To see the other types of publications on this topic, follow the link: Gravity gradiometers.

Dissertations / Theses on the topic 'Gravity gradiometers'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 15 dissertations / theses for your research on the topic 'Gravity gradiometers.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Mahadeswaraswamy, Chetan. "Atom interferometric gravity gradiometer : disturbance compensation and mobile gradiometry /." May be available electronically:, 2009. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Eshagh, Mehdi. "On Satellite Gravity Gradiometry." Doctoral thesis, Stockholm : Skolan för arkitektur och samhällsbyggnad, Kungliga Tekniska högskolan, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-10429.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

While, James. "Spectral methods in gravity gradiometry." Thesis, University of Leeds, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.427791.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Huang, Ou. "Terrain Corrections for Gravity Gradiometry." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1339698991.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Richeson, Justin A. "Gravity gradiometer aided inertial navigation within non-GNSS environments." College Park, Md.: University of Maryland, 2008. http://hdl.handle.net/1903/7852.

Full text
Abstract:
Thesis (Ph. D.) -- University of Maryland, College Park, 2008.
Thesis research directed by: Dept. of Aerospace Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
APA, Harvard, Vancouver, ISO, and other styles
6

Musa, Ahmed. "Mathematical and numerical methods in satellite gravity gradiometry." Thesis, University of Newcastle Upon Tyne, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.391294.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rapstine, Thomas D. "Gravity gradiometry and seismic interpretation integration using spatially guided fuzzy c-means clustering inversion." Thesis, Colorado School of Mines, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=1602383.

Full text
Abstract:

Gravity gradiometry has been used as a geophysical tool to image salt structure in hydrocarbon exploration. The knowledge of the location, orientation, and spatial extent of salt bodies helps characterize possible petroleum prospects. Imaging around and underneath salt bodies can be challenging given the petrophysical properties and complicated geometry of salt. Methods for imaging beneath salt using seismic data exist but are often iterative and expensive, requiring a refinement of a velocity model at each iteration. Fortunately, the relatively strong density contrast between salt and background density structure pro- vides the opportunity for gravity gradiometry to be useful in exploration, especially when integrated with other geophysical data such as seismic. Quantitatively integrating multiple geophysical data is not trivial, but can improve the recovery of salt body geometry and petrophysical composition using inversion. This thesis provides two options for quantitatively integrating seismic, AGG, and petrophysical data that may aid the imaging of salt bodies. Both methods leverage and expand upon previously developed deterministic inversion methods. The inversion methods leverage seismically derived information, such as horizon slope and salt body interpretation, to constrain the inversion of airborne gravity gradiometry data (AGG) to arrive at a density contrast model. The first method involves constraining a top of salt inversion using slope in a seismic image. The second method expands fuzzy c-means (FCM) clustering inversion to include spatial control on clustering based on a seismically derived salt body interpretation. The effective- ness of the methods are illustrated on a 2D synthetic earth model derived from the SEAM Phase 1 salt model. Both methods show that constraining the inversion of AGG data using information derived from seismic images can improve the recovery of salt.

APA, Harvard, Vancouver, ISO, and other styles
8

Uzun, Sibel. "Estimating Parameters of Subsurface Structures from Airborne Gravity Gradiometry Data Using a Monte-Carlo Optimization Method." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1376943930.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sepehrmanesh, Mahnaz. "APPLICATION OF THE KALMAN FILTER ON FULL TENSOR GRAVITY GRADIOMETRY DATA AROUND THE VINTON SALT DOME, LOUISIANA." UKnowledge, 2014. http://uknowledge.uky.edu/ees_etds/26.

Full text
Abstract:
Full tensor gravity (FTG) data are known for their high resolution but also for higher noise in its components due to the dynamic nature of the platform used for data acquisition. Although a review of the literature suggests steady increase in the success of gravity gradiometry, we still cannot take advantage of the full potential of the method, mostly because of the noise with the same amplitude and wavenumber characteristics as the signal that affects these data. Smoothing from common low pass filters removes small wavelength features and makes it difficult to detect structural features and other density variations of interest to exploration. In Kalman filtering the components of the FTG are continuously updated to calculate the best estimation of the state. The most important advantage of the Kalman filter is that it can be applied on gravity gradiometry components simultaneously. In addition, one can incorporate constraints. We use the Laplace’s equation that is the most meaningful constraint for potential field data to extract signal from noise and improve the detection and continuity of density variations. We apply the Kalman filter on the FTG data acquired by Bell Geospace over the Vinton salt dome in southwest Louisiana.
APA, Harvard, Vancouver, ISO, and other styles
10

Teixeira, Lauro Augusto Ribas. "Adensamento gravimétrico da pista de teste de Tietê: estudo da resolução, geometria e profundidade das fontes." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/44/44137/tde-02062015-153627/.

Full text
Abstract:
Um dos sistemas utilizados na geofísica de exploração são os sistemas gravimétricos aerotransportados. Estes sistemas, no entanto,necessitam parametrizações para aferir a qualidade dos levantamentos executados. Com a introdução da aerogravimetria no Brasil, através do levantamento da Bacia do Parnaíba, foi necessário desenvolver uma área de testes para aferição destes equipamentos. Em 2004 foram implantadas 166 estações gravimétricas na região da pista de teste, localizada no município de Tietê, SP. Devido ao crescente interesse na utilização do tensor gradiente da gravidade no estudo de localização de jazidas minerais tornou-se necessário gerar modelos geofísicos mais detalhados com o objetivo de localizar alvos rasos em subsuperfície. Com a finalidade de melhorar o limite de resolução dos testes realizados utilizando diferentes sistemas gravimétricos aerotransportados foi realizado um adensamento da malha gravimétrica da pista teste de Tietê. Para tanto, foram implementadas novas estações gravimétricas, distribuídas em diferentes espaçamentos, estabelecendo a primeira pista brasileira para calibração de aerogravimetria escalar e sistemas de aerogradiometria gravimétrica 3D.
Airborne gravimetric systems are among geophysical systems applied to expl oration. These systems rely on parametrization to gauge the quality of surveys. With the introduction of airborne gravity surveys in Brazil, with the Parnaiba Basin survey, demand for an equipment calibration lane arose.In 2004, 166 gravity stations were set in the test lane area located in the municipality of Tietê, SP. The need for more detailed geophysical models capable of identifying shallow targets resulted from surging interest in applying gravity gradiometric tensor to locate mineral deposits. The Tietê test lane was densified in order to improve the resolution limitation in tests of a range of airborne gravity systems. To achieve that, new gravity stations were set with different spacing. This stablished the first Brazilian calibration lane for scalar gravimetry and 3D airborne gravity gradiometry systems.
APA, Harvard, Vancouver, ISO, and other styles
11

Saraswati, Anita Thea. "Development of a Numerical Tool for Gravimetry and Gradiometry Data Processing and Interpretation : application to GOCE Observations." Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTG077/document.

Full text
Abstract:
Aujourd’hui, la communauté scientifique dispose de jeux de données gravimétriques avec une précision et une résolution spatiale sans précédent qui améliorent nos connaissances du champ gravitationnel terrestre à différentes échelles et longueurs d’ondes, obtenues de mesures du sol à des satellites. Parallèlement à la gravimétrie, l’avancement des observations par satellite fournit à la communauté des modèles d’élévation numérique plus détaillés pour refléter la géométrie de la structure terrestre. Ensemble, ces nouveaux jeux de données offrent une excellente occasion de mieux comprendre les structures et la dynamique de la Terre à l’échelle locale, régionale et mondiale. L'utilisation et l'interprétation de ces données de haute qualité exigent le raffinement des approches standards dans le traitement et l'analyse des données liées à la gravité. Cette thèse consiste en une série d’études visant à améliorer la précision du traitement des données de gravité et gravité de gravité gradients pour les études géodynamiques. Pour ce faire, nous développons un outil, appelé GEEC (Gal Eötvös Earth Calculator), pour calculer précisément les effets gravimétriques dues à tout corps de masse, indépendamment de sa géométrie et de sa distance par rapport aux mesures. Les effets de gravité et des gravité gradients sont calculés analytiquement en utilisant la solution intégrale linéaire d'un polyèdre irrégulier. Les validations aux échelles locale, régionale et mondiale confirment la robustesse des performances du GEEC, où la résolution du modèle, qui dépend à la fois de la taille de la masse corporelle et de sa distance par rapport au point de mesure, contrôle fortement la précision des résultats. Nous présentons une application pour évaluer les paramètres optimaux dans le calcul des gradients de gravité et de gravité dus aux variations de topographie. La topographie joue un rôle majeur dans l'attraction gravitationnelle de la Terre; par conséquent, l'estimation des effets topographiques doit être soigneusement prise en compte dans le traitement des données gravimétriques, en particulier dans les zones de topographie accidentée ou à grande échelle. Pour les études de gravité de haute précision à l'échelle mondiale, le processus de correction de la topographie doit prendre en compte l'effet topographique de la Terre entière. Mais pour les applications locales à régionales basées sur des variations relatives à l'intérieur de la zone, nous montrons que la topographie tronquée à une distance spécifique peut être adéquate, même si ignorer la topographie de cette distance peut générer des erreurs. Pour soutenir ces arguments, nous montrons les relations entre les erreurs relatives à la gravité, la distance de troncature de la topographie et l'étendue de la zone d'étude. Enfin, nous abordons le problème: les mesures GOCE sont-elles pertinentes pour obtenir une image détaillée de la structure d'une plaque de subduction, y compris sa géométrie et ses variations latérales? Les résultats du calcul des avec des modèles de subduction synthétiques calculés à l’altitude moyenne du GOCE (255 km) démontrent que les bords de subduction et les variations latérales du pendage produisent des variations des gradients détectables avec le jeu de données GOCE. Dans l'application à la zone de subduction Izu-Bonin-Mariana (IBM), la topographie et les effets bathymétriques ont été supprimés avec succès. Cependant, dans l'application au cas réel de la zone de subduction Izu-Bonin-Mariana, les caractéristiques géométriques du second ordre du slab sont difficiles à détecter en raison de la présence des effets crustaux restants. Ceci est dû à l'imprécision du modèle crustal global existant qui est utilisée, qui conduit à une élimination impropre de l'effet crustal
Nowadays, the scientific community has at its disposal gravity and gravity gradient datasets with unprecedented accuracy and spatial resolution that enhances our knowledge of Earth gravitational field at various scales and wavelengths, obtained from ground to satellite measurements. In parallel with gravimetry, the advancement of satellite observations provides the community with more detailed digital elevation models to reflect the Earth’s structure geometry. Together, these novel datasets provide a great opportunity to better understand the Earth’s structures and dynamics at local, regional, and global scales. The use and interpretation of these high-quality data require refinement of standard approaches in gravity-related data processing and analysis. This thesis consists of a series of studies aiming to improve the precision in the chain of gravity and gravity gradient data processing for geodynamic studies. To that aim, we develop a tool, named GEEC (Gal Eötvös Earth Calculator) to compute precisely the gravity and gravity gradients effects of due to any mass body regardless of its geometry and its distance from measurements. The gravity and gravity gradients effects are computed analytically using the line integral solution of an irregular polyhedron. The validations at local, regional, and global scales confirm the robustness of GEEC’s performance, where the resolution of the model, that depends on both size of the body mass and its distance from the measurement point, control strongly the accuracy of the results. We present an application for assessing the optimum parameters in computing gravity and gravity gradients due to topography variations. Topography has a major contribution in Earth gravitational attraction, therefore the estimation of topography effects must be carefully considered in the processing of gravity data, especially in areas of rugged topography or in large-scale studies. For high-accuracy gravity studies at a global scale, the topography correction process must consider the topography effect of the entire Earth. But for local to regional applications based on relative variations within the zone, we show that truncated topography at a specific distance can be adequate, although, ignoring the topography pas this distance could produce errors. To support these arguments, we show the relationships between gravity relative errors, topography truncation distance, and the extent of study zone. Lastly, we approach the issue: Are GOCE measurements relevant to obtain a detailed image of the structure of a subducting plate, including its geometry and lateral variation? The results of gravity gradient forward modelling using synthetic subduction models computed at GOCE’s mean altitude (255 km) demonstrate that both subduction edges and lateral variations of subduction angle produce gravity gradient variations that are detectable with GOCE dataset (∼100 km wavelength and 10 mE amplitude). However, in the application to the real case of Izu-Bonin-Mariana subduction zone, the second-order geometric features of the subducting plate are difficult to be detected due to the presence of the remaining crustal effects. This is caused by the inaccuracy of the existing global crustal model, that leads to inaccurate crustal effect removal
APA, Harvard, Vancouver, ISO, and other styles
12

Bhatia, Rachit. "Revolution in Autonomous Orbital Navigation (RAON)." DigitalCommons@USU, 2019. https://digitalcommons.usu.edu/etd/7676.

Full text
Abstract:
Spacecraft navigation is a critical component of any space mission. Space navigation uses on-board sensors and other techniques to determine the spacecraft’s current position and velocity, with permissible accuracy. It also provides requisite information to navigate to a desired position, while following the desired trajectory. Developments in technology have resulted in new techniques of space navigation. However, inertial navigation systems have consistently been the bedrock for space navigation. Recently, the successful space mission GOCE used on-board gravity gradiometer for mapping Earth’s gravitational field. This has motivated the development of new techniques like cold atom accelerometers, to create ultra-sensitive gravity gradiometers, specifically suited for space applications, including autonomous orbital navigation. This research aims to highlight the existing developments in the field of gravity gradiometry and its potential space navigation applications. The study aims to use the Linear Covariance Theory to determine specific sensor requirements to enable autonomous space navigation for different flight regimes.
APA, Harvard, Vancouver, ISO, and other styles
13

Bomfim, Everton Pereira. "O uso dos dados da missão GOCE para a caracterização e a investigação das implicações na estrutura de densidade das Bacias Sedimentares do Amazonas e Solimões, Brasil." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/14/14132/tde-21062013-003455/.

Full text
Abstract:
A maneira mais direta de detectar as anomalias da densidade é pelo estudo do potencial gravitacional e de suas derivadas. A disponibilidade global e a boa resolução dos dados do satélite GOCE, aliadas à disponibilidade de dados de gravimetria terrestre, são ideais para a comparação e classificação das bacias de larga escala, como as bacias sedimentares do Solimões e do Amazonas dentro do Craton amazônico. Foram processados um conjunto de dados, produtos GOCE EGG_TRF_2 Level 2, ao longo das trajetórias do satélite para remover o ruído (shift/drift) nos gradientes da gravidade a partir da técnica crossover (XO). Calculamos a redução das massas topográfica a fim de obter os componentes do gradiente da gravidade e anomalia da gravidade usando modelagem direta com prismas esféricos a partir do modelo de elevação digital, ETOPO1. Desta maneira, a comparação dos dados somente do satélite GOCE com as reduções das massas topográficas referentes aos componentes do gradiente da gravidade permitiram estimar quantidades invariantes que trouxeram uma melhoria na interpretação dos dados do tensor de gravidade. Além disso, comparamos dados terrestres do campo de gravidade com dados do campo de gravidade dos modelos geopotenciais EGM2008 e GOCE, uma vez que os dados terrestres podem ser afetados por erros em longos comprimentos de onda devido a erros de nivelamento, diferentes referenciais de altitudes, e aos problemas em interligar diferentes campanhas de medidas da gravidade. Portanto, estimamos uma melhora e uma nova representação dos mapas das anomalias de gravidade e do tensor gradiente da gravidade nas áreas inacessíveis do Craton Amazônico. As observações forneceram novas entradas para determinar campos regionais a partir dados brutos pre-processados (gradiente de gravidade EGG_TRF_2 L2), bem como a partir de um modelo geopotencial mais recente até grau e ordem 250 dos harmonicos esféricos derivados de dados somente do satélite GOCE para a representação do campo de gravidade como geóide, anomalias da gravidade e os componentes tensor da gravidade, os quais foram quantidades importantes para interpretação, modelagem e estudo dessas estruturas. Finalmente, obtivemos um modelo isostático considerando a estrutura de densidade litosférica estudada através de uma modelagem direta 3D da distribuição de densidade por prismas esféricos usando a geometria do embasamento e descontinuidade do Moho. Além do que, constatamos através da modelagem direta das soleiras de diabásios dentro dos sedimentos mostramos que somente as soleiras dentro da Bacia do Amazonas não são as únicas responsáveis pela anomalia de gravidade positiva que coincide aproximadamente com as espessuras máximas dos sedimentos da Bacia. Talvez, isso possa ser também um resultado de movimentos relativos do Escudo das Guianas situado ao norte da Bacia, e o Escudo Brasileiro situado ao sul. Embora isso seja apenas uma evidência adicional preliminar, não podemos confirmá-las a partir das estimativas do campo da gravidade. Portanto, é necessário outros tipos de dados geofísicos, como por exemplo, evidências mais claras advindas do paleomagnetismo.
The most direct way to detect density anomalies is the study of the gravity potential field and its derivatives. The global availability and good resolution of the GOCE mission coupled with the availability of terrestrial gravity data are ideal for the scope of intercomparison and classification of the two large-scale Amazon and Solimoes sedimentary basins into area of the Amazon Craton. The GOCE data set obtained in satellite tracks were processed from EGG_TRF_2 Level 2 Products generated with the correction needed to remove the noise (shift/drift), and so, to recover the individual components of the gravity gradient tensor using the crossover (XO) points technique. We calculated the topographic masses reductions in order to obtain the gravity gradient components and gravity anomaly (vertical component) using forward modelling from tesseroids from Digital Elevation Model, ETOPO1. Thus, the comparison of the only-satellite GOCE data with the reductions of the topographic masses for the gradient components allowed to estimate invariants quantities for bring an improvement in the interpretation of the gravity tensor data. Furthermore, we compared the terrestrial data gravity field with EGM2008 and GOCE-deduced gravity field because the terrestrial fields may be affected by errors at long wavelengths due to errors in leveling, different height references, and problems in connecting different measurement campaigns. However, we have estimated an improvement and new representations of the gravity anomalies maps and gravity gradient tensor components primary in inaccessible areas of the Amazon Craton. GOCE observations provide new inputs to determine the regional fields from the preprocessed raw data (EGG_TRF_2 L2 gravity gradients), as well from the most recent global geopotential model available up to degree and order 250 developed in spherical harmonics derived only-satellite GOCE data for representing of geoid and others gravity field as gravity anomaly and gravity gradient tensor components, which are important quantities for modelling and studying these structures. Finally, we obtained the isostatic model considering the lithospheric density structure studied through a 3D direct modelling of density distribution using the geometry of basement and Moho discontinuity, assumed to be known as initial constraint. In addition, we found through direct modeling sills and sediment has shown that the diabase sills are not the only ones responsible for positive gravity anomaly map that transects the Amazon Basin, roughly coincident with the maximum thickness of sedimentary rocks or the trough of the basin. Maybe, this could be the result of the relative movements of the Guiana Shield, situated at the north of the Amazon basin, and the Brazilian Shield, situated at the south. Although this is only a preliminary additional evidence, we cannot confirm it only from the data of gravity. It is necessary others types of geophysical data, for example, more clear evidences obtained from paleomagnetism.
APA, Harvard, Vancouver, ISO, and other styles
14

Perrin, Isadora. "Développement expérimental d’un capteur inertiel multi-axe à atomes froids hybride embarquable." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS326.

Full text
Abstract:
Ce manuscrit présente le développement expérimental d’un capteur inertiel à atomes froids mesurant l’accélération de pesanteur, la composante verticale du gradient de gravité et l’accélération horizontale, en choisissant des technologies qui permettent d’obtenir un capteur inertiel embarquable et hybridé avec des capteurs classiques. Le dispositif expérimental permet d’effectuer des séquences d’interférométrie verticales et horizontales avec des transitions Raman stimulées rétroréfléchies contra-propageantes. La séquence d’interférométrie à quatre impulsions Raman a été utilisée pour mesurer le gradient de gravité. Les effets systématiques ont été étudiées afin d’obtenir l’exactitude de la mesure. Notre mesure extrapolée avec une chute libre de 1 mètre et limitée par le bruit de projection quantique permettrait d’atteindre des sensibilités du même ordre que l’état de l’art. Cette méthode est intéressante pour un capteur embarquable car elle est facile à mettre en place, et elle est insensible à la force de Coriolis, qui cause une grosse chute de contraste pour un interféromètre Mach-Zehnder en dynamique. Cette méthode peut être utilisée pour la mesure de rotation dans un capteur inertiel embarqué. Une mesure de l’accélération horizontale a été effectuée en simple diffraction avec des faisceaux lasers Raman horizontaux contra-propageants et rétro-réfléchis. Pour la mesure de l'accélération horizontale, un interféromètre Mach-Zehnder horizontal a été utilisé. Une rampe de fréquence est appliquée sur les faisceaux Raman pour levée la dégénérescence des deux paires Raman. La mesure effectuée a une sensibilité proche de l'état de l'art
This work focuses on the development of a cold-atom inertial sensor measuring the gravity, the vertical gravity gradient and the horizontal acceleration, by choosing technologies enabling to obtain an onboard and hybrid inertial sensor. The experimental setup generates a cold atom cloud of 87Rb, allows vertical et horizontal interferometry sequences using retroreflected contrapropagating stimulated Raman transitions, and allows a maximum free fall distance of 20 cm. The sensitivity obtained for the measurement of the gravity is 68 microGal/VHz and the optimal resolution reached 1,4 microGal after 6000 s of integration. The four-pulses interferometry sequence has been used for the measurement of the vertical gravity gradient. The sensitivity and the systematics have been studied. Our measurement, extrapolated with a sensor allowing 1 meter free fall and limited by quantum projection noise, could reach a sensitivity of 13 E/VHz, competitive with state of the-art. This method could be used for the measurement of rotations in an onboard inertiel sensor. A measurement of horizontal acceleration using simple diffraction interferometer with horizontal retroreflected contrapropagation stimulated Raman transitions. To lift the degeneracy of the two Raman transitions in the horizontal axis with zero-velocity atoms, we chirp the frequency of the Raman beam. It allows us to realize a Mach-Zehnder atom interferometer to measure the horizontal acceleration
APA, Harvard, Vancouver, ISO, and other styles
15

Condi, Francis J. "Estimating subsurface structure through gravity and gravity gradiometry inversion." Thesis, 1999. http://hdl.handle.net/1911/19366.

Full text
Abstract:
We use gravity to estimate rifted margin deep structure with an inversion method that links parameters in the shallow parts of the model to those in the deep parts through an isostatic, uniform extension model. The method provides for variable weighting of prior information, estimates densities and shapes simultaneously, and can be used in the presence and absence of deep seismic data. Synthetic tests of sensitivity to noise indicate that the isostatic extension constraint promotes the recovery of the short wavelength Moho topography, eliminates spatial undulations in deep structure due to noise in the data, and increases the range of acceptable recovered models over no isostatic extension constraint. In application to real data from the Carolina trough, the method recovers models that exhibit anomalously high density in the hinge zone area, apparently anomalously thick crust, and anticorrelation of subcrustal lithospheric densities with crustal densities. The first two features are observed in deep seismic studies. The latter is consistent with melting model predictions. We then present a unified view of the traditional gradiometric observables---differential curvature, horizontal gradient of vertical gravity, and vertical gradient of vertical gravity, in terms of invariants of the full gradient tensor, and examine their ability to recover subsurface structure through an efficient inversion method. Results of synthetic tests performed on selected complex bodies and noise free data indicate differential curvature and the horizontal gradient of vertical gravity do as well as the full tensor in recovering subsurface structure. In the presence of noise, we find that a mass constraint promotes recovery of smooth models and may be more appropriate than finite difference smoothing. Differential curvature appears to be a useful observable when inverted alone and as an early search technique in full tensor inversion.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography