Dissertations / Theses on the topic 'Gravity anomalies Geophysics Geology'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 42 dissertations / theses for your research on the topic 'Gravity anomalies Geophysics Geology.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Hussein, Musa Jad. "Integrated and comparative geophysical studies of crustal structure of pull-apart basins the Salton Trough and Death Valley, California regions /." To access this resource online via ProQuest Dissertations and Theses @ UTEP, 2007. http://0-proquest.umi.com.lib.utep.edu/login?COPT=REJTPTU0YmImSU5UPTAmVkVSPTI=&clientId=2515.
Full textJordan, Tom A. R. M. "Gravity anomalies, flexure, and the long-term rigidity of the continental lithosphere." Thesis, University of Oxford, 2007. http://ora.ox.ac.uk/objects/uuid:9f803b42-522e-442b-9849-bb8e6c2a5494.
Full textHernandez, Orlando. "Tectonic analysis of northwestern South America from integrated satellite, airborne and surface potential field anomalies." Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1158512351.
Full textGuo, Bin. "An integrated geophysical investigation of the Tamworth Belt and its bounding faults." Phd thesis, Australia : Macquarie University, 2005. http://hdl.handle.net/1959.14/13240.
Full textBibliography: leaves 202-224.
Introduction -- Geological setting of the New England Fold Belt -- Regional geophysical investigation -- Data acquisition and reduction -- Modelling and interpretation of magnetic data over the Peel Fault -- Modelling and interpretation of magnetic data over the Mooki Fault -- Gravity modelling of the Tamworth Belt and Gunnedah Basin -- Interpretation and discussion -- Conclusions.
This thesis presents new magnetic and gravity data for the Southern New England Fold Belt (SNEFB) and the Gunnedah Basin that adjoins to the west along the Mooki Fault in New South Wales. The SNEFB consists of the Tamworth Belt and Tablelands Complex that are separated by the Peel Fault. The Tablelands Complex to the east of the Peel Fault represents an accretionary wedge, and the Tamworth Belt to the west corresponds to the forearc basin. A total of five east-north-east trending gravity profiles with around 450 readings were conducted across the Tamworth Belt and Gunnedah Basin. Seven ground magnetic traverses of a total length of 60 km were surveyed across the bounding faults of the Tamworth belt, of which five were across the Peel Fault and two were across the Mooki Fault. The gravity data shows two distinct large positive anomalies, one over the Tamworth Belt, known as the Namoi Gravity High and another within the Gunnedah Basin, known as the Meandarra Gravity Ridge. All gravity profiles show similarity to each other. The magnetic data displays one distinct anomaly associated with the Peel Fault and an anomaly immediately east of the Mooki Fault. These new potential field data are used to better constrain the orientation of the Peel and Mooki Faults as well as the subsurface geometry of the Tamworth Belt and Gunnedah Basin, integrating with the published seismic data, geologic observations and new physical properties data. --Magnetic anomalies produced by the serpentinite associated with the Peel Fault were used to determine the orientation of the Peel fault. Five ground magnetic traverses were modelled to get the subsurface geometry of the serpentinite body. Modelling results of the magnetic anomalies across the Peel Fault indicate that the serpentinite body can be mostly modelled as subvertical to steeply eastward dipping tabular bodies with a minimum depth extent of 1-3 km, although the modelling does not constrain the vertical extent. This is consistent with the modelling of the magnetic traverses extracted from aeromagnetic data. Sensitivity analysis of a tabular magnetic body reveals that a minimum susceptibility of 4000x10⁻⁶cgs is needed to generate the observed high amplitude anomalies of around 2000 nT, which is consistent with the susceptibility measurements of serpentinite samples along the Peel Fault ranging from 2000 to 9000 x 10⁻⁶ cgs. Rock magnetic study indicates that the serpentinite retains a strong remanence at some locations. This remanence is a viscous remanent magnetisation (VRM) which is parallel to the present Earth's magnetic field, and explains the large anomaly amplitude over the Peel fault at these locations. The remanence of serpentinite at other localities is not consistent enough to contribute to the observed magnetic anomalies. A much greater depth extent of the Peel Fault was inferred from gravity models. It is proposed that the serpentinite along the Peel Fault was emplaced as a slice of oceanic floor that has been accreted to the front of the arc, or as diapirs rising off the serpentinised part of the mantle wedge above the supra subduction zone.
Magnetic anomalies immediately east of the Mooki Fault once suggested to be produced by a dyke-like body emplaced along the fault were modelled along two ground magnetic traverses and three extracted aeromagnetic lines. Modelling results indicate that the anomalies can be modelled as an east-dipping overturned western limb of an anticline formed as a result of a fault-propagation fold with a shallow thrust step-up angle from the décollement. Interpretation of aeromagnetic data and modelling of the magnetic traverses indicate that the anomalies along the Mooki Fault are produced by the susceptibility contrast between the high magnetic Late Carboniferous Currabubula Formation and/or Early Permian volcanic rocks of the Tamworth Belt and the less magnetic Late Permian-Triassic Sydney-Gunnedah Basin rocks. Gravity modelling indicates that the Mooki Fault has a shallow dip ( ̃25°) to the east. Modelling of the five gravity profiles shows that the Tamworth Belt is thrust westward over the Sydney-Gunnedah Basin for 15-30 km. --The Meandarra Gravity Ridge within the Gunnedah Basin was modelled as a high density volcanic rock unit with a density contrast of 0.25 tm⁻³, compared to the rocks of the Lachlan Fold Belt in all profiles. The volcanic rock unit has a steep western margin and a gently dipping eastern margin with a thickness ranging from 4.5-6 km, and has been generally agreed to have formed within an extensional basin. --The Tamworth Belt, being mainly the product of volcanism of mafic character and thus has high density units, together with the high density Woolomin Association, which is composed chiefly of chert/jasper, basalt, dolerite and metabasalt, produces the Namoi Gravity High. Gravity modelling results indicate that the anomaly over the Tamworth Belt can be modelled as either a configuration where the Tablelands Complex extends westward underthrusting the Tamworth Belt, or a configuration where the Tablelands Complex has been thrust over the Tamworth Belt. When the gravity profiles were modelled with the first configuration, the Peel Fault with a depth extent of around 1 km can only be modelled for the Manilla and Quirindi profiles, modelling of the rest of the gravity profiles indicates that the Tablelands Complex underthrust beneath the Tamworth belt at a much deeper location.
Mode of access: World Wide Web.
xi, 242 leaves ill., maps
Ussami, Naomi. "Interpretation of the gravity anomalies of Bahia state Brazil." Thesis, Durham University, 1986. http://etheses.dur.ac.uk/6828/.
Full textEskamani, Philip K. "Seafloor spreading in the eastern Gulf of Mexico| New evidence for marine magnetic anomalies." Thesis, Colorado State University, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=1564450.
Full textPossible sea-floor spreading anomalies are indentified in marine magnetic surveys conducted in the eastern Gulf of Mexico. A symmetric pattern of lineated anomalies can be correlated with the geomagnetic time scale using previously proposed opening histories for the Gulf of Mexico basin. Lineated magnetic anomalies are characterized by amplitudes of up to 30 nT and wavelengths of 45-55 km, and are correlatable across 12 different ship tracks spanning a combined distance of 6,712 km. The magnetic lineations are orientated in a NW-SE direction with 3 distinct positive lineations on either side of the inferred spreading ridge anomalies. The magnetic anomalies were forward modeled with a 2 km thick magnetic crust composed of vertically bounded blocks of normal and reverse polarity at a model source depth of 10 km. Remnant magnetization intensity and inclination are 1.6 A m-1 and 0.2° respectively, chosen to best fit the magnetic observed amplitudes and, for inclination, in accord with the nearly equatorial position of the Gulf of Mexico during Jurassic seafloor spreading. The current magnetic field is modeled with declination and inclination of and 0.65° and 20° respectively. Using a full seafloor spreading rate of 1.7 cm/yr, the anomalies correlate with magnetic chrons M21 to M10. The inferred spreading direction is consistent with previous suggestions of a North-East to South-West direction of sea-floor spreading off the west coast of Florida beginning 149 Ma (M21) and ending 134 Ma (M10). The opening direction is also consistent with the counter-clockwise rotation of Yucatan proposed in past models.
Hegmann, Mary Jane. "Gravity and magnetic surveys over the Santa Rita Fault System, southeastern Arizona." Thesis, The University of Arizona, 1998. http://hdl.handle.net/10150/278675.
Full textBennett, Randall. "Gravity Investigation of a Normal Fault in Southern St. Landry Parish, Louisiana." Thesis, University of Louisiana at Lafayette, 2019. http://pqdtopen.proquest.com/#viewpdf?dispub=10981215.
Full textPrevious work conducted by Kushiyama (2010) identified a relative gravity profile with an abnormal anomaly across a normal fault. The relative gravity should have decreased when crossing from the upthrown side to the downthrown side. Additional relative gravity data were collected and incorporated with the existing data to create an improved gravity anomaly map. The map shows that the gravity generally increases from the southwest to the northeast in the study area. In two areas where profiles cross the fault at nearly a perpendicular angle, the fault is clearly visible and interpretable from the gravity data. However, along Chris Road, that is not the case. This is most likely caused by an underlying salt ridge (Varvaro, 1958). The mobilization of this salt upwards through more dense strata might be the cause of the low gravity effect of the upthrown side of the fault along Chris Road.
Wyer, Paul Patrick Andrew. "Gravity anomalies and segmentation of the Eastern USA passive continental margin." Thesis, University of Oxford, 2003. http://ora.ox.ac.uk/objects/uuid:cefa0dff-a009-4511-a530-c3e3d3b2da1e.
Full textHuang, Ou. "Terrain Corrections for Gravity Gradiometry." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1339698991.
Full textYale, Mara M. "Modeling upper mantle rheology with numerical experiments and mapping marine gravity with satellite altimetry /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 1997. http://wwwlib.umi.com/cr/ucsd/fullcit?p9823700.
Full textFagbola, Olamide Olawumi. "Integrated study of basins in the Four Corners Region." To access this resource online via ProQuest Dissertations and Theses @ UTEP, 2007. http://0-proquest.umi.com.lib.utep.edu/login?COPT=REJTPTU0YmImSU5UPTAmVkVSPTI=&clientId=2515.
Full textChan, Mei-ki. "Gravity and aeromagnetic modelling of the Longmenshan Fold-and-Thrust Belt, SW China." Click to view the E-thesis via HKUTO, 2008. http://sunzi.lib.hku.hk/hkuto/record/b4020330x.
Full textJones, Michael Bryan. "Correlative Analysis of the Gravity and Megnetic Anomalies of Ohio and their Geologic Significance." The Ohio State University, 1988. http://rave.ohiolink.edu/etdc/view?acc_num=osu1392823447.
Full textTozer, Brook. "Crustal structure, gravity anomalies and subsidence history of the Parnaíba cratonic basin, Northeast Brazil." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:90ce8bb0-e55d-4b3c-87e1-aab60084ef42.
Full textHarbi, Hussein M. "2-D MODELING OF SOUTHERN OHIO BASED ON MAGNETIC FIELD INTENSITY, GRAVITY FILED INTENSITY AND WELL LOG DATA." University of Akron / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=akron1125523809.
Full textAsgharzadeh, Mohammad Forman. "Geodynamical analysis of the Iranian Plateau and surrounding regions." Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1173126914.
Full textChan, Mei-ki, and 陳美琪. "Gravity and aeromagnetic modelling of the Longmenshan Fold-and-Thrust Belt, SW China." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2008. http://hub.hku.hk/bib/B4020330X.
Full textHayward, Nathan. "Marine geophysical study of the Eurasian-African plate boundary in the vicinity of Gorringe Bank." Thesis, University of Oxford, 1996. http://ora.ox.ac.uk/objects/uuid:e2ca90ad-c2e3-4495-97da-f5cc8bcf1e74.
Full textTavarez, Samantha Catherine. "Geophysical Evidence for Mid-crustal Magma Reservoirs in the Lassen Volcanic Region, California." Scholar Commons, 2015. http://scholarcommons.usf.edu/etd/6038.
Full textScully, Malcolm E. "Modeling of Critically-Stratified Gravity Flows: Application to the Eel River Continental Shelf, Northern California." W&M ScholarWorks, 2001. http://www.vims.edu/physical/projects/CHSD/publications/reports/S2001%5FMS.pdf.
Full textvan, den Bremer T. S. "The induced mean flow of surface, internal and interfacial gravity wave groups." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:e735afe7-a77d-455d-a560-e869a9941f69.
Full textSepehrmanesh, Mahnaz. "APPLICATION OF THE KALMAN FILTER ON FULL TENSOR GRAVITY GRADIOMETRY DATA AROUND THE VINTON SALT DOME, LOUISIANA." UKnowledge, 2014. http://uknowledge.uky.edu/ees_etds/26.
Full textSaballos, Jose Armando. "Short and Long Term Volcano Instability Studies at Concepción Volcano, Nicaragua." Scholar Commons, 2013. http://scholarcommons.usf.edu/etd/4757.
Full textOhl, Derek Robert. "Rock formation characterization for carbon dioxide geosequestration: 3D seismic amplitude and coherency anomalies, and seismic petrophysical facies classification, Wellington and Anson-Bates fields, Sumner County, Kansas, USA." Thesis, Kansas State University, 2012. http://hdl.handle.net/2097/13637.
Full textDepartment of Geology
Abdelmoneam Raef
Amid increasing interest in geological sequestration of carbon dioxide (CO2), detailed rock formation characterization has emerged as priority to ensure successful sequestration. Utilizing recent advances in the field of 3D seismic attributes analysis, offers improved opportunities to provide more details when characterizing reservoir formations. In this study, several post-stack seismic attributes integrated with seismic modeling for highlighting critical structural elements and petrophysical facies variation of rock formations at Wellington and Anson-Bates fields, Sumner County, Kansas. A newly acquired 3D Seismic data set and several geophysical well logs are also used to achieve the objectives of this study. Results sought in this study are potentially important for understanding pathways for CO2 to migrate along. Seismic amplitude, coherency, and most negative curvature attributes were used to characterize the subsurface for structural effects on the rock formations of interest. These attributes detect multiple anomaly features that can be interpreted as small throw faults. However, in this study, there is a larger anomalous feature associated with the Mississippian formation that can be interpreted as a small throw fault or incised channel sand. Determining which of the two is very important for flow simulation models to be more exact. Modeling of the seismic was undertaken to help in the interpretation of the Mississippian amplitude anomaly. An artificial neural network, based on well log porosity cross-plots and three seismic attributes, was trained and implemented to yield a seismic petrophysical facies map. The neural network was trained using three volume seismic waveform attributes along with three wells with difference in well log porosity. A reworked lithofacies along small throw faults has been revealed based on comparing the seismic structural attributes and the seismic petrophysical facies. Arbuckle formation characterization was successful to a certain degree. Structural attributes showed multiple faults in the northern half of the survey. These faults are in agreement with known structure in the area associated with the Nemaha uplift. Further characterization of the Arbuckle was hindered by the lack of well data. This study emphasizes the need for greater attention to small-scale features when embarking upon characterization of a reservoir for CO2 based geosequestration.
Pešek, Michal. "Měření vertikálního tíhového gradientu na lokalitě TS-73 "Polom", Trutnov - Babí." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2015. http://www.nusl.cz/ntk/nusl-390186.
Full textDurham, Rachel Lauren. "POTENTIAL FIELD MODELING ACROSS THE NEODYMIUM LINE DEFINING THE PALEOPROTEROZOIC-MESOPROTEROZOIC BOUNDARY OF THE SOUTHEASTERN MARGIN OF LAURENTIA." UKnowledge, 2017. http://uknowledge.uky.edu/ees_etds/53.
Full textKoehl, Daniel Grant. "Investigating an Apparent Structural High in Seismic Data in North Terre Haute, Indiana, Through First-Arrival Traveltime Tomography and Gravity Analysis." Wright State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=wright1559120344838085.
Full textBassett, Daniel Graham. "The relationship between structure and seismogenic behaviour in subduction zones." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:dd284a79-d94a-4732-8dec-cb38c78fca73.
Full textHunter, Shannon K. "Geologic and Paleomagnetic Study of the Miocene Haycock Mountain Tuff: Markagunt Plateau, Southwest Utah." Kent State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=kent1543652864307195.
Full textGac, Sébastien. "Modélisation numérique 3D des caractéristiques physiques des segments de dorsale lente." Phd thesis, Université de Bretagne occidentale - Brest, 2002. http://tel.archives-ouvertes.fr/tel-00008837.
Full textKhurshid, Akbar. "Crustal structure of the Sulaiman Range, Pakistan, from gravity data /." 1991. http://hdl.handle.net/1957/9234.
Full textSoofi, Muhammad Asif. "Crustal structure of the northwestern continental margin of the Indian subcontinent from gravity and magnetic data." Thesis, 1991. http://hdl.handle.net/1957/29074.
Full textGraduation date: 1992
Peavy, Samuel Thomas. "A gravity and magnetic interpretation of the Bay St. George carboniferous subbasin in western Newfoundland /." 1985. http://collections.mun.ca/u?/theses,122576.
Full textDiehl, Theresa Marie 1981. "Gravity analyses for the crustal structure and subglacial geology of West Antarctica, particularly beneath Thwaites Glacier." 2008. http://hdl.handle.net/2152/18359.
Full texttext
Macario, Ana L. G. "Frequency response function analysis of the equatorial margin of Brazil using gravity and bathymetry." Thesis, 1989. http://hdl.handle.net/1957/29232.
Full textGraduation date: 1990
Enriquez, Kelly D. "Three-dimensional gravity analysis of the Pacific-Antarctic east Pacific rise at 36.5°S, 49.8°S and 54.2°S." Thesis, 1994. http://hdl.handle.net/1957/29143.
Full textGraduation date: 1995
Figures in original document are black and white photocopies. Best scan available.
Braga, Luiz F. S. "Isostatic evolution and crustal structures of the Amazon continental margin determined by admittance analyses and inversion of gravity data." Thesis, 1991. http://hdl.handle.net/1957/29265.
Full textWiseman, Ronald. "Potential field modelling and interpretation along the Lithoprobe East onshore seismic reflection transects across the Newfoundland Appalachians /." 1994. http://collections.mun.ca/u?/theses,41270.
Full textScheidhauer, Maren. "Crustal structure of the Queen Charlotte Transform Fault Zone from multichannel seismic reflection and gravity data." Thesis, 1997. http://hdl.handle.net/1957/37218.
Full textGraduation date: 1998
Doguin, Pierre. "Crustal structure and faulting of the Gulf of California from geophysical modeling and deconvolution of magnetic profiles." Thesis, 1989. http://hdl.handle.net/1957/29154.
Full textGraduation date: 1990
Stephenson, Andrew. "Crustal velocity structure of the Southern Nechako Basin, British Columbia, from wide-angle seismic traveltime inversion." Thesis, 2010. http://hdl.handle.net/1828/3145.
Full text