Academic literature on the topic 'Gravity Gravimeters (Geophysical instruments) Altimeter'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Gravity Gravimeters (Geophysical instruments) Altimeter.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Gravity Gravimeters (Geophysical instruments) Altimeter"

1

Brozena, John M., and Mary F. Peters. "An airborne gravity study of eastern North Carolina." GEOPHYSICS 53, no. 2 (February 1988): 245–53. http://dx.doi.org/10.1190/1.1442459.

Full text
Abstract:
The Naval Research Laboratory (NRL) has developed a prototype airborne gravity measurement system. The core of the system is a LaCoste and Romberg air‐sea gravity meter mounted on a three‐axis stable platform. Corrections to the gravimeter data for altitude and variations in altitude are determined from a combination of highly precise radar and pressure altimeters. The original prototype system was designed for use over oceanic areas. We recently incorporated the pressure measurement to extend use of the airborne system to terrestrial regions where occasional radar altitudes over points of known topographic height can be obtained. The radar heights are used to relate the pressure altitudes to absolute altitudes and to determine the slopes of the isobaric surfaces. Vertical accelerations due to horizontal velocity over a curved, rotating earth (the Eötvös correction) and precise two‐dimensional positions are determined from a Texas Instrument P-code global positioning system. The updated system was tested over eastern North Carolina and the Outer Banks, an area that is difficult to survey by conventional means. Over one‐third of the region consists of low lying swampy terrain and another one‐third is the shallow water of the Pamlico and Albemarle Sounds. Neither the land method nor the shipboard gravity surveying method is well suited for these types of areas. Flying at an altitude of 600 m at 375 km/hr, we were able to cover an area over [Formula: see text] with a nominal track spacing of 9 km by 9 km in less than 18 hours of flying time. A comparison by the Defense Mapping Agency showed a 2.8 mGal rms and a −0.2 mGal mean difference between ground truth data and the airborne data at grid points when both data sets were interpolated to a common 9 km grid.
APA, Harvard, Vancouver, ISO, and other styles
2

Schilling, Manuel, Étienne Wodey, Ludger Timmen, Dorothee Tell, Klaus H. Zipfel, Dennis Schlippert, Christian Schubert, Ernst M. Rasel, and Jürgen Müller. "Gravity field modelling for the Hannover 10 m atom interferometer." Journal of Geodesy 94, no. 12 (November 27, 2020). http://dx.doi.org/10.1007/s00190-020-01451-y.

Full text
Abstract:
AbstractAbsolute gravimeters are used in geodesy, geophysics and physics for a wide spectrum of applications. Stable gravimetric measurements over timescales from several days to decades are required to provide relevant insight into geophysical processes. Users of absolute gravimeters participate in comparisons with a metrological reference in order to monitor the temporal stability of the instruments and determine the bias to that reference. However, since no measurement standard of higher-order accuracy currently exists, users of absolute gravimeters participate in key comparisons led by the International Committee for Weights and Measures. These comparisons provide the reference values of highest accuracy compared to the calibration against a single gravimeter operated at a metrological institute. The construction of stationary, large-scale atom interferometers paves the way for a new measurement standard in absolute gravimetry used as a reference with a potential stability up to $$1\,\hbox {nm}{/}{\hbox {s}^{2}}$$ 1 nm / s 2 at 1 s integration time. At the Leibniz University Hannover, we are currently building such a very long baseline atom interferometer with a 10-m-long interaction zone. The knowledge of local gravity and its gradient along and around the baseline is required to establish the instrument’s uncertainty budget and enable transfers of gravimetric measurements to nearby devices for comparison and calibration purposes. We therefore established a control network for relative gravimeters and repeatedly measured its connections during the construction of the atom interferometer. We additionally developed a 3D model of the host building to investigate the self-attraction effect and studied the impact of mass changes due to groundwater hydrology on the gravity field around the reference instrument. The gravitational effect from the building 3D model is in excellent agreement with the latest gravimetric measurement campaign which opens the possibility to transfer gravity values with an uncertainty below the $${10}\,\hbox {nm}{/}{\hbox {s}^{2}}$$ 10 nm / s 2 level.
APA, Harvard, Vancouver, ISO, and other styles
3

Дробышев, М. Н., Д. В. Абрамов, С. Г. Бычков, В. Н. Конешов, М. И. Герман, О. А. Храпенко, С. В. Горожанцев, С. А. Красилов, А. С. Бебнев, and А. В. Овчаренко. "An experiment on the study of synchronous continental microseisms in northern Eurasia using a combination of gravimetric and seismic observations." Геология и геофизика Юга России, no. 2 (June 28, 2019). http://dx.doi.org/10.23671/vnc.2019.2.31979.

Full text
Abstract:
Исследованы непериодические повышения интенсивности микросейсмического шума. На протяжении четырех месяцев осуществлялись синхронные геофизические наблюдения гравиметрами ScintrexCG5 Autograv в Обнинске, Мурманске, Екатеринбурге и Красноярске. При проведении измерений были зарегистрированы множественные случаи синхронного повышения интенсивности микросейсмических шумов, как в пунктах гравиметрических наблюдений, так ив ряде сейсмометрических пунктов северовосточной части Евразии. Продолжительность зарегистрированного аномального повышения микровибраций составляет от нескольких часов до нескольких суток. Высокочувствительные гравиметры регистрируют не только гравитационное поле и его вариации, связанные с приливными изменения силы тяжести и другими неприливными и метеорологическими явлениями, но и высокочастотные вариации, связанные в первую очередь с воздействием процессов инерциального характера. Гравиметры и сейсмографы обладают различными характеристиками, однако, высокочастотное воздействие, от общего источника регистрируется обоими приборами, с той лишь разницей, что в гравиметре оно считается помехой и характеризуется среднеквадратичным отклонением (СКО). СКО гравиметрических данных, и СКО, посчитанное по рядам измерений сейсмометров, обнаруживают высокое сходство. Сопоставление с микросейсмическими шумами позволяет говорить об инерциальной, а не о гравиметрической природе зарегистрированных гравиметрами аномалий. Результаты исследования корреляционных связей сигналов объясняются крупными локальными вариациями микросейсм и метеорологических характеристик, их влиянием на тонкую структуру геофизических сигналов, регистрируемых гравиметрами. Кратковременные полугодовые наблюдения обнаружили особенности геофизических процессов на обширной территории Евразии. Дальнейшие исследования позволят выявить тонкую структуру взаимных влияний геофизических процессов по данным наблюдений чувствительными гравиметрами и сейсмометрами. Учет этого явления необходим при планировании и выполнении высокоточных гравиметрических съемок и долговременных гравиметрических наблюдений. Nonperiodic intensity increase of microseismic noise was researched. During four months, synchronous geophysical observations were carried out using Scintrex CG5 Autograv gravimeters in Obninsk, Murmansk, Yekaterinburg and Krasnoyarsk. During the measurements, multiple cases of synchronous intensity increase of microseismic noise were recorded, both at the gravimetric observation points and at a number of seismometric points in northeastern Eurasia. The duration of the registered anomalous increase in microvibrations ranges from several hours to several days. Highly sensitive gravimeters register not only the gravitational field and its variations associated with tidal changes of gravity and other nontidal and meteorological phenomena, but also highfrequency variations associated primarily with the effects of inertial processes. Gravimeters and seismographs have different characteristics, however, both instruments record highfrequency effects from a common source, with the only difference that in the gravimeter it is considered interference and is characterized by standard deviation (RMS). RMS of gravimetric data, and RMS, calculated by series of seismometers measurements, show high similarity. Comparison with microseismic noise suggests an inertial rather than a gravimetric nature of anomalies recorded by gravimeters. The results of the signals correlation study are explained by large local variations of microseisms and meteorological characteristics, their influence on the fine structure of geophysical signals recorded by gravimeters. Shortterm semiannual observations revealed features of geophysical processes in the vast territory of Eurasia. Further studies will reveal the fine structure of the mutual influences of geophysical processes according to observation data by sensitive gravimeters and seismometers. Consideration of this phenomenon is necessary when planning, performing highprecision gravimetric surveys, and longterm gravimetric observations
APA, Harvard, Vancouver, ISO, and other styles
4

Genova, Antonio, Hauke Hussmann, Tim Van Hoolst, Daniel Heyner, Luciano Iess, Francesco Santoli, Nicolas Thomas, et al. "Geodesy, Geophysics and Fundamental Physics Investigations of the BepiColombo Mission." Space Science Reviews 217, no. 2 (February 26, 2021). http://dx.doi.org/10.1007/s11214-021-00808-9.

Full text
Abstract:
AbstractIn preparation for the ESA/JAXA BepiColombo mission to Mercury, thematic working groups had been established for coordinating the activities within the BepiColombo Science Working Team in specific fields. Here we describe the scientific goals of the Geodesy and Geophysics Working Group (GGWG) that aims at addressing fundamental questions regarding Mercury’s internal structure and evolution. This multidisciplinary investigation will also test the gravity laws by using the planet Mercury as a proof mass. The instruments on the Mercury Planetary Orbiter (MPO), which are devoted to accomplishing the GGWG science objectives, include the BepiColombo Laser Altimeter (BELA), the Mercury orbiter radio science experiment (MORE), and the MPO magnetometer (MPO-MAG). The onboard Italian spring accelerometer (ISA) will greatly aid the orbit reconstruction needed by the gravity investigation and laser altimetry. We report the current knowledge on the geophysics, geodesy, and evolution of Mercury after the successful NASA mission MESSENGER and set the prospects for the BepiColombo science investigations based on the latest findings on Mercury’s interior. The MPO spacecraft of the BepiColombo mission will provide extremely accurate measurements of Mercury’s topography, gravity, and magnetic field, extending and improving MESSENGER data coverage, in particular in the southern hemisphere. Furthermore, the dual-spacecraft configuration of the BepiColombo mission with theMiospacecraft at higher altitudes than the MPO spacecraft will be fundamental for decoupling the internal and external contributions of Mercury’s magnetic field. Thanks to the synergy between the geophysical instrument suite and to the complementary instruments dedicated to the investigations on Mercury’s surface, composition, and environment, the BepiColombo mission is poised to advance our understanding of the interior and evolution of the innermost planet of the solar system.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Gravity Gravimeters (Geophysical instruments) Altimeter"

1

Ridgway, Jeffrey R. "The development of a deep-towed gravity meter, and its use in marine geophysical surveys of offshore Southern California and an airborn laser altimeter survey of Long Valley, California /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 1997. http://wwwlib.umi.com/cr/ucsd/fullcit?p9907824.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Gravity Gravimeters (Geophysical instruments) Altimeter"

1

Kurbanov, M. Razrabotka variometricheskoĭ apparatury dli︠a︡ graviseĭsmoprognosticheskikh issledovaniĭ. Ashgabat: Ylym, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Arnet, Felix. SG 95, das neue Schweregrundnetz der Schweiz. Zürich, Switzerland: Schweizerische Geodätische Kommission, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Voutsas, Alexander M. Lunar gravimeter. Beverly Hills, Calif. (9100 Wilshire Blvd., Beverly Hills 90212): Century University, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Iliff, Robert L. The AFGL absolute gravity system's error budget revisited. Hanscom AFB, MA: Earth Sciences Division, Air Force Geophysics Laboratory, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Iliff, Robert L. The AFGL absolute gravity system's error budget revisited. Hanscom AFB, MA: Earth Sciences Division, Air Force Geophysics Laboratory, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Iliff, Robert L. The AFGL absolute gravity system's error budget revisited. Hanscom AFB, MA: Earth Sciences Division, Air Force Geophysics Laboratory, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wessells, Claude W. Blue Ridge Gravimeter Calibration Base Line, established 1985. Rockville, MD: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, National Ocean Service, Charting and Geodetic Services, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Internationale Alpengravimetrie-Kolloquium (5th 1989 Graz, Austria). Tagungsbericht über das 5. Internationale Alpengravimetrie-Kolloquium, Graz 1989. Wien: Zentralanstalt für Meteorologie und Geodynamik, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lakshmanan, Jacques. Traitement et inversion des données gravimétriques: La microgravimétrie, son application aux recherches de vides. Nancy: Editions de la Fondation scientifique de la géologie et des applications, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Toh, Hiroaki. Anomalies of geomagnetic and geoelectric variations at the seafloor around the Izu-Ogasawara Arc. Nakano-ku, Tokyo: Ocean Research Institute, University of Tokyo, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography