Academic literature on the topic 'Green chemistry'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Green chemistry.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Green chemistry"
Rajendran, N. "Green Chemistry ? A Review." International Journal of Scientific Engineering and Research 3, no. 3 (March 27, 2015): 47–49. https://doi.org/10.70729/ijser1515.
Full textUsak, Muhammet. "GREEN CHEMISTRY EDUCATION." Problems of Education in the 21st Century 82, no. 5 (October 10, 2024): 581–84. http://dx.doi.org/10.33225/pec/24.82.581.
Full textRubab, Laila, Ayesha Anum, Sami A. Al-Hussain, Ali Irfan, Sajjad Ahmad, Sami Ullah, Aamal A. Al-Mutairi, and Magdi E. A. Zaki. "Green Chemistry in Organic Synthesis: Recent Update on Green Catalytic Approaches in Synthesis of 1,2,4-Thiadiazoles." Catalysts 12, no. 11 (October 29, 2022): 1329. http://dx.doi.org/10.3390/catal12111329.
Full textDas, Ananya, Abir Sadhukhan, Soumallya Chakraborty, Somenath Bhattacharya, Dr Amitava Roy, and Dr Arin Bhattacharjee. "Role of Green Chemistry in Organic Synthesis and Protection of Environment." International Journal for Research in Applied Science and Engineering Technology 10, no. 12 (December 31, 2022): 1850–53. http://dx.doi.org/10.22214/ijraset.2022.48373.
Full textPayal Rathi, Saba Nausheen, and Nisha. "Green chemistry and technology for sustainable development." International Journal of Science and Research Archive 8, no. 2 (March 30, 2023): 161–65. http://dx.doi.org/10.30574/ijsra.2023.8.2.0225.
Full textHAN, Buxing. "Green Chemistry." Acta Physico-Chimica Sinica 34, no. 8 (2018): 837. http://dx.doi.org/10.3866/pku.whxb201803211.
Full textKitamura, Yoshiaki. "Green Chemistry." Nippon Shokuhin Kagaku Kogaku Kaishi 57, no. 12 (2010): 546–47. http://dx.doi.org/10.3136/nskkk.57.546.
Full textM0RRISSEY, SUSAN. "GREEN CHEMISTRY." Chemical & Engineering News Archive 82, no. 12 (March 22, 2004): 9. http://dx.doi.org/10.1021/cen-v082n012.p009a.
Full textVaccaro, Luigi. "Green chemistry." Beilstein Journal of Organic Chemistry 12 (December 15, 2016): 2763–65. http://dx.doi.org/10.3762/bjoc.12.273.
Full textPoliakoff, Martyn, and Pete Licence. "Green chemistry." Nature 450, no. 7171 (December 2007): 810–12. http://dx.doi.org/10.1038/450810a.
Full textDissertations / Theses on the topic "Green chemistry"
Liu, Tao. "Chemoinformetics for green chemistry." Doctoral thesis, Linnéuniversitetet, Institutionen för naturvetenskap, NV, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-8634.
Full textGoei, Elisabeth Rukmini. "Using Green Chemistry Experiments to Engage Sophomore Organic Chemistry." Miami University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=miami1280437800.
Full textOmajali, Jacob B. "Novel bionanocatalysts for green chemistry applications." Thesis, University of Birmingham, 2015. http://etheses.bham.ac.uk//id/eprint/6260/.
Full textSivaswamy, Swetha. "Industrial applications of principles of green chemistry." Thesis, Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44776.
Full textCuria, Silvio. "Supercritical carbon dioxide for green polymer chemistry." Thesis, University of Nottingham, 2016. http://eprints.nottingham.ac.uk/36325/.
Full textRahm, Martin. "Green Propellants." Doctoral thesis, KTH, Fysikalisk kemi, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-25835.
Full textQC 20101103
Vallin, Karl S. A. "Regioselective Heck Coupling Reactions : Focus on Green Chemistry." Doctoral thesis, Uppsala University, Department of Medicinal Chemistry, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-3380.
Full textCarbon-carbon bond formation reactions are among the most important processes in chemistry, as they represent key steps in the synthesis of more complex molecules from simple precursors. This thesis describes mainly the development of novel regioselective applications of the mild and versatile palladium-catalyzed carbon-carbon coupling method, commonly known as the Heck reaction. In addition, this thesis will focus on environmentally friendly developments of the Heck reaction.
Novel ligand-controlled internal Heck vinylations of vinyl ethers and enamides to form branched electron-rich dienes were performed with high regioselectivity. The vinylation of 2-hydroxyethyl vinyl ether permits a chemoselective transformation of a vinylic triflate or bromide into a blocked α,β-unsaturated methyl ketone. Furthermore, a simple separation of the palladium catalyst was achieved with new fluorous-tagged bidentate ligands in combination with fluorous solid phase extraction. The reaction times could be reduced up to 1000 times with controlled microwave heating in the palladium-catalyzed reactions with, in the majority of cases, retained, high selectivity.
The development of a “green” regioselective arylation and vinylation method relying on an aqueous DMF-potassium carbonate system and excluding the toxic thallium salt has been accomplished. Ionic liquids as the versatile and environmentally friendly class of solvents have been used in rapid phosphine-free terminal Heck arylations with controlled microwave heating. Recycling of the catalytic medium was achieved after a simple product purification.
Arcelay, Angel R. "The free energy generated by photosystem I and photosystem II of green and blue-green algae /." The Ohio State University, 1988. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487591658173946.
Full textGiménez, Pedrós Marta. "Towards green chemistry: alternative solvents for catalysed carbonylation reactions." Doctoral thesis, Universitat Rovira i Virgili, 2005. http://hdl.handle.net/10803/9076.
Full textEl diòxid de carboni supercrític (scCO2) també s'ha estudiat com a medi de reacció. En el capítol 4 es descriu la síntesis de tres lligands fòsfor-dadors nous que contenen cadenes ramificades, PPh3-n(OC9H19) (n = 1, 2, 3), amb l'objectiu d'utilitzar-los en la reacció d'hidroformilació de 1-octè utilitzant com a dissolvent scCO2. Per tal d'estudiar la química de coordinació d'aquests lligands es van sintetitzar complexos catiònics de Rh(I) i complexos neutres de pal·ladi (II). Per mitjà d'estudis de ressonància magnètica i espectroscòpia infraroja a pressió es van estudiar les espècies que es formen en les condicions de hidroformilació. Els lligands sintetitzats no van donar lloc a sistemes catalítics solubles en scCO2 en les condicions estudiades. Malgrat això aquests sistemes van ser actius per la reacció d'hidroformilació de 1-octè en scCO2 i toluè. En condicions apropiades de reacció s'obtenen conversions i selectivitats elevades en ambdós solvents. Amb el sistema Rh/PPh2(OC9H19) emprant scCO2 com a dissolvent es va obtenir una millora de selectivitat en aldehids.
En el capítol 5 es descriu l'aplicació del lligand P(C6H4-p-OCH2C7F15)3 a la reacció d'hidroformilació de 1-octè,1-decè i estirè catalitzada per rodi. Aquests sistema va resultar soluble en scCO2. Emprant baixes concentracions de rodi i una relació P:Rh = 3, es van observar bones activitats i selectivitats en aldehids per a la hidroformilació d'1-octè. El sistema també va resultar actiu per la hidroformilació d'1-decè i estirè.
La reacció de copolimerització d'alquens i monòxid de carboni catalitzada per pal·ladi permet la síntesi de policetones. Per a la copolimerització de tert-butilestirè i CO, un dels sistemes més actius està basat en l'ús de catalitzadors de pal·ladi amb lligands N-dadors: bipiridina i fenantrolina. En el capítol 6 es descriu el primer exemple de copolimerització de tert-butilestirè i monòxid de carboni catalitzada per sistemes de pal·ladi emprant com a medi de reacció el diòxid de carboni supercrític. Per assolir aquest objectiu es van sintetitzar lligands bipiridina i fenantrolina amb cadenes perfluorades per tal d'augmentar la solubilitat del sistema catalític en scCO2. Es van sintetitzar els complexos neutres de pal·ladi [PdCl(CH3)(Bipif o Phenf)] i els complexes catiònics de pal·ladi [Pd(CH3)(NCCH3)(Bipif o Phenf)]BARF. Els complexos catiònics de pal·ladi van mostrar una elevada solubilitat en scCO2. La reacció de copolimerització de tert-butilestirè i CO es va estudiar tant en scCO2 com en diclormetà com a dissolvents. Els resultats van mostrar que el sistema catalític presenta una activitat similar en diòxid de carboni supercrític a la que s'observa amb diclormetà però en el medi supercrític els copolímers tenen pesos moleculars que arriben a ser el doble del que s'obté en el dissolvent orgànic i amb polidispersitats molt més baixes.
The main objective of this thesis was to study the use of alternative and non-toxic solvents, water and supercritical carbon dioxide, for catalysed hydroformylation and copolymerisation reactions. Rhodium catalysed hydroformylation of 1-octene and 1-decene in biphasic aqueous systems using sulfonated diphosphines (dpppts, dppbts) as ligands was studied in Chapter 3. In order to increase the solubility of the alkenes in water different strategies such as addition of surfactants, co-solvents and a dendrimeric molecule have been studied. The addition of an anionic surfactant to both systems increases the conversion but the selectivity in aldehydes decreases obtaining mainly isomers as reaction products. The addition of a cationic surfactant to the system increases both activity and selectivity in aldehydes. However, high concentrations of cationic surfactants led to loss of catalyst in the organic phase. When 1-octene was used as substrate a slight increase in regioselectivity in nonanal was observed. Using 1-decene and dppbts a ligand high selectivity in aldehydes up to 97% with 63% of conversion were obtained, in addition the system could be recycled maintaining both conversion and selectivity in aldehydes. The addition of methanol as a co-solvent increases the conversion of the reaction, when dppbts was used as a ligand an enhancement in aldehydes selectivity was observed. The use of dendrimer did not improve the results.
In Chapter 4 was studied the hydroformylation of 1-octene in supercritical carbon dioxide. In order to obtain soluble catalyst in supercritical carbon dioxide new ligands containing alkyl chains, PPh3-n(OC9H19)n (n = 1, 2, 3), were synthesised. The coordination of these ligands to rhodium and palladium, the activity of these ligands in hydroformylation of 1-octene in toluene as a solvent and the reactivity of them with CO/H2 were also discussed. Although the ligands were not soluble in scCO2, good activities can be obtained using the appropriate reaction conditions, similar conversion and aldehydes selectivity than the obtained using toluene as a solvent where obtained using P(OC9H19)3 as a ligand. Using PPh(OC9H19)2 and PPh2(OC9H19) as ligands in supercritical carbon dioxide low conversion were observed. However improved selectivities in aldehydes were obtained.
Chapter 5 deals with the use of perfluorinated ligands in order to solubilize the catalyst in supercritical carbon dioxide. A perfluorinated phosphine previously applied to biphasic fluorous hydroformylation was used to study the catalyzed rhodium hydroformylation of 1-octene, 1-decene and styrene in scCO2. The solubility studies showed that the catalytic system was soluble in supercritical carbon dioxide. Good activities and selectivities in aldehydes using 1-octene as a substrate were observed at very low rhodium concentrations and P:Rh ratios.
In Chapter 6 was studied the copolymerisation of 4-tert-butylstirene with CO in supercritical carbon dioxide. To achieve this objective we propose the synthesis of N-donor ligands containing perfluorinated chains. The neutral palladium complexes [PdCl(CH3)(Bipyf o Phenf)] and cationic palladium complexes [Pd(CH3)(NCCH3)(Bipyf o Phenf)]BARF were synthesised. The cationic complexes showed high solubility in supercritical carbon dioxide. These complexes were used as catalysts in the palladium catalysed copolymerisation of 4-tert-butylstirene with CO using scCO2 and dichloromethane as solvents. The results obtained showed that the catalytic system has similar activities in both solvents. However, using carbon dioxide as a solvent the molecular weights are higher than the obtained in dichloromethane in the same reaction conditions. Moreover the polyketones obtained in scCO2 have very narrow molecular weight distribution.
Kopetzki, Daniel. "Exploring hydrothermal reactions : from prebiotic synthesis to green chemistry." Phd thesis, Universität Potsdam, 2011. http://opus.kobv.de/ubp/volltexte/2011/5258/.
Full textIn dieser Arbeit wurden chemische Reaktionen unter Hydrothermalbedingungen untersucht. Darunter versteht man Wasser als Reaktionsmedium, welches eine Temperatur über 100 °C aufweist. Der flüssige Zustand wird dabei durch erhöhten Druck aufrecht erhalten. Typischerweise wurden die Reaktionen bei 200 °C und einem Druck von 100 bar durchgeführt, also dem 100-fachen des Normaldrucks. Dieses System kann man auch mit einem Dampfdrucktopf vergleichen, wobei durch die erhöhten Temperaturen chemische Reaktionen sehr schnell ablaufen und überraschende Reaktivität auftritt. Die Motivation, Wasser als Lösemittel zu benutzen, ist auch in seiner Umweltfreundlichkeit gegenüber klassischen organischen Lösemitteln begründet. Da solche Hydrothermalbedingungen auf der frühen Erde häufiger anzutreffen waren, wurde untersucht, ob wichtige Biomoleküle bei solch hoher Temperatur gebildet werden können. In der Tat konnten Zucker aus der sehr einfachen Verbindung Formaldehyd synthetisiert werden. Hierzu war lediglich eine leicht basische Lösung nötig und keine der bei moderaten Temperaturen essentiellen Katalysatoren. Zucker stellen zudem den größten Teil der pflanzlichen Biomasse dar und können daher als Grundlage für eine nachhaltige Chemie dienen. Sie können relativ einfach zu Lävulin- und Ameisensäure umgesetzt werden. Aus diesen wiederum kann die wichtige Basischemikalie gamma-Valerolacton hergestellt werden. Der Schlüsselschritt, die Reduktion von Lävulinsäure, erforderte bisher die Zuhilfenahme seltener Edelmetalle wie Ruthenium. Es konnte nun gezeigt werden, dass unter Hydrothermalbedingungen diese Rolle von einfachen Salzen, z. B. Natriumsulfat, übernommen werden kann. Hierbei macht man sich zunutze, dass sie nur bei hoher Temperatur basisch wirken, nicht aber wenn die Lösung wieder abgekühlt ist. Neben Kohlenhydraten besteht Biomasse auch aus Aminosäuren, von denen Glycin die einfachste darstellt. Unter Abspaltung von CO2 können aus ihnen synthetisch wichtige Amine hergestellt werden. Diese Reaktion findet unter Hydrothermalbedingungen statt, daneben treten jedoch noch andere Produkte auf. Unbekannte Verbindungen wurden mittels Massenspektroskopie identifiziert, wobei die Masse des Moleküls und bestimmter Molekülfragmente bestimmt wurde. Dies erlaubte es, bisher noch unbekannte Reaktionswege aufzuklären. Zusammenfassend lässt sich sagen, dass Wasser unter Hydrothermalbedingungen eine interessante Alternative zu organischen Lösemitteln darstellt. Desweiteren können bestimmte Katalysatoren, die bei moderaten Temperaturen nötig sind, entweder vollständig eingespart oder ersetzt werden. In dieser Hinsicht ist Wasser nicht nur ein umweltfreundliches Lösemittel, sondern trägt dazu bei, Abfall zu vermeiden und Ressourcen zu schonen.
Books on the topic "Green chemistry"
Ahluwalia, V. K. Green Chemistry. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-58513-6.
Full textSavitskaya, Tatsiana, Iryna Kimlenka, Yin Lu, Dzmitry Hrynshpan, Valentin Sarkisov, Jie Yu, Nabo Sun, Shilei Wang, Wei Ke, and Li Wang. Green Chemistry. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3746-9.
Full textTiwari, Vinod K., Abhijeet Kumar, Sanchayita Rajkhowa, Garima Tripathi, and Anil Kumar Singh. Green Chemistry. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2734-8.
Full textAnastas, Paul T., and Tracy C. Williamson, eds. Green Chemistry. Washington, DC: American Chemical Society, 1996. http://dx.doi.org/10.1021/bk-1996-0626.
Full textAnastas, Paul T., Irvin J. Levy, and Kathryn E. Parent, eds. Green Chemistry Education. Washington, DC: American Chemical Society, 2009. http://dx.doi.org/10.1021/bk-2009-1011.
Full textPłotka-Wasylka, Justyna, and Jacek Namieśnik, eds. Green Analytical Chemistry. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9105-7.
Full textLapkin, Alexei, and David J. C. Constable, eds. Green Chemistry Metrics. Chichester, UK: John Wiley & Sons, Ltd, 2008. http://dx.doi.org/10.1002/9781444305432.
Full textP. Dicks, Andrew, and Andrei Hent. Green Chemistry Metrics. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-10500-0.
Full textDragutan, Valerian, Albert Demonceau, Ileana Dragutan, and Eugene Sh Finkelshtein, eds. Green Metathesis Chemistry. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-3433-5.
Full textBook chapters on the topic "Green chemistry"
Nedwin, Glenn E. "Green Chemistry." In Biotechnology in the Sustainable Environment, 13–32. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-5395-3_3.
Full textColberg, Juan C. "Green Chemistry." In Practical Synthetic Organic Chemistry, 683–702. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118093559.ch16.
Full textAhluwalia, V. K. "Green Chemistry." In Green Chemistry, 1–34. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-58513-6_1.
Full textPaulina, Szmydke‐Cacciapalle. "Chemistry." In Making Jeans Green, 69–96. Abingdon, Oxon; New York, NY: Routledge, 2018.: Routledge, 2018. http://dx.doi.org/10.4324/9781351200554-4.
Full textSavitskaya, Tatsiana, Iryna Kimlenka, Yin Lu, Dzmitry Hrynshpan, Valentin Sarkisov, Jie Yu, Nabo Sun, Shilei Wang, Wei Ke, and Li Wang. "Green Chemistry Technology." In Green Chemistry, 93–105. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3746-9_4.
Full textVarma, Rajender S. "Green Chemistry green chemistry with Microwave Energy green chemistry with microwave energy." In Encyclopedia of Sustainability Science and Technology, 4642–73. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_238.
Full textSavitskaya, Tatsiana, Iryna Kimlenka, Yin Lu, Dzmitry Hrynshpan, Valentin Sarkisov, Jie Yu, Nabo Sun, Shilei Wang, Wei Ke, and Li Wang. "Applications of Green Chemistry." In Green Chemistry, 31–92. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3746-9_3.
Full textSavitskaya, Tatsiana, Iryna Kimlenka, Yin Lu, Dzmitry Hrynshpan, Valentin Sarkisov, Jie Yu, Nabo Sun, Shilei Wang, Wei Ke, and Li Wang. "Aims of Green Chemistry." In Green Chemistry, 15–30. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3746-9_2.
Full textSavitskaya, Tatsiana, Iryna Kimlenka, Yin Lu, Dzmitry Hrynshpan, Valentin Sarkisov, Jie Yu, Nabo Sun, Shilei Wang, Wei Ke, and Li Wang. "Principle of Green Chemistry." In Green Chemistry, 1–14. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3746-9_1.
Full textHorwitz, Colin P. "Oxidation Catalysts green oxidation catalyst for Green Chemistry green chemistry." In Encyclopedia of Sustainability Science and Technology, 7585–618. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_375.
Full textConference papers on the topic "Green chemistry"
Boughton, Bob. "California's Green Chemistry initiative." In 2009 IEEE International Symposium on Sustainable Systems and Technology (ISSST). IEEE, 2009. http://dx.doi.org/10.1109/issst.2009.5156787.
Full textLeitner, Walter. "2022 Green Chemistry GRC." In The Gordon Research Conference (GRC) on Green Chemistry was held at the Rey Don Jaime Grand Hotel in Castelldefels, B, Spain from July 24-29, 2022. The meeting covered a variety of scientific topics and the content presented was highly rated by participants. US DOE, 2022. http://dx.doi.org/10.2172/2007064.
Full textBEACH, EVAN S., and PAUL T. ANASTAS. "PLASTICS ADDITIVES AND GREEN CHEMISTRY." In International Seminar on Nuclear War and Planetary Emergencies 42nd Session. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814327503_0075.
Full textStafford, Nathan, Colin Jennings, Scott Biltek, Phong Nguyen, and Yichen Yao. "Green chemistry for SiN etch." In Advanced Etch Technology and Process Integration for Nanopatterning XIII, edited by Efrain Altamirano-Sánchez and Nihar Mohanty. SPIE, 2024. http://dx.doi.org/10.1117/12.3021929.
Full textSupiandi, Ujang, Ferli Irwansyah, Widodo Azis, and W. Darmalaksana. "Green Chemistry Solution to Environmental Problems." In Proceedings of the 1st International Conference on Islam, Science and Technology, ICONISTECH 2019, 11-12 July 2019, Bandung, Indonesia. EAI, 2020. http://dx.doi.org/10.4108/eai.11-7-2019.2297557.
Full textMartins, Jaelson Marques, José Renato Gomes Lopes, Lucas de Sá Batista, and Carlos Alberto da Silva Júnior. "Education in Green Chemistry supported by Computational Chemistry - A Brief Review." In V Congresso Online Nacional de Química. Congresse.me, 2023. http://dx.doi.org/10.54265/ubfv3817.
Full textTHIELEMANS, WIM. "BIO-BASED POLYMERS: A GREEN CHEMISTRY PERSPECTIVE." In International Seminar on Nuclear War and Planetary Emergencies 42nd Session. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814327503_0078.
Full textO'BRIEN, KAREN PEABODY. "REVOLUTIONARY SCIENCES: GREEN CHEMISTRY AND ENVIRONMENTAL HEALTH." In International Seminar on Nuclear War and Planetary Emergencies 42nd Session. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814327503_0079.
Full textWalia, Ayushi, and Hardev Singh Virdi. "Integrating green chemistry in chemical water treatment." In 2ND INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN COMPUTATIONAL TECHNIQUES. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0140116.
Full textFitri, Asyari Nurul, and Isana Supiah Yosephine Louise. "Analysis of android media development needs in green chemistry-based chemistry learning." In FRONTIERS IN INDUSTRIAL AND APPLIED MATHEMATICS: FIAM2022. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0133609.
Full textReports on the topic "Green chemistry"
Beary, Ellyn S. International workshop on green chemistry and engineering:. Gaithersburg, MD: National Institute of Standards and Technology, 1999. http://dx.doi.org/10.6028/nist.ir.6337.
Full textFühr, Martin, Julian Schenten, and Silke Kleihauer. Integrating "Green Chemistry" into the Regulatory Framework of European Chemicals Policy. Sonderforschungsgruppe Institutionenanalyse, July 2019. http://dx.doi.org/10.46850/sofia.9783941627727.
Full textHovey, Megan. Ligand strategies for green chemistry. Catalysts for amide reduction and hydroamination. Office of Scientific and Technical Information (OSTI), January 2014. http://dx.doi.org/10.2172/1226561.
Full textZeikus, J. Gregory. Green Chemistry Technology and Product Development. Final Report for Intermediary Biochemicals, Inc. Office of Scientific and Technical Information (OSTI), August 2010. http://dx.doi.org/10.2172/1357809.
Full textKalman, Joseph, and Maryam Haddad. Wastewater-derived Ammonia for a Green Transportation Fuel. Mineta Transportation Institute, July 2022. http://dx.doi.org/10.31979/mti.2021.2041.
Full textKalman, Joseph, and Maryam Haddad. Wastewater-derived Ammonia for a Green Transportation Fuel. Mineta Transportation Institute, July 2022. http://dx.doi.org/10.31979/mti.2022.2041.
Full textChidsey, Thomas C., David E. Eby, Michael D. Vanden Berg, and Douglas A. Sprinkel. Microbial Carbonate Reservoirs and Analogs from Utah. Utah Geological Survey, July 2021. http://dx.doi.org/10.34191/ss-168.
Full textSimpson, Sean D., Tanus Abdalla, Steve D. Brown, Christina Canter, Robert Conrado, James Daniell, Asela Dassanayake, et al. Development of a Sustainable Green Chemistry Platform for Production of Acetone and Downstream Drop-in Fuel and Commodity Products directly from Biomass Syngas via a Novel Energy Conserving Route in Engineered Acetogenic Bacteria. Office of Scientific and Technical Information (OSTI), March 2019. http://dx.doi.org/10.2172/1599328.
Full textTschaplinski, Timothy J., Payal Charania, Nancy L. Engle, Richard J. Giannone, Robert {Bob} L. Hettich, Dawn Marie Klingeman, Suresh Poudel, et al. DEVELOPMENT OF A SUSTAINABLE GREEN CHEMISTRY PLATFORM FOR PRODUCTION OF ACETONE AND DOWNSTREAM DROP-IN FUEL AND COMMODITY PRODUCTS DIRECTLY FROM BIOMASS SYNGAS VIA A NOVEL ENERGY CONSERVING ROUTE IN ENGINEERED ACETOGENIC BACTERIA. Office of Scientific and Technical Information (OSTI), July 2019. http://dx.doi.org/10.2172/1543199.
Full textBrett, Christopher, and Richard Hartshorn. FACS in the 21st century. AsiaChem Magazine, November 2020. http://dx.doi.org/10.51167/acm00003.
Full text