

Bartelt, Hartmut. "Trends in Bragg Grating Technology for Optical Fiber Sensor Applications." Key Engineering Materials 437 (May 2010): 304–8. http://dx.doi.org/10.4028/www.scientific.net/kem.437.304.

Full text
Abstract:
Fiber Bragg gratings have found widespread and successful applications in optical sensor systems, e. g. for temperature, strain or refractive index measurements. Such sensor elements are fiber integrated, are applicable under harsh environmental conditions, and can be easily multiplexed. In order to further extend the field of applications, there is a great interest in specifically adapted Bragg gratings, in Bragg grating structures with increased stability, or in the use of special fiber types for grating inscription. The paper discusses such specific concepts for grating inscription, covers
APA, Harvard, Vancouver, ISO, and other styles
8

Thursby, G., B. Sorazu, D. Betz, M. Staszewski, and B. Culshaw. "The Use of Fibre Optic Sensors for Damage Detection and Location in Structural Materials." Applied Mechanics and Materials 1-2 (September 2004): 191–96. http://dx.doi.org/10.4028/www.scientific.net/amm.1-2.191.

Full text
Abstract:
The measurement of changes in the properties of ultrasonic Lamb waves propagating through structural material has frequently been proposed as a method for the detection of damage. In this paper we describe work that uses optical fibre sensors to detect the Lamb waves and show that the directional properties of these sensors allow us to not only detect damage, but also to locate it. We look at two types of optical fibre sensor, a polarimetric sensor and the fibre Bragg grating. The polarimetric sensor measures the change in birefringence of a fibre caused by the pressure wave of the ultrasound
APA, Harvard, Vancouver, ISO, and other styles
9

Yang, Zhiyong, Xiaochen Ma, Daguo Yu, et al. "An Ultracompact Angular Displacement Sensor Based on the Talbot Effect of Optical Microgratings." Sensors 23, no. 3 (2023): 1091. http://dx.doi.org/10.3390/s23031091.

Full text
Abstract:
Here, we report an ultracompact angular displacement sensor based on the Talbot effect of optical microgratings. Periodic Talbot interference patterns were obtained behind an upper optical grating. By putting another grating within the Talbot region, the total transmission of the two-grating structure was found to be approximatively in a linear relationship with the relative pitch angle between the two gratings, which was explained by a transversal shift of the Talbot interference patterns. The influence of the grating parameters (e.g., the grating period, the number of grating lines and the g
APA, Harvard, Vancouver, ISO, and other styles
10

Missinne, Jeroen, Nuria Teigell Benéitez, Marie-Aline Mattelin, et al. "Bragg-Grating-Based Photonic Strain and Temperature Sensor Foils Realized Using Imprinting and Operating at Very Near Infrared Wavelengths." Sensors 18, no. 8 (2018): 2717. http://dx.doi.org/10.3390/s18082717.

Full text
Abstract:
Thin and flexible sensor foils are very suitable for unobtrusive integration with mechanical structures and allow monitoring for example strain and temperature while minimally interfering with the operation of those structures. Electrical strain gages have long been used for this purpose, but optical strain sensors based on Bragg gratings are gaining importance because of their improved accuracy, insusceptibility to electromagnetic interference, and multiplexing capability, thereby drastically reducing the amount of interconnection cables required. This paper reports on thin polymer sensor foi
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!