Academic literature on the topic 'Green Dyes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Green Dyes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Green Dyes"
Wiriya-Amornchai, Atiwat, Nattakarn Hongsriphan, and Pajeara Pattanatabutr. "Natural Dyeing of Wood Fibers for Green Biocomposites." Advanced Materials Research 488-489 (March 2012): 511–14. http://dx.doi.org/10.4028/www.scientific.net/amr.488-489.511.
Full textHobson, Debra K., and David S. Wales. "‘Green’ dyes." Journal of the Society of Dyers and Colourists 114, no. 2 (October 22, 2008): 42–44. http://dx.doi.org/10.1111/j.1478-4408.1998.tb01944.x.
Full textMaghfiroh, Maghfiroh, Mutadin Mutadin, and Sri Puji Astuti. "ANALISIS KUALITAS DAN KETAHANAN LUNTUR WARNA BATIK HASIL PROSES REUSE SISA LARUTAN CELUP ZAT WARNA SINTETIS GOLONGAN BEJANA MENUJU GREEN INDUSTRY." Pena Jurnal Ilmu Pengetahuan dan Teknologi 34, no. 1 (April 1, 2020): 24. http://dx.doi.org/10.31941/jurnalpena.v34i1.996.
Full textMesrar, F. E., H. Tachallait, O. Cherkaoui, K. Bougrin, and R. Benhida. "Green and sustainable dyeing of wool with madder plant of the Moroccan flora." IOP Conference Series: Materials Science and Engineering 1266, no. 1 (January 1, 2023): 012015. http://dx.doi.org/10.1088/1757-899x/1266/1/012015.
Full textIdan, Intidhar J., Luqman C. Abdullah, Thomas SY Choong, and Siti Nurul Ain B. Md Jamil. "Equilibrium, kinetics and thermodynamic adsorption studies of acid dyes on adsorbent developed from kenaf core fiber." Adsorption Science & Technology 36, no. 1-2 (June 30, 2017): 694–712. http://dx.doi.org/10.1177/0263617417715532.
Full textJ. Jalil, A., S. Mahmood, A. H. Abdul Rashid, S. H. Nasir, S. A. Ibrahim, and M. R. Ahmad. "Extraction of Eco-Friendly Natural Dyes from Pina Leaves and their Application on Wool Fabrics." International Journal of Engineering & Technology 7, no. 4.14 (December 24, 2019): 382. http://dx.doi.org/10.14419/ijet.v7i4.14.27689.
Full textAkter, Humayra, Phillip W. Taylor, and Peter Crisp. "Visibility and Persistence of Fluorescent Dyes, and Impacts on Emergence, Quality, and Survival of Sterile Queensland Fruit Fly Bactrocera tryoni (Diptera: Tephritidae)." Journal of Economic Entomology 113, no. 6 (October 27, 2020): 2800–2807. http://dx.doi.org/10.1093/jee/toaa225.
Full textZhao, Zhong, Chris Hurren, Mingwen Zhang, Liming Zhou, Jihong Wu, and Lu Sun. "In Situ Synthesis of a Double-Layer Chitosan Coating on Cotton Fabric to Improve the Color Fastness of Sodium Copper Chlorophyllin." Materials 13, no. 23 (November 26, 2020): 5365. http://dx.doi.org/10.3390/ma13235365.
Full textShamsheer, Bushra, Tahira Aziz Mughal, Zubaida Yousaf, Nadia Riaz, Arusa Aftab, and Maria Zahoor. "Green Synthesis of Dyes and Appliance on Silk by Using Metamordating Technique." Biological Sciences - PJSIR 64, no. 2 (July 6, 2021): 116–25. http://dx.doi.org/10.52763/pjsir.biol.sci.64.2.2021.116.125.
Full textRehman, Rabia, Sara Jan Muhammad, and Muhammad Arshad. "Brilliant Green and Acid Orange 74 Dyes Removal from Water by Pinus roxburghii Leaves in Naturally Benign Way: An Application of Green Chemistry." Journal of Chemistry 2019 (March 11, 2019): 1–10. http://dx.doi.org/10.1155/2019/3573704.
Full textDissertations / Theses on the topic "Green Dyes"
Aly, Sherif Abdel moez Mohamed Ahmed. "New routes for the synthesis of novel aceanthrene green, phenazine and azaperylene dyes and lateral ring extension of aceanthrene green dyes." Diss., Ludwig-Maximilians-Universität München, 2011. http://nbn-resolving.de/urn:nbn:de:bvb:19-161845.
Full textArmstrong, Lyle. "Synthesis, spectra and photochemistry of trifluoroethyl substituted triphenylmethane dyes." Thesis, University of Newcastle Upon Tyne, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303385.
Full textGoetz, Charity. "Textile dyes techniques and their effects on the environment with a recommendation for dyers concerning the Green effect /." Lynchburg, Va. : Liberty University, 2008. http://digitalcommons.liberty.edu.
Full textYukruk, Funda. "Water Soluble Green Perylenediimide (pdi) Dyes As Potential Sensitizers For Photodynamic Therapy." Phd thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/3/12605693/index.pdf.
Full textan important parameter to be optimized for practical application as a novel photodynamic therapy agent was the excited dye toxicity to dark toxicity. Our results confirmed that these novel perylenediimides acted as sensitizers generating singlet oxygen and the initial in vitro biological experiments demonstrated their potential utility in photodynamic therapy.
Aly, Sherif Abdel moez Mohamed Ahmed [Verfasser], and Heinz [Akademischer Betreuer] Langhals. "New Routes for the Synthesis of Novel Aceanthrene Green, Phenazine and Azaperylene Dyes and Lateral Ring Extension of Aceanthrene Green Dyes / Sherif Abdel moez Mohamed Ahmed Aly. Betreuer: Heinz Langhals." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2011. http://d-nb.info/1015084206/34.
Full textTrujillo, Rebollo Andres. "ROLE OF BRILLIANT GREEN ON THE DETECTION AND SEPARATION OF NON-CHROMOPHORIC ANALYTES BY REVERSED-PHASE LIQUID CHROMATOGRAPHY (DIMERIZATION)." Thesis, The University of Arizona, 1985. http://hdl.handle.net/10150/275434.
Full textCorreia, Sandra Filipa Henriques. "Organic-inorganic hybrid materials for green photonics: luminescent solar concentrators." Doctoral thesis, Universidade de Aveiro, 2017. http://hdl.handle.net/10773/17407.
Full textLuminescent solar concentrators are inexpensive devices that aim to increase the efficiency of photovoltaic cells and promote the urban integration of photovoltaic devices, with unprecedented possibilities of energy harvesting through the façade of buildings, urban furniture or wearable fabrics. Generally, they consist of a transparent matrix coated or doped with active optical centres that absorb the incident solar radiation, which is re-emitted at a specific wavelength and transferred by total internal reflection to the edges where the photovoltaic cells are located. The main objective of this work is the production of luminescent solar concentrators whose optically active layer is based on organic-inorganic hybrid materials doped with europium ions or organic dyes, in particular, Rhodamine 6G and Rhodamine 800. Rhodamine 800, as opposed to europium ions and Rhodamine 6G which emit in the visible range, emits in the near infrared (NIR) range, which is an advantage for crystalline Si-based photovoltaic cells, whose efficiency is greater in the NIR. In this work, although the luminescent solar concentrators with planar geometry are addressed, the main focus is the use cylindrical geometry. The use of this type of geometry allows the effect of concentration to be higher relative to the planar geometry, since the ratio between the exposed area and the area of the edges is increased. The cylindrical geometry is exploited by producing luminescent solar concentrators based on polymer optical fibre (plastic) where the optically active layer is on the outside (as a coating) or inside (as a filling in the hollow core) of the optical fibre. Furthermore, the possibility of increasing the exposed area was also dealt with the production of bundles of luminescent solar concentrators in which the plastic optical fibres are placed side by side and, also, by fabricating luminescent solar concentrators with length in the metre scale.
Os concentradores solares luminescentes são dispositivos de baixo custo que têm como objetivo aumentar a eficiência de células fotovoltaicas e promover a integração de dispositivos fotovoltaicos em elementos do dia-a-dia, tornando possível a captura de energia solar, através da fachada de edifícios, mobiliário urbano ou em têxteis. Geralmente, consistem numa matriz transparente coberta ou dopada com centros óticos ativos, capazes de absorver a radiação solar incidente e reemiti-la com um comprimento de onda específico que será transportada, através de reflexão interna total, para as extremidades da matriz onde se encontra(m) a(s) célula(s) fotovoltaica(s). O principal objetivo deste trabalho consiste na produção de concentradores solares luminescentes cuja camada ótica ativa é baseada em materiais híbridos orgânicos-inorgânicos dopados com iões lantanídeos (európio, Eu3+) ou corantes orgânicos, nomeadamente, Rodamina 6G e Rodamina 800. A Rodamina 800, ao contrário dos iões de európio e da Rodamina 6G que emitem na gama do visível, emite na região espetral do infravermelho próximo (NIR), que se revela uma vantagem quando a célula fotovoltaica em uso é composta de silício cristalino, cuja gama de maior eficiência é no NIR. Neste trabalho, apesar de serem abordados concentradores solares luminescentes com geometria planar, o principal foco é a utilização da geometria cilíndrica. Este tipo de geometria permite que o efeito de concentração seja superior, relativamente à geometria planar, uma vez que a razão entre a área exposta e a área das extremidades é aumentada. A geometria cilíndrica é explorada, através da produção de concentradores solares luminescentes com base em fibra ótica polimérica (plástica) em que a camada ótica ativa se encontra no exterior (como um revestimento) ou no interior (como um preenchimento do núcleo oco). Além disso, a possibilidade de aumentar a área exposta foi, também, abordada com o fabrico de uma matriz de concentradores solares luminescentes colocados lado a lado e, também, com o fabrico de concentradores solares luminescentes na escala do metro.
Abdoul, Hayman Jalal. "Polysaccharide derived mesoporous carbonaceous materials for bulky dyes and metals adsorption from wastewater : green chemical technology for the production of polysaccharide derived mesoporous carbonaceous materials for wastewater treatment." Thesis, University of York, 2015. http://etheses.whiterose.ac.uk/8800/.
Full textSouza, Janilson Lima. "MESOCARPO DO COCO VERDE (Cocos nucífera) COMO ADSORVENTE PARA OS CORANTES: TURQUESA REMAZOL E AZUL REMAZOL." Universidade Federal do Maranhão, 2009. http://tedebc.ufma.br:8080/jspui/handle/tede/902.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
In this work the green coconut mesocarp was used as adsorbent towards two textile dyes: Turquoise Remazol and Blue Remazol. The adsorbent was triturated, washed several times with water for extraction of soluble matter, dried in oven and sieved to obtain particle size between 0.088 and 0.177 mm. Determinations of C/H/N content were performed and the obtained results were: 45.20, 6.24 and 0.74%, respectively. The study of the thermal stability showed that adsorbent is mainly affected up to 200 °C. The infrared and 13C RMN spectra allowed assigning unambiguously vibrational bands the chemical shift characteristics of lignocellulosic materials. According to X-ray and micrographies techniques the adsorbent has an amorphous and irregular structure. The most of the pores diameter values are around 10 to 20 μm, meaning that it can be classified as a macroporous material. The pHzpc of the mesocarp was estimated in 4.1, and the best removal efficiency and uptake were reached at pH 2.0 for both dyes. The kinetic studies were performed at different temperatures (10, 20, 30, 40, 50 oC) , and the best observed uptake results were 91.95%, at 50 ºC, for the Turquoise Remazol, and 97.12%, at 10 ºC, for the Blue Remazol. The best kinetic model that fit well with all the experimental results was the pseudo-second order model (R2 > 0.999), and the observed average contact time for the systems reach the equilibrium was 90 min. The graphic model of adsorption intraparticular presented three lineal segments, indicating that in the adsorption of these dyes three processes are involved: external diffusion or superficial interaction adsorbent/adsorbate, diffusion of the adsorbate into the pores of the adsorbent and interaction of the adsorvate with the active sites inside the pores. The adsorption isotherms followed the Langmuir´s model, and the maximum adsorption values varied between 49.27 to 60.25 mg/g (Turquoise Remazol) and 84.75 to 80.64 mg/g (Blue Remazol) at the temperature interval from 10 to 50 ºC. The thermodynamic parameters confirmed the spontaneity for the two processes of adsorption being endothermic with entropy increase for the Turquoise Remazol and exothermic with entropy increase for the Blue Remazol. The dessorption of the dyes were accomplished in alkaline medium (pH 8,0), and the recovered amounts dyes were of 41.5% (turquoise remazol) and 52.5%, for an equilibrium time of 90 minutes.
Neste trabalho o mesocarpo de coco verde foi utilizado como adsorvente para os dois corantes têxteis: Turquesa Remazol e Azul Remazol. O adsorvente foi triturado, submetido à diversas lavagens para extração de matéria solúvel em água, secado e peneirado obtendo uma granulometria entre 0,088 a 0,177 mm. Teores de microanálise determinaram % de C, H e N sendo iguais a 45,20; 6,24 e 0,74 %, respectivamente. Estudos de estabilidade térmica do adsorvente mostraram que este se mantém inalterado até 200 °C. As principais freqüências vibracionais apresentaram bandas características de materiais lignocelulósicos. A técnica de raios-X determinou um caráter amorfo, e as micrografias mostraram que a superfície do material apresenta morfologia irregular, com diâmetros de poros entre 10-20 μm e uma estrutura macroporosa. O espectro de RMN de 13C é característico de materiais celulósicos. O pHzpc do mesocarpo foi estimado em 4,1, sendo observado uma melhor eficiência de remoção em pH 2,0 para ambos os corantes. As cinéticas foram realizadas em diferentes temperaturas (10, 20, 30, 40 e 50ºC) cujas quantidades máximas removidas foram 91,95 % (50 ºC) para o turquesa remazol e 97,12 % (10 ºC) para o azul remazol, sendo o modelo de pseudo-segunda ordem (R2 > 0,999) o mais adequado com quantidades adsorvidas variando entre 29,93 36,78 mg/g (turquesa remazol) e 38,63 38,29 mg/g (azul remazol) nas faixas de 10 a 50 ºC para um tempo de equilíbrio de 90 minutos. O modelo gráfico de adsorção intraparticular apresentou três segmentos lineares, indicando que na adsorção dos dois corantes estão envolvidos três processos: interação adsorvente/adsorvato superficial externa, difusão do adsorvato dentro dos poros do adsorvente e interação do adsorvato com os sítios ativos dentro dos poros. As isotermas de adsorções foram avaliadas, sendo que as quantidades máximas adsorvidas variaram entre 49,27 60,25 mg/g (turquesa remazol) e 84,75 80,64 mg/g (azul remazol) nas faixas de temperatura de 10 a 50 ºC. Os resultados obtidos seguiram o modelo de Langmuir (R2 > 0,985). Os parâmetros termodinâmicos confirmaram a espontaneidade para os dois processos de adsorção sendo endotérmico com aumento de entropia para o turquesa remazol e exotérmico com aumento de entropia para o azul remazol. A dessorção dos corantes foi realizada em meio alcalino (pH 8,0), sendo recuperado 41,5 % para o turquesa remazol e 52,5 % para o azul remazol em um tempo de equilíbrio de 90 minutos.
Alt, Aizhan [Verfasser]. "The effects of Rho-kinase inhibitor H-1152P, the dyes acid violet-17 and indocyanine green on retinal function in the electrophysiological model of the isolated and perfused vertebrate retina / Aizhan Alt." Lübeck : Zentrale Hochschulbibliothek Lübeck, 2015. http://d-nb.info/1078974322/34.
Full textBooks on the topic "Green Dyes"
Sharma, Sanjay K., ed. Green Chemistry for Dyes Removal from Wastewater. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781118721001.
Full textSharma, Sanjay K. Green chemistry for dyes removal from wastewater: Research trends and applications. Hoboken, New Jersey: Scrivener Publishing/Wiley, 2015.
Find full textInamuddin, Mohd Imran Ahamed, Eric Lichtfouse, and Abdullah M. Asiri, eds. Green Adsorbents to Remove Metals, Dyes and Boron from Polluted Water. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-47400-3.
Full textInternational Conference on Eco-Dyeing, Finishing and Green Chemistry (2011 Hangzhou, China). Eco-Dyeing, Finishing and Green Chemistry: Selected, peer reviewed papers from the 2011 International Conference on Eco-Dyeing, Finishing, and Green Chemistry (EDFGC 2011), June 8-12, 2011, Hangzhou, China. Durnten-Zurich, Switzerland: Trans Tech Publications, 2012.
Find full textAmar, Agarwal, ed. Fundus fluorescein and indocyanine green angiography: A textbook and atlas. Thorofare, NJ: SLACK, 2008.
Find full textservice), SpringerLink (Online, ed. Adsorption of Reactive Red 158 Dye by Chemically Treated Cocos Nucifera L. Shell Powder: Adsorption of Reactive Red 158 by Cocos Nucifera L. Dordrecht: The Author(s), 2011.
Find full text1945-, Chance Jane, and Consortium for the Teaching of the Middle Ages., eds. The assembly of gods =: Le assemble de dyeus, or, Banquet of gods and goddesses, with the discourse of reason and sensuality. Kalamazoo, Mich: Published for TEAMS (the Consortium for the Teaching of the Middle Ages) in association with the University of Rochester by Medieval Institute Publications, Western Michigan University, 1999.
Find full textJack, Alvin R. Traveltime and dispersion of a soluble dye in the South Branch Potomac River, Petersburg to Green Spring, West Virginia. Charleston, W. Va: U.S. Dept. of the Interior, Geological Survey, 1986.
Find full textAhmed, Shakeel, Pintu Pandit, Kunal Singha, and Subhankar Maity. Textile Dyes and Pigments: A Green Chemistry Approach. Wiley & Sons, Incorporated, John, 2022.
Find full textBook chapters on the topic "Green Dyes"
Mondal, Sourav, Mihir Kumar Purkait, and Sirshendu De. "Adsorption of Dyes." In Green Chemistry and Sustainable Technology, 49–98. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6293-3_2.
Full textMondal, Sourav, Mihir Kumar Purkait, and Sirshendu De. "Nanofiltration of Dyes." In Green Chemistry and Sustainable Technology, 153–97. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6293-3_5.
Full textFresno, Fernando, and María Dolores Hernández-Alonso. "Sensitizers: Dyes and Quantum Dots." In Green Energy and Technology, 329–43. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5061-9_16.
Full textGandorfer, Arnd, Christos Haritoglou, and Anselm Kampik. "Toxicity of Indocyanine Green in Vitreoretinal Surgery." In Vital Dyes in Vitreoretinal Surgery, 69–81. Basel: KARGER, 2008. http://dx.doi.org/10.1159/000138974.
Full textMondal, Sourav, Mihir Kumar Purkait, and Sirshendu De. "Adsorption of Dyes from Actual Effluent." In Green Chemistry and Sustainable Technology, 99–139. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6293-3_3.
Full textGrisanti, Salvatore, Andreas Altvater, and Swaantje Peters. "Safety Parameters for Indocyanine Green in Vitreoretinal Surgery." In Vital Dyes in Vitreoretinal Surgery, 43–68. Basel: KARGER, 2008. http://dx.doi.org/10.1159/000138924.
Full textFreeman, Harold S., and Laura C. Edwards. "Iron-Complexed Dyes: Colorants in Green Chemistry." In ACS Symposium Series, 18–32. Washington, DC: American Chemical Society, 2000. http://dx.doi.org/10.1021/bk-2000-0767.ch003.
Full textRani, Manviri, and Uma Shanker. "Removal of Organic Dyes by Functionalized Nanomaterials." In Handbook of Green and Sustainable Nanotechnology, 1–32. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-69023-6_52-1.
Full textWollensak, Gregor. "Biomechanical Changes of the Internal Limiting Membrane after Indocyanine Green Staining." In Vital Dyes in Vitreoretinal Surgery, 82–90. Basel: KARGER, 2008. http://dx.doi.org/10.1159/000138975.
Full textDotto, Guilherme L., Sanjay K. Sharma, and Luiz A. A. Pinto. "Biosorption of Organic Dyes: Research Opportunities and Challenges." In Green Chemistry for Dyes Removal from Wastewater, 295–329. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781118721001.ch8.
Full textConference papers on the topic "Green Dyes"
Kopylova, Tat'yana N., A. V. Reznichenko, Georgy V. Mayer, Lyibov G. Samsonova, V. A. Svetlichny, Rimma T. Kuznetsova, Viktor B. Sukhanov, and E. N. Telminov. "Blue-green laser radiation from dyes in matrix." In International Conference on Atomic and Molecular Pulsed Lasers, edited by Victor F. Tarasenko, Georgy V. Mayer, and Gueorgii G. Petrash. SPIE, 1998. http://dx.doi.org/10.1117/12.311937.
Full textJyoti, Anitha K., Bhanu Prakash, Ramesh L. Dean, and M. Marsaline Beno. "Comparative Energy Performance Analysis at Dyes and Coating Industry." In 2021 International Conference on Computing, Communication and Green Engineering (CCGE). IEEE, 2021. http://dx.doi.org/10.1109/ccge50943.2021.9776474.
Full textOyedeji, F. O., and J. O. Momoh. "Potential Human Hair and Sheep Wool Dyeing Characteristics of Hair Colour Formulations Prepared from Four Vegetable Dyes." In 28th iSTEAMS Multidisciplinary Research Conference AIUWA The Gambia. Society for Multidisciplinary and Advanced Research Techniques - Creative Research Publishers, 2021. http://dx.doi.org/10.22624/aims/isteams-2021/v28n2p11.
Full textAnh, Nguyen Thai, Tran Tien Khoi, Nguyen Nhat Huy, Hoang Thi Ngoc Mai, and Nguyen Hong Ngoc Linh. "Treatment of Wastewater Containing Reactive Dyes by electro-Fenton Method." In 2020 5th International Conference on Green Technology and Sustainable Development (GTSD). IEEE, 2020. http://dx.doi.org/10.1109/gtsd50082.2020.9303141.
Full textChan, Yin Yin, Yean Ling Pang, and Steven Lim. "Heat treatment effect of zinc oxide on the sonocatalytic degradation of organic dyes." In INTERNATIONAL SYMPOSIUM ON GREEN AND SUSTAINABLE TECHNOLOGY (ISGST2019). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5126544.
Full textKupryashina, M. A., T. E. Pylaev, and V. E. Nikitina. "The influence of malachite green on the level of transcriptional expression of the laccase and DyP-peroxidase genes of the Azospirillum brasilense." In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.142.
Full textSetyaningtyas, Tien, Mardiyah Kurniasih, Afrizal Diaz Aztiza Nur Azizi, Kapti Riyani, and Dwi Kartika. "Synthesis of chitosan for removal of methyl orange and malachite green dyes." In VIII INTERNATIONAL ANNUAL CONFERENCE “INDUSTRIAL TECHNOLOGIES AND ENGINEERING” (ICITE 2021). AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0103999.
Full textSelvi, S. Keerthana, and Sangeetha Nachimuthu. "Biosorption of reactive dyes by green synthesis of nanocomposite using Moringa olifera." In PROCEEDINGS OF THE 4TH NATIONAL CONFERENCE ON CURRENT AND EMERGING PROCESS TECHNOLOGIES E-CONCEPT-2021. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0070228.
Full textFiryanto, Rudi, Soebiyono, and Dian Anung Putri. "Utilization of Red Onion Skin Waste as Natural Dyes." In The 7th Engineering International Conference (EIC), Engineering International Conference on Education, Concept and Application on Green Technology. SCITEPRESS - Science and Technology Publications, 2018. http://dx.doi.org/10.5220/0009012704350438.
Full textFiryanto, Rudi, Soebiyono, and Dian Anung Putri. "Utilization of Red Onion Skin Waste as Natural Dyes." In The 7th Engineering International Conference (EIC), Engineering International Conference on Education, Concept and Application on Green Technology. SCITEPRESS - Science and Technology Publications, 2018. http://dx.doi.org/10.5220/0009012704470450.
Full textReports on the topic "Green Dyes"
Cramer, Hailey E., Mark H. Griep, and Shashi P. Karna. Synthesis, Characterization, and Application of Gold Nanoparticles in Green Nanochemistry Dye-Sensitized Solar Cells. Fort Belvoir, VA: Defense Technical Information Center, June 2012. http://dx.doi.org/10.21236/ada568748.
Full textZaharieva, Katerina, Silvia Dimova, Mariya Kyulavska, Filip Ublekov, Irina Stambolova, Ljubomir Dimitrov, and Vladimir Blaskov. Photocatalytic Behaviour of Zinc Oxide/Polystyrene Nanocomposite for Removal of Malachite Green Dye under UV-Light. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, February 2020. http://dx.doi.org/10.7546/crabs.2020.02.08.
Full textTraveltime and dispersion of a soluble dye in the South Branch Potomac River, Petersburg to Green Spring, West Virginia. US Geological Survey, 1986. http://dx.doi.org/10.3133/wri844167.
Full text