Academic literature on the topic 'Gravity'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Gravity.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Gravity"

1

TOUNSI, Raja. "Gravity Syndrome." Psychology and Mental Health Care 3, no. 4 (December 23, 2019): 01–17. http://dx.doi.org/10.31579/2637-8892/060.

Full text
Abstract:
I love what I am doing because it offers me a constant variety and diversity, without ever having a normal day, creativity, growth and new concepts, seeing my innovations grow and develop diversity to make a lot of research and no routine - The opportunity to create something new for a better world. In this book I developed relativity at the body level in its atmospheric setting. The human body is a ball of renewable energy; this study is based on the scientific definition of the relativity at the corporal level compared to the atmospheric environment which shelters it. This hypothesis accentuates the importance of the energetic material and its primordial role in future cures for certain diseases, especially neurological ones.
APA, Harvard, Vancouver, ISO, and other styles
2

Unnikrishnan, C. S., and George T. Gillies. "Quantum gravito-optics: a light route from semiclassical gravity to quantum gravity." Classical and Quantum Gravity 32, no. 14 (July 2, 2015): 145012. http://dx.doi.org/10.1088/0264-9381/32/14/145012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Abebe, Amare, and Maye Elmardi. "Irrotational-fluid cosmologies in fourth-order gravity." International Journal of Geometric Methods in Modern Physics 12, no. 10 (October 25, 2015): 1550118. http://dx.doi.org/10.1142/s0219887815501182.

Full text
Abstract:
In this paper, we explore classes of irrotational-fluid cosmological models in the context of f(R)-gravity in an attempt to put some theoretical and mathematical restrictions on the form of the f(R) gravitational Lagrangian. In particular, we investigate the consistency of linearized dust models for shear-free cases as well as in the limiting cases when either the gravito-magnetic or gravito-elecric components of the Weyl tensor vanish. We also discuss the existence and consistency of classes of non-expanding irrotational spacetimes in f(R)-gravity.
APA, Harvard, Vancouver, ISO, and other styles
4

Glennon, Keith, and Peter West. "Gravity, dual gravity and A1+++." International Journal of Modern Physics A 35, no. 14 (May 20, 2020): 2050068. http://dx.doi.org/10.1142/s0217751x20500682.

Full text
Abstract:
We construct the nonlinear realisation of the semidirect product of the very extended algebra [Formula: see text] and its vector representation. This theory has an infinite number of fields that depend on a space–time with an infinite number of coordinates. Discarding all except the lowest level field and coordinates the dynamics is just Einstein’s equation for the graviton field. We show that the gravity field is related to the dual graviton field by a duality relation and we also derive the equation of motion for the dual gravity field.
APA, Harvard, Vancouver, ISO, and other styles
5

Verdaguer, E. "Stochastic gravity: beyond semiclassical gravity." Journal of Physics: Conference Series 66 (May 1, 2007): 012006. http://dx.doi.org/10.1088/1742-6596/66/1/012006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Achúcarro, Ana. "Lineal gravity from planar gravity." Physical Review Letters 70, no. 8 (February 22, 1993): 1037–40. http://dx.doi.org/10.1103/physrevlett.70.1037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Baccetti, Valentina, Prado Martín-Moruno, and Matt Visser. "Massive gravity from bimetric gravity." Classical and Quantum Gravity 30, no. 1 (December 4, 2012): 015004. http://dx.doi.org/10.1088/0264-9381/30/1/015004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Merati, G., S. Rampichini, M. Roselli, E. Roveda, G. Pizzini, and A. Veicsteinas. "Gravity and gravidity: will microgravity assist pregnancy?" Sport Sciences for Health 1, no. 3 (May 2006): 129–36. http://dx.doi.org/10.1007/s11332-006-0023-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Goodman, Jim. "Gravity." JOURNAL OF ADVANCES IN PHYSICS 13, no. 2 (March 16, 2017): 4689–91. http://dx.doi.org/10.24297/jap.v13i2.5869.

Full text
Abstract:
Considering two balls of Z protons each near each other the residual electric potential V is calculated. Also the gravitational potential is calculated. The Gravitational constant is the same for both. Thus the electric field creates gravity. This calculation is possible because the multibody energy states are known exactly. The relativistic correction of 2 has been found from the Klein-Gordon Equation solution. This finding is an important step in reducing known forces to one field. Recall the electric field is generated by motion in the magnetic field of atoms of a magnetic dipole. The mass is a function of the length of the magnetic dipole.
APA, Harvard, Vancouver, ISO, and other styles
10

Beierle, Andrew W. M. "Gravity." Harrington Gay Men's Fiction Quarterly 3, no. 3 (June 2001): 40–58. http://dx.doi.org/10.1300/j152v03n03_04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Gravity"

1

Karmakar, Purnendu. "Mimetic Gravity: Exploring an Alternative Theory of Gravity." Doctoral thesis, Università degli studi di Padova, 2017. http://hdl.handle.net/11577/3426214.

Full text
Abstract:
The origin of the late-time accelerated expansion of the universe is still a great mystery. Numerous cosmological models have been proposed to explain this phenomenon. Modern days' technology and equipment have allowed scientists to successfully execute many observations in cosmology and astrophysics: space missions, large ground-based telescopes and gravitational-wave antennas have led to important discoveries and ruled out many models. The Lambda-Cold Dark Matter, model provides a coherent and satisfactory framework to accommodate all fundamental observations. Therefore it is called the "standard model of cosmology''. Despite its many successes, Lambda CDM requires the introduction of dark energy in the form of an unnaturally small cosmological constant and is plagued by fine-tuning problems ("why do dark energy, dark matter and baryons have comparable energy densities today?''). The elementary particle candidates which are assumed to form the cold dark matter component have never been directly detected. These facts can be taken as possible indications of a potential crisis. This has motivated the introduction of various alternative models, among which a novel class of modified gravity theories, called "mimetic gravity'' or "mimetic dark matter-theory'', which aims at explaining both the dark energy and (at least part of) the dark matter components as consequences of a suitable modification of the gravitational theory w.r.t. Einstein General Relativity. (Chapter 1 and 2) In this PhD thesis, we propose the "generalized mimetic gravity theory", which arises in full generality by means of a non-invertible disformal transformation of the most general single scalar field scalar-tensor theory of gravity and implemented our idea for Horndeski and beyond-Horndeski models. This novel class of models is a generalization of the so-called mimetic dark matter theory recently introduced by Chamseddine and Mukhanov, as discussed in Chapters 2 and 3. It can source the background evolution of the universe by mimicking any perfect fluid, including radiation, dark matter, and dark energy. In this chapter, we also show that very general single-scalar-field scalar-tensor theories of gravity are generically invariant under invertible disformal transformations. In Chapter 4 we analyze linear scalar perturbations around a flat Friedmann-Lemaitre-Robertson-Walker (FLRW) background in mimetic Horndeski gravity and show that the sound speed is zero on all backgrounds and therefore the system does not have any wave-like scalar degrees of freedom. Further, we present mimetic vector-tensor theories. In particular, we establish that the non-invertible disformal transformation at the origin of the normalization constraint term in the Einstein-Aether theory, i.e., that the Einstein-Aether theory is also in the class of mimetic theories. We shall also show that an Einstein-Maxwell system sourced by dust can be recovered in the weak limit of a minimal Einstein-Aether theory and that vector field becomes rotation and acceleration free in such a limit (Chapter 5). Finally, in the concluding Chapter 6, we wind up the thesis by discussing some applications and future research directions in mimetic theories of gravity. % So far, it is not ruled out by any observations. The Chapters 3 and 4 are based on our published papers and Chapter 5 is based on the material which will appear in a forthcoming paper (P. Karmakar, T. Koivisto, D. Mota and S. Mukohyama)
L'origine dell' accelerazione con cui attualmente l' universo si sta espandendo è ancora uno dei più grandi misteri della cosmologia. Diversi modelli cosmologici sono stati proposti per spiegare questo fenomeno. Le tecnologie e gli strumenti di misura moderni hanno permesso agli scienziati di eseguire con successo molte osservazioni in cosmologia e astrofisica: missioni spaziali, grandi telescopi terrestri e antenne per misurare le onde gravitazionali hanno portato a importanti scoperte ed escluso molti modelli. Il modello cosmologico cosiddetto "Lambda-Cold Dark Matter" è il modello che meglio spiega in un quadro coerente e soddisfacente tutte le osservazioni fondamentali. Per questo è chiamato il modello "standard della cosmologia". Nonostante i suoi numerosi successi, il modello Lambda CDM richiede l'introduzione della cosiddetta energia oscura sotto forma di un'innaturale piccola costante cosmologica ed è afflitto da problemi di fine-tuning (perchè l'energia oscura, la materia oscura e i barioni hanno densità di energia paragonabili oggi?'). I candidati di particelle elementari che si presume possano formare la componente di materia oscura fredda non sono mai stati rilevati direttamente. Questi fatti possono essere presi come possibili indicazioni di una potenziale crisi. Ciò ha portato all'introduzione di vari modelli alternativi, tra cui una nuova classe di teorie di gravità modificata, detta "gravità mimetica" o "teoria della materia oscura mimetica", che mira a spiegare sia l'energia oscura e (almeno parte de) i componenti di materia oscura come conseguenza di un' opportuna modifica della teoria della gravità rispetto alla Teoria della Relatività Generale di Einstein. (Capitolo 1 e 2) In questa tesi di dottorato, proponiamo la teoria della "gravità mimetica generalizzata", che emerge in piena generalità per mezzo di una trasformazione disforme non-invertibile della teoria scalare-tensoriale della gravita a singolo campo scalare più generale possibile, implementandola poi al caso dei modelli di Horndeski e di modelli che vanno oltre Horndeski. Questa nuova classe di modelli è una generalizzazione della cosiddetta teoria della materia oscura "mimetica", recentemente introdotta da Chamseddine e Mukhanov, come discusso nei capitoli 2 e 3. Essa può far da sorgente all'evoluzione di background dell'universo mimando qualsiasi fluido perfetto, tra cui un fluido di radiazione, di materia oscura e l'energia oscura. In questi capitoli mostriamo anche che teorie scalari-tensoriali della gravita` molto generali a singolo campo scalare sono genericamente invarianti per trasformazioni disformi invertibili. Nel Capitolo 4 analizziamo le perturbazioni scalari lineari intorno ad un background di Friedmann-Lemaitre-Robertson-Walker (FLRW) spazialmente piatto nell'ambito della gravità mimetica di Horndeski e dimostriamo che la velocità del suono è nulla su qualsiasi background e pertanto il sistema non dispone di eventuali gradi di libertà scalari che si propagano. Inoltre, discutiamo teorie mimetiche vettoriali-tensoriali. In particolare, si stabilisce che la condizione di non-nvertibilità della trasformazione disforme è all'origine del termine di vincolo di normalizzazione nella teoria di Einstein-Aether, ovvero che la teoria di Einstein-Aether rientra anch'essa nella classe di teorie mimetiche. Si mostrerà anche che un sistema di Einstein-Maxwell con polvere può essere recuperato nel limite debole di una teoria minimale di Einstein-Ather e che il campo vettoriale di questa teoria diventa irrotazionale e senza accelerazione in tale limite (capitolo 5). Infine, nel Capitolo conclusivo 6, finiamo la tesi discutendo alcune applicazioni e le direzioni future della ricerca in teorie di gravità mimetica. I capitoli 3 e 4 si basano sulle nostre pubblicazioni e il Capitolo 5 si basa sul materiale che apparirà in un prossimo articolo (P. Karmakar, T. Koivisto, D. Mota e S. Mukohyama.
APA, Harvard, Vancouver, ISO, and other styles
2

Amadori, Roberto. "Elastic gravity." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/14071/.

Full text
Abstract:
Descriveremo una teoria di gravità emergente, che ci permette sotto certe condizioni di identificare gli effetti gravitazionali della materia oscura come deformazioni del mezzo di energia oscura tramite elasticità lineare. Per fare ciò, descriveremo quantità necessarie e costanti in tre differenti capitoli. Nella prima parte rivisiteremo la teoria della gravitazione di Newton da un punto di vista classico della gravità basato sulla costante di gravitazione universale e sul potenziale gravitazionale. Nella seconda parte vedremo brevemente alcuni dei risultati principali in cosmologia moderna senza essere troppo specifici. Descriveremo alcuni fatti sperimentali come la velocità di rotazione delle galassie a spirale, che suggerisce l'esistenza della materia oscura. Spiegheremo in oltre il motivo per cui abbiamo bisogno di una scala di accelerazione come alternativa alle teorie sulla materia oscura e come le due possono congiungersi in gravità emergente. Nella terza parte daremo una rigorosa e al contempo elementare descrizione di elasticità lineare. Introdurremo i tensori di sforzo e stress, come sono legati fra di loro e vedremo anche alcuni importanti parametri che ci aiuteranno a descrivere il mezzo di energia oscura nei dettagli. Mostreremo l'esistenza di una direzione preferenziale nel mezzo di energia oscura che identifica una superficie di interfaccia dove tutte le identificazioni possono essere fatte. Nel capitolo finale uniremo finalmente tutte le nozioni date nei tre capitoli precedenti per formulare una semplice, ma allo stesso tempo completa descrizione della teoria, descrivendo i suoi punti forti e deboli. Una volta che abbiamo mostrato che le quantità gravitazionali ed elastiche sono relazionate sotto alcune condizioni nel mezzo di energia oscura, diventerà facile vedere la dualità fra certe leggi, specialmente dal punto di vista energetico.
APA, Harvard, Vancouver, ISO, and other styles
3

Berry, Christopher P. L. "Exploring gravity." Thesis, University of Cambridge, 2014. https://www.repository.cam.ac.uk/handle/1810/245139.

Full text
Abstract:
Gravitation is the dominant influence in most astrophysical interactions. Weak-field interactions have been extensively studied, but the strong-field regime remains largely unexplored. Gravitational waves (GWs) are an excellent means of accessing strong-field regions. We investigate what we can learn about both astrophysics and gravitation from strong-field tests and, in particular, GWs; we focus upon extreme-mass-ratio (EMR) systems where a small body orbits a much more massive one. EMR bursts, a particular class of GW signals, could be used to determine the properties of massive black holes (MBHs). They could be detectable with a space-borne interferometer from many nearby galaxies, as well as the Galactic centre. Bursts could provide insightful constraints on the MBHs' parameters. These could elucidate the formation history of the MBHs and, by association, their host galaxies. The Galactic centre is the most promising source. Its event rate is determined by the stellar distribution surrounding the MBH; the rate is not high, but we still expect to gain useful astronomical information from bursts. Strong-field tests may reveal deviations from general relativity (GR). We calculate modifications that could be observed assuming metric f(R)-gravity as an effective alternative theory. Gravitational radiation is modified, as are planetary precession rates. Both give a means of testing GR. However, existing laboratory measurements already place tighter constraints on f(R)-gravity, unless there exists a screening effect, such as the chameleon mechanism, which suppresses modifications on small scales. To make precision measurements of astrophysical systems or place exacting bounds on deviations from GR, we must have accurate GW templates. Transient resonances are currently not included in the prescription for generating EMR inspiral waveforms. Their effects can be estimated from asymptotic expansions of the evolving orbital parameters. The quantitative impact on parameter estimation has yet to be calculated, but it appears that it shall be necessary to incorporate resonances when creating inspiral waveforms.
APA, Harvard, Vancouver, ISO, and other styles
4

Gravitte, Kristen. "Gravity Hill." NCSU, 2005. http://www.lib.ncsu.edu/theses/available/etd-04292005-095537/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cowe-Spigai, Kereth. "GRAVITY FAILS." Master's thesis, University of Central Florida, 2004. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3168.

Full text
Abstract:
Gravity Fails is a collection of four short stories and two memoirs that explore the ways in which characters adjust and fit into to a world that is destructive, fragmented and sometimes alien. Many of these pieces deal not with the moment of crisis, but with the aftermath. In "Gravity Fails," the young Danielle struggles to feel safe after the violent murder of her mother. Eliza Morrison negotiates the disappearance of her husband in "More Colors." "Following Rebecca" chronicles a woman's return to normalcy after her alcoholic husband divorces her. These characters are not happy; they are not healthy. Their lives have, in some way, been fragmented. But they find ways to move on by whatever possible means, and at their core, they are searching not just for a way to survive, but for a way to put themselves back together and find wholeness.
M.A.
Department of English
Arts and Sciences
English
APA, Harvard, Vancouver, ISO, and other styles
6

Noller, Johannes Joachimov. "Disformal gravity." Thesis, Imperial College London, 2012. http://hdl.handle.net/10044/1/11758.

Full text
Abstract:
An intriguing feature of scalar-tensor theories is the emergence of different metrics, e.g. when matter is minimally coupled to a metric non-trivially related to the Einstein metric g[mu,nu] used to construct the Ricci scalar. Strong equivalence principle constraints then typically force permissible “many-metric” scenarios to reduce to a bimetric picture. In this thesis we first aim to construct the most general bimetric relation, where the two metrics are related by a single scalar degree of freedom [phi] and its derivatives. This results in the disformal metric relation and a natural extension which we present. In the context of primordial structure formation, disformal bimetric theories give rise to “general single field inflation” models of the P(X, [phi]) type. We investigate the perturbative properties of such disformally motivated models. The focus is on non-Gaussian phenomenology and we establish non-Gaussian fingerprints for inflationary single field models and non-inflationary bimetric setups, also going beyond the slow-roll approximation. Furthermore we show that various dualities exist between disformally motivated P(X, [phi]) theories and higher-form models. As an explicit example we use the dual picture to compute non-Gaussian signals for three-form theories. In the context of dark energy/modified gravity, we show that the conformal subgroup of the general disformal relation can be used to construct a generalized “derivative” Chameleon setup. We present and investigate this setup and study its phenomenology. Finally we show that a natural extension of the disformal relation can generate Galileon solutions from a single geometrical invariant - the first Lovelock term - in four dimensions. As such the over-arching theme of this thesis is to show that the disformal bimetric picture and its extensions present us with a geometrical understanding of scalar-tensor/single field models. That they provide a unified description of large classes of scenarios linked to accelerated space-time expansion and also point us towards new physically motivated setups.
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Ying-li. "Nonlocal Gravity." 京都大学 (Kyoto University), 2013. http://hdl.handle.net/2433/180525.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Vey, Dimitri. "Multisymplectic gravity." Paris 7, 2012. http://www.theses.fr/2012PA077261.

Full text
Abstract:
Ce travail de thèse s'inscrit dans cadre de l'application de la Géométrie Différentielle pour la Relativité Générale, en particulier elle présente l'approche de la Géométrie Multisymplectique pour la formulation de plusieurs exemple de théorie de jauge, et de la théorie de gravitation. La Géométrie Multisymplectique nous offre un cadre géométrique pour formuler la théorie classique des champs de manière indépendante des coordonnées, sur des espace-temps généraux. L'idée clé est de construire une description Hamiltonienne de la théorie des champs compatible avec les Principes de la relativité restreinte et générale, des théories des cordes et plus généralement avec toute tentative de comprendre la gravitation. Lespace-temps émerge de la dynamique elle-même et il n'y a pas de séparation espace-temps/champs donnée a priori. N'y a pas de structure d'espace-temps donnée a priori. Les coordonnées d'espace-temps émergent de l'analyse des quantités observables et de la dynamique
RThis thesis is contributed to the topic of modern Mathematical Physics differential Geometry in General Relativity, more exactly, to a study of the multisymplectic geometry approach in formulation of various examples of gauge theories, including theory of gravitation. The multisymplectic geometry provides a geometrical framework to formulate classical field theory in a coordinate free manner on arbitrary space-time manifold. Main idea is to construct a Hamiltonian description of classical fields theory compatible with, Principles of special and general relativity and string theories and more generally any effort towards understanding gravitation. Since space¬time should merge out from the dynamics. We need a description without any space-time/field splitting a priori. There is no space-time structure given a priori. Space-time coordinates should merge out from the analysis of what are the observable quantities and from the dynamics
APA, Harvard, Vancouver, ISO, and other styles
9

Arntzen, Richard. "Gravity Separator Revamping." Doctoral thesis, Norwegian University of Science and Technology, Department of Chemical Engineering, 2001. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-2258.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Akbaba, Esin. "Einstein Aether Gravity." Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/2/12610898/index.pdf.

Full text
Abstract:
In this thesis, we review some basic properties of the Einstein-aether gravity. We derive the field equations from an action and study a subclass of this theory corresponding to the Einstein-Maxwell like theory. We also show that the Gö
del type metrics are also exact solutions of this theory. Furthermore, we determine the observational constraints on the dimensionless preferred parameters of this theory using the parametrized post- Newtonian formalism. We stress that none of calculations and discussions are original in this thesis.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Gravity"

1

Hill, Lisa. Gravity. Chicago, Ill: Raintree, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Frisch-Schmoll, Joy. Gravity. Mankato, MN: Creative Paperbacks, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lanza, Joseph. Gravity. London: Quartet Books, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Daniel, Moreton, ed. Gravity. New York: Scholastic, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gerritsen, Tess. Gravity. New York: Pocket Books, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

1957-, Fantauzzi Frank, and Van Elslander Terence 1957-, eds. Gravity. New York: Princeton Architectural Press, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Publishing, Salt, ed. Gravity. Cambridge, [U.K.]: Salt, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gerritsen, Tess. Gravity. New York: Pocket Books, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gerritsen, Tess. Gravity. New York: Pocket Books, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

ill, Magnuson Diana, ed. Gravity. Bothell, WA: Wright Group, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Gravity"

1

Rice, Donald A. "Gravity and Gravity Reduction." In Contemporary Geodesy: Proceedings of a Conference Held at the Harvard College Observatory-Smithsonian Astrophysical Observatory, Cambridge, Massachusetts, December 1-2, 1958, 40–44. Washington D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm004p0040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wellner, Marcel. "Gravity." In Elements of Physics, 175–91. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3860-8_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Horvath, Joan, and Rich Cameron. "Gravity." In 3D Printed Science Projects, 35–50. Berkeley, CA: Apress, 2016. http://dx.doi.org/10.1007/978-1-4842-1323-0_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Schwichtenberg, Jakob. "Gravity." In Undergraduate Lecture Notes in Physics, 239–44. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19201-7_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lang, Kenneth R. "Gravity." In Essential Astrophysics, 69–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35963-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kibble, R. "Gravity." In Making Use of Physics for GCSE, 17–28. London: Macmillan Education UK, 1989. http://dx.doi.org/10.1007/978-1-349-10328-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bell, J. S. "Gravity." In Fundamental Symmetries, 1–39. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-5389-8_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pitt, Christopher. "Gravity." In Making Games, 23–34. Berkeley, CA: Apress, 2016. http://dx.doi.org/10.1007/978-1-4842-2493-9_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cini, Michele. "Gravity." In UNITEXT for Physics, 135–63. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-71330-4_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Natário, José. "Gravity." In General Relativity Without Calculus, 49–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21452-3_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Gravity"

1

Woillez, Julien, Romain G. Petrov, Roberto Abuter, Fatmé Allouche, Philippe Berio, Roderick Dembet, Frank Eisenhauer, et al. "GRAVITY for MATISSE." In Optical and Infrared Interferometry and Imaging IX, edited by Stephanie Sallum, Joel Sanchez-Bermudez, and Jens Kammerer, 20. SPIE, 2024. http://dx.doi.org/10.1117/12.3019993.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Stoughton, Christopher. "Gravity." In Gravity. US DOE, 2024. http://dx.doi.org/10.2172/2397235.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Burrows, D., C. Van Galder, and T. Chen. "Broadband Gravity – Combining Vertical Gravity Data from Airborne Gravity and Airborne Gravity Gradient Systems." In EAGE 2020 Annual Conference & Exhibition Online. European Association of Geoscientists & Engineers, 2020. http://dx.doi.org/10.3997/2214-4609.202011730.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Degrotte, Sylvain, Christopher Lawrence, Juan-Luis Sanchez, and Russell Lloyd. "Gravity." In ACM SIGGRAPH 2014 Talks. New York, New York, USA: ACM Press, 2014. http://dx.doi.org/10.1145/2614106.2614126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bonnet, Vincent, Alexis Wajsbrot, Horacio Mendoza, and Matthias Baas. "Gravity." In ACM SIGGRAPH 2014 Talks. New York, New York, USA: ACM Press, 2014. http://dx.doi.org/10.1145/2614106.2614186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Karefelt, Per, and Matthias Baas. "Gravity." In ACM SIGGRAPH 2014 Talks. New York, New York, USA: ACM Press, 2014. http://dx.doi.org/10.1145/2614106.2614190.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hamon, Pierre-Loïc, James Harmer, Stuart Penn, and Nicolas Scapel. "Gravity." In ACM SIGGRAPH 2014 Talks. New York, New York, USA: ACM Press, 2014. http://dx.doi.org/10.1145/2614106.2614193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Givargis, Tony. "Gravity." In ASPDAC '21: 26th Asia and South Pacific Design Automation Conference. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3394885.3431514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Samuell, Gemma. "Gravity." In ACM SIGGRAPH 2014 Computer Animation Festival. New York, New York, USA: ACM Press, 2014. http://dx.doi.org/10.1145/2633956.2633994.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Oh, Changhoon, Jeongsoo Park, and Bongwon Suh. "Gravity." In the 16th international conference. New York, New York, USA: ACM Press, 2014. http://dx.doi.org/10.1145/2628363.2634226.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Gravity"

1

Nakamura, Aki, Sarah Buckerfield, and Peter Wynne. Australian Fundamental Gravity Network Absolute Gravity Survey 2015 : Gravity Survey ID: 201590. Geoscience Australia, 2016. http://dx.doi.org/10.11636/record.2016.033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nakamura, A. Australian Fundamental Gravity Network Absolute Gravity Survey 2016: Gravity Survey ID: 201691. Geoscience Australia, 2017. http://dx.doi.org/10.11636/record.2017.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Brown, Benjamin. Special Gravity #8 - Linking Entropy and Gravity. ResearchHub Technologies, Inc., October 2023. http://dx.doi.org/10.55277/researchhub.9a5l0lfj.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sobczak, L. W. Gravity Anomalies. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1987. http://dx.doi.org/10.4095/126945.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Skone, Timothy J. Gravity Separation. Office of Scientific and Technical Information (OSTI), March 2014. http://dx.doi.org/10.2172/1509068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Allen, Treb, Costas Arkolakis, and Yuta Takahashi. Universal Gravity. Cambridge, MA: National Bureau of Economic Research, December 2014. http://dx.doi.org/10.3386/w20787.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Baldwin, Richard, and Daria Taglioni. Gravity for Dummies and Dummies for Gravity Equations. Cambridge, MA: National Bureau of Economic Research, September 2006. http://dx.doi.org/10.3386/w12516.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Anderson, James, and Eric van Wincoop. Gravity with Gravitas: A Solution to the Border Puzzle. Cambridge, MA: National Bureau of Economic Research, January 2001. http://dx.doi.org/10.3386/w8079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Anderson, James, and Yoto Yotov. Short Run Gravity. Cambridge, MA: National Bureau of Economic Research, May 2017. http://dx.doi.org/10.3386/w23458.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Anderson, James. The Gravity Model. Cambridge, MA: National Bureau of Economic Research, December 2010. http://dx.doi.org/10.3386/w16576.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography