Academic literature on the topic 'Gravity compensation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Gravity compensation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Gravity compensation"

1

Cho, Changhyun, and Seungjong Kim. "Static balancer for the neck of a face robot." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 228, no. 3 (2013): 561–68. http://dx.doi.org/10.1177/0954406213488496.

Full text
Abstract:
We propose a 3-degree of freedom gravity compensator for the neck of a robotic face. The neck of the face robot is configured with yaw-pitch-pitch-roll rotations. Since the yaw rotation is made parallel to gravity, only the pitch-pitch-roll rotations are considered for gravity compensation. The 1-degree of freedom gravity compensator is located at the first pitch joint. A 2-degree of freedom gravity compensator equivalent to the existing gravity compensator is proposed and applied to the second pitch and roll rotations. A parallelogram is adopted between the first and second pitch rotations. O
APA, Harvard, Vancouver, ISO, and other styles
2

Nikolayev, V. S., D. Chatain, D. Beysens, and G. Pichavant. "Magnetic Gravity Compensation." Microgravity Science and Technology 23, no. 2 (2010): 113–22. http://dx.doi.org/10.1007/s12217-010-9217-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Demian, A. A., and A. S. Klimchik. "Gravity Compensation for Mechanisms with Prismatic Joints." Nelineinaya Dinamika 18, no. 5 (2022): 0. http://dx.doi.org/10.20537/nd221212.

Full text
Abstract:
This paper is devoted to the design of gravity compensators for prismatic joints. The proposed compensator depends on the suspension of linear springs together with mechanical transmission mechanisms to achieve the constant application of force along the sliding span of the joint. The use of self-locking worm gears ensures the isolation of spring forces. A constant-force mechanism is proposed to generate counterbalance force along the motion span of the prismatic joint. The constant-force mechanism is coupled with a pin-slot mechanism to transform to adjust the spring tension to counterbalance
APA, Harvard, Vancouver, ISO, and other styles
4

Arakelian, Vigen. "Gravity compensation in robotics." Advanced Robotics 30, no. 2 (2015): 79–96. http://dx.doi.org/10.1080/01691864.2015.1090334.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Yan, and Xue Chen. "A Gravity Compensation Algorithm of Robot Manipulator Control based on the Trigonometric Function." Frontiers in Computing and Intelligent Systems 4, no. 3 (2023): 125–32. http://dx.doi.org/10.54097/fcis.v4i3.11254.

Full text
Abstract:
The conventional gravity compensation algorithm requires precise dynamic parameters and a complex matrix transformation operation, which is difficult in applications to real-time control. In this paper, a simple and practical gravity compensation algorithm is proposed based on the space geometry characteristics of a mechanical arm and the principle of torque balance. This algorithm does not require a complex calculation of space coordinate transformation and does not require obtaining all accurate dynamic models and parameters. It only requires estimating the maximum gravity moment of the mech
APA, Harvard, Vancouver, ISO, and other styles
6

Prange, G. B., M. J. A. Jannink, A. H. A. Stienen, H. van der Kooij, M. J. IJzerman, and H. J. Hermens. "Influence of Gravity Compensation on Muscle Activation Patterns During Different Temporal Phases of Arm Movements of Stroke Patients." Neurorehabilitation and Neural Repair 23, no. 5 (2009): 478–85. http://dx.doi.org/10.1177/1545968308328720.

Full text
Abstract:
Background. Arm support to help compensate for the effects of gravity may improve functional use of the shoulder and elbow during therapy after stroke, but gravity compensation may alter motor control. Objective. To obtain quantitative information on how gravity compensation influences muscle activation patterns during functional, 3-dimensional reaching movements. Methods. Eight patients with mild hemiparesis performed 2 sets of repeated reach and retrieval movements, with and without unloading the arm, using a device that acted at the elbow and forearm to compensate for gravity. Electromyogra
APA, Harvard, Vancouver, ISO, and other styles
7

Ivanov, A. V., and S. A. Zommer. "Analysis of the umbrella-type reflector opening process on a stand with an active gravity compensation system." Spacecrafts & Technologies 5, no. 4 (2021): 208–16. http://dx.doi.org/10.26732/j.st.2021.4.04.

Full text
Abstract:
During the verification of the functioning of the transformed structures in ground conditions, it is necessary to minimize the effect of gravity in order to exclude the occurrence of additional loads on the hinge assemblies and opening mechanisms. To perform this task, when testing a transformable umbrella-type reflector, stands with an active gravity compensation system are used, in which the gravity compensation force is applied to each spoke of the reflector. However, when compensating for the gravity spokes of the reflector, the fixing point of the suspension cable does not coincide with t
APA, Harvard, Vancouver, ISO, and other styles
8

Zhu, Zhuangsheng, Hao Tan, Yue Jia, and Qifei Xu. "Research on the Gravity Disturbance Compensation Terminal for High-Precision Position and Orientation System." Sensors 20, no. 17 (2020): 4932. http://dx.doi.org/10.3390/s20174932.

Full text
Abstract:
The Position and Orientation System (POS) is the core device of high-resolution aerial remote sensing systems, which can obtain the real-time object position and collect target attitude information. The goal of exceeding 0.015°/0.003° of its real-time heading/attitude measurement accuracy is unlikely to be achieved without gravity disturbance compensation. In this paper, a high-precision gravity data architecture for gravity disturbance compensation technology is proposed, and a gravity database with accuracy better than 1 mGal is constructed in the test area. Based on the “Block-Time Variatio
APA, Harvard, Vancouver, ISO, and other styles
9

Kwon, Jay Hyoun, and Christopher Jekeli. "Gravity Requirements for Compensation of Ultra-Precise Inertial Navigation." Journal of Navigation 58, no. 3 (2005): 479–92. http://dx.doi.org/10.1017/s0373463305003395.

Full text
Abstract:
Precision inertial navigation depends not only on the quality of the inertial sensors (accelerometers and gyros), but also on the accuracy of the gravity compensation. With a view toward the next-generation inertial navigation systems, based on sensors whose errors contribute as little as a few metres per hour to the navigation error budget, we have analyzed the required quality of gravity compensation to the navigation solution. The investigation considered a standard compensation method using ground data to predict the gravity vector at altitude for aircraft free-inertial navigation. The nav
APA, Harvard, Vancouver, ISO, and other styles
10

Wang, Hong Min, Zhi Jiang Du, Zhi Kai Zhao, and Rong Qiang Liu. "Research Gravity Compensation for Master Manipulator with Time Delay." Applied Mechanics and Materials 496-500 (January 2014): 1413–16. http://dx.doi.org/10.4028/www.scientific.net/amm.496-500.1413.

Full text
Abstract:
A gravity compensation algorithm for master manipulator used in minimally invasive robot surgery is proposed in this paper. The Lagrange dynamic equation is used to solve the motor output torque for balancing the master gravity. To avoid time delay in signal processing, multi-thread and multi-event technology are used in software control system. With the algorithm, the force by hand is very small under the condition of exist gravity compensation, less output more than 90% of the external force compared with the lack of gravity compensation.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Gravity compensation"

1

Fischer, Annette. "Gravity compensation of deployable space structures." Thesis, University of Cambridge, 2001. https://www.repository.cam.ac.uk/handle/1810/251764.

Full text
Abstract:
Gravity compensation suspension systems are essential to support space structures during tests on Earth, but also impose constraints on the structures that have the effect of changing their behaviour. These constraints, except for those exactly offloading the self-weight, have to be minimised in order to replicate as closely as possible the zero-<I>g</I> conditions of space. The deployable structure that is used for the research carried out is a model of a rigid panel type solar array which is able to deploy and retract automatically. A computational and experimental study of the interaction o
APA, Harvard, Vancouver, ISO, and other styles
2

Tang, Chen. "Design of a Gravity Compensation Actuator for Arm Assistance." Thesis, Virginia Tech, 2018. http://hdl.handle.net/10919/82201.

Full text
Abstract:
This thesis presents the design, simulation, and evaluation of a passive, wearable, and human-scale actuator that includes pulleys and uses polymers for energy storage. Repetitive tasks such as packing boxes on an assembly line may require high strength movements of the shoulder, arm, and hand and may result in musculoskeletal disorders. With the objective to offset the weight of the arm and thereby lower the forces on the muscles in the shoulder and arm, this actuator is able to provide gravity compensation for the upper extremities of workers, if used in conjunction with an arm exoskeleton.
APA, Harvard, Vancouver, ISO, and other styles
3

Mahadeswaraswamy, Chetan. "Atom interferometric gravity gradiometer : disturbance compensation and mobile gradiometry /." May be available electronically:, 2009. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ma, Donghai. "Autonomous torque sensor calibration and gravity compensation for robot manipulators." Thesis, McGill University, 1995. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=23748.

Full text
Abstract:
This thesis addresses calibration of joint torque sensors and identification of a gravity compensation (GComp) model. The two problems are related: calibrated torque information is prerequisite for the GComp model identification; the identified GComp model makes on-line automatic torque sensor calibration possible.<br>In the first part, we propose an autonomous joint torque sensor calibration method, which utilizes combinations of single-joint rotations and an arm's own gravity load. The method determines not only joint torque sensor gains and offsets, but also those of the joint angle sensors
APA, Harvard, Vancouver, ISO, and other styles
5

Turner, Ranger Christian Kelly. "A Novel Method and Two Exoskeletons for Whole-arm Gravity Compensation." Thesis, Virginia Tech, 2021. http://hdl.handle.net/10919/103860.

Full text
Abstract:
This thesis is centered upon the published A Novel Method and Exoskeletons for Whole-arm Gravity Compensation (Turner, Hull 2020), and includes a novel concept for supporting the weight of a person's arm or robotic linkage. The design is capable of supporting weights held near the hand, and provides support regardless of position. This support is provided with a pantograph. The upper-arm and forearm bars are mirrored by smaller copies. Force applied to a pull point on the scaled copy of the arm is flipped and applied at a support point on the forearm or to a tool near the hand. Two exoske
APA, Harvard, Vancouver, ISO, and other styles
6

Moubarak, Salam. "Modeling and control of an upper extremity exoskeleton." Thesis, Lyon, INSA, 2012. http://www.theses.fr/2012ISAL0064.

Full text
Abstract:
Ce travail présente le développement d’un robot exosquelette du membre supérieur pour des applications expérimentales dans le domaine des neurosciences. Le premier chapitre présente une description générale de l’anatomie du bras humain et introduit les principaux mouvements de l’épaule, du coude, et du poignet. Puis, l’état de l’art en matière d’exosquelettes et leurs différentes applications, fonctionnalités et limitations sont dressés. Le deuxième chapitre traite la conception mécanique et la plateforme électronique de notre prototype. Le calibrage et le traitement des signaux de commande et
APA, Harvard, Vancouver, ISO, and other styles
7

Lorin, Clément. "Théorie de la microgravité magnétique. Conception, dimensionnement et contrôle d'environnement microgravitationnel." Thesis, Vandoeuvre-les-Nancy, INPL, 2008. http://www.theses.fr/2008INPL065N/document.

Full text
Abstract:
Cette thèse traite de la compensation magnétique de pesanteur. Tout d’abord, des expériences de lévitation magnétique de fluides sont interprétées à l’aide d’un potentiel magnéto-gravitationnel SL. Puis, l’utilisation d’une méthode générale d’analyse de la force magnétique grâce aux harmoniques du champ magnétique est développée. Elle souligne l’importance et le rôle de chacun des trois premiers harmoniques du champ magnétique sur les configurations de forces résultantes inhérentes à la compensation magnétique de pesanteur. En géométrie cylindrique (invariante par translation) diverses combina
APA, Harvard, Vancouver, ISO, and other styles
8

Nioti, Antonia Eugenia. "Konstruktion av mekanisk anordning för utförande av test- och övningsflyg på en kvadrokopter." Thesis, Högskolan i Gävle, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-22980.

Full text
Abstract:
Testning av flygkontroller på en verklig kvadrokopter är en farlig och utmanande process eftersom kvadrokoptern kan krascha om flygkontrollern inte fungerar eller ifall operatören saknar flygerfarenheter. Den nuvarande lösningen är att montera kvadrokoptern i en mekanisk anordning som möjliggör testning av flygkontroller i säkra miljöer. Problemet med de befintliga testanordningarna är att de inte kan ge realistiska simuleringsförhållanden eftersom de i viss mån påverkar kvadrokopterns rörelse med följden att flygkontroller som utvecklas har begränsad grad av kontroll på kvadrokoptern. Syftet
APA, Harvard, Vancouver, ISO, and other styles
9

LUDOVICO, DANIELE. "Modelling and Control of Cable-Driven Hyper-Redundant Robots." Doctoral thesis, Università degli studi di Genova, 2021. http://hdl.handle.net/11567/1045135.

Full text
Abstract:
Nowadays, inspection and maintenance of industrial sites are often carried out by specialised operators who need to enter narrow and potentially dangerous environments. In this context, cable-driven hyper-redundant robots support the operators to carry out inspection and maintenance tasks proving to be an effective solution in terms of safety. The cable transmission keeps the actuators safe from the possible extreme environmental conditions of the inspection site, and the kinematic redundancy allows the robot to move into narrow environments avoiding obstacles. This dissertation aims to stu
APA, Harvard, Vancouver, ISO, and other styles
10

Aumont, Arnaud. "Contrôle d'impédance de bras interactifs à actionneurs différentiels élastiques." Mémoire, Université de Sherbrooke, 2014. http://hdl.handle.net/11143/5427.

Full text
Abstract:
Le secteur de la robotique domestique est en pleine expansion. Comme toute nouvelle technologie, les capacités offertes aux clients doivent évoluer pour conquérir de nouveaux marchés. Des bras manipulateurs sur ces robots augmenteraient considérablement leurs capacités d'interactions. Mais il faut des bras à la fois performants et sécuritaires avant d'introduire ce type robot dans les domiciles et les hôpitaux. Dans cette optique, le laboratoire IntRoLab a développé un bras muni d'un nouveau type d'actionneur appelé ADE (Actionneur différentiel élastique). Les ADE, de par leur conception, ont
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Gravity compensation"

1

Arakelian, Vigen, ed. Gravity Compensation in Robotics. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95750-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lawrence, Gellert Charles, Miller Jeffrey H, and United States. National Aeronautics and Space Administration., eds. Reaction-compensation technology for microgravity laboratory robots. National Aeronautics and Space Administration, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lawrence, Gellert Charles, Miller Jeffrey H, and United States. National Aeronautics and Space Administration., eds. Reaction-compensation technology for microgravity laboratory robots. National Aeronautics and Space Administration, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Arakelian, Vigen. Gravity Compensation in Robotics. Springer International Publishing AG, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gravity Compensation in Robotics. Springer International Publishing AG, 2023.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Reaction-compensation technology for microgravity laboratory robots. National Aeronautics and Space Administration, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Gravity compensation"

1

Sandoval, Juan, and Med Amine Laribi. "Tool Compensation for a Medical Cobot-Assistant." In Gravity Compensation in Robotics. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95750-6_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ghazaryan, S. D., M. G. Harutyunyan, Yu L. Sargsyan, and V. Arakelian. "Design of Statically Balanced Assistive Devices." In Gravity Compensation in Robotics. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95750-6_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Song, Jae-Bok, Hwi-Su Kim, and Won-Bum Lee. "Multi-DOF Counterbalancing and Applications to Robots." In Gravity Compensation in Robotics. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95750-6_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mottola, Giovanni, Marco Cocconcelli, Riccardo Rubini, and Marco Carricato. "Gravity Balancing of Parallel Robots by Constant-Force Generators." In Gravity Compensation in Robotics. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95750-6_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Klimchik, Alexandr, and Anatol Pashkevich. "Stiffness Modeling for Gravity Compensators." In Gravity Compensation in Robotics. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95750-6_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhang, Yang, and Vigen Arakelian. "Design, Optimization and Control of a Cable-Driven Robotic Suit for Load Carriage." In Gravity Compensation in Robotics. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95750-6_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ghazaryan, S. D., M. G. Harutyunyan, Yu L. Sargsyan, N. B. Zakaryan, and V. Arakelian. "Design of Multifunctional Assistive Devices with Various Arrangements of Gravity Compensation." In Gravity Compensation in Robotics. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95750-6_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Raphaël, Furnémont, Glenn Mathijssen, Tom Verstraten, Bram Vanderborght, and Dirk Lefeber. "Series Parallel Elastic Actuator: Variable Recruitment of Parallel Springs for Partial Gravity Compensation." In Gravity Compensation in Robotics. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95750-6_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nguyen, Vu Linh, and Chin-Hsing Kuo. "A Modularization Approach for Gravity Compensation of Planar Articulated Robotic Manipulators." In Gravity Compensation in Robotics. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95750-6_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ock, Yong-Jin, Zhan-Ming Gu, Jong-Woo An, and Jang-Myung Lee. "Haptic Joystick Impedance Control with Gravity Compensation." In Intelligent Robotics and Applications. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-27529-7_57.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Gravity compensation"

1

Kayawake, Ryotaro, Kazuki Abe, Masahiro Watanabe, Kenjiro Tadakuma, and Satoshi Tadokoro. "Gravity Compensation Mechanism Inspired by Sauropods’ Skeleton." In 2024 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). IEEE, 2024. http://dx.doi.org/10.1109/aim55361.2024.10637138.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zubair, Mohammad, and Seul Jung. "Design and Modelling of Flexure Mechanism Based Gravity Compensation System." In 2024 24th International Conference on Control, Automation and Systems (ICCAS). IEEE, 2024. https://doi.org/10.23919/iccas63016.2024.10773366.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kuroki, Yusaku, and Seiichiro Katsura. "Parallel Wire Mechanism for Gravity Compensation with Variable Elastic Force." In IECON 2024 - 50th Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2024. https://doi.org/10.1109/iecon55916.2024.10905747.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shaw, Ankit. "Advancement in Gravity Compensation and Control for da Vinci Surgical Robot." In 2024 9th International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS). IEEE, 2024. https://doi.org/10.1109/iciibms62405.2024.10792739.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Haruna, Ado, Auwalu Muhammad Abdullahi, Thapanon Noochan, Zahid Ullah, and Ronnapee Chaichaowarat. "Gravity Identification and Admittance Variable Loading Compensation for Single Joint Rehabilitation Exoskeletons." In 2024 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2024. https://doi.org/10.1109/robio64047.2024.10907362.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Morante, Santiago, Juan G. Victores, Santiago Martinez, and Carlos Balaguer. "Sensorless friction and gravity compensation." In 2014 IEEE-RAS 14th International Conference on Humanoid Robots (Humanoids 2014). IEEE, 2014. http://dx.doi.org/10.1109/humanoids.2014.7041370.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Felmlee, Robert, Jordan Smith, Michael Macaulay, et al. "Gravity Compensation Walker: Structure and Safety." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-23792.

Full text
Abstract:
Abstract Morbid obesity is a widespread problem in the united states. The rate of falls and injures is much higher for obese individuals when compared to individuals of normative weight. Obesity can also impose excessive load to the hip and knee joints during the sit-to stand transition, which is conducive to osteoarthritis and increased sedentariety. In order to help individuals with the aforementioned problems, a sit to stand assistive device can be created that compensates for the subject’s lack of propulsive force. This device can reduce the chances of falling while trying to stand and hel
APA, Harvard, Vancouver, ISO, and other styles
8

Chheta, Yogeshkumar R., Rajesh M. Joshi, Krishan Kumar Gotewal, and M. ManoahStephen. "A review on passive gravity compensation." In 2017 International Conference of Electronics, Communication and Aerospace Technology (ICECA). IEEE, 2017. http://dx.doi.org/10.1109/iceca.2017.8203668.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Guan, Shiyin, Zhili Zhang, Zhaofa Zhou, and Yihao Li. "Research on Gravity Compensation Method based on Interpolated Gravity Grid Region." In 2021 International Conference on Machine Learning and Intelligent Systems Engineering (MLISE). IEEE, 2021. http://dx.doi.org/10.1109/mlise54096.2021.00041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Corrigan, Thomas R. J., and Steven Dubowsky. "Emulating Micro-Gravity in Laboratory Studies of Space Robotics." In ASME 1994 Design Technical Conferences collocated with the ASME 1994 International Computers in Engineering Conference and Exhibition and the ASME 1994 8th Annual Database Symposium. American Society of Mechanical Engineers, 1994. http://dx.doi.org/10.1115/detc1994-0312.

Full text
Abstract:
Abstract Experimentally evaluating micro-gravity control and planning algorithms for space robotic systems on earth is difficult because gravity masks the more subtle dynamic forces which dominate in space. Previous experimental test beds for micro-gravity have been largely restricted to planar motion, or have other limitations. Recently developed is a fully spatial system called the VES which overcomes many of these problems. However, compensating for the effects of gravity with the VES is a challenge. Here, two methods of gravity compensation are presented which allow fully spatial emulation
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Gravity compensation"

1

Lu, W. T., and G. Martin. Compensating Gravity Effects in 1-G Small-Scale Structural Modeling. Defense Technical Information Center, 1988. http://dx.doi.org/10.21236/ada208815.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!