Academic literature on the topic 'Green-kubo'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Green-kubo.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Green-kubo"

1

Goldhirsch, I., and T. P. C. van Noije. "Green-Kubo relations for granular fluids." Physical Review E 61, no. 3 (March 1, 2000): 3241–44. http://dx.doi.org/10.1103/physreve.61.3241.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Visscher, P. B. "Green–Kubo formula for collisional relaxation." Journal of Chemical Physics 89, no. 8 (October 15, 1988): 5137–39. http://dx.doi.org/10.1063/1.455630.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Khrustalyov, Yu V., O. S. Vaulina, O. F. Petrov, and V. E. Fortov. "Thermal Properties of Simulated Non-Ideal Systems." Ukrainian Journal of Physics 56, no. 12 (February 2, 2022): 1287. http://dx.doi.org/10.15407/ujpe56.12.1287.

Full text
Abstract:
The dependence of the thermal conductivity on the temperature is studied for a simulated non-ideal Yukawa system by means of the Green–Kubo formula in a wide range of parameters. The phase state of the system under study is changed from a strongly coupled 2D-solid to a low-coupled hot liquid. A method of calculation of the thermal conductivity for 2D-systems via the Green–Kubo formula is developed.
APA, Harvard, Vancouver, ISO, and other styles
4

Jagannathan, A., Y. Oono, and B. Schaub. "Intrinsic viscosity from the Green–Kubo formula." Journal of Chemical Physics 86, no. 4 (February 15, 1987): 2276–85. http://dx.doi.org/10.1063/1.452126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Searles, Debra J., and Denis J. Evans. "The fluctuation theorem and Green–Kubo relations." Journal of Chemical Physics 112, no. 22 (June 8, 2000): 9727–35. http://dx.doi.org/10.1063/1.481610.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pavliotis, G. A. "Asymptotic analysis of the Green-Kubo formula." IMA Journal of Applied Mathematics 75, no. 6 (June 13, 2010): 951–67. http://dx.doi.org/10.1093/imamat/hxq039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yamagishi, Hidenaga. "The Green-Kubo formula in gauge theories." Physica A: Statistical Mechanics and its Applications 158, no. 1 (May 1989): 251–60. http://dx.doi.org/10.1016/0378-4371(89)90526-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sharma, Bhanuday, Rakesh Kumar, Prateek Gupta, Savitha Pareek, and Ashish Singh. "On the estimation of bulk viscosity of dilute nitrogen gas using equilibrium molecular dynamics approach." Physics of Fluids 34, no. 5 (May 2022): 057104. http://dx.doi.org/10.1063/5.0088775.

Full text
Abstract:
In this work, we present a study for the estimation of bulk viscosity using the equilibrium molecular dynamics-based Green–Kubo method. We have performed a parametric study to find optimal hyper-parameters to estimate bulk viscosity using the Green–Kubo method. Although similar studies exist for shear viscosity, none has been reported so far specifically for bulk viscosity. The expected uncertainty in bulk viscosity for a given length and number of molecular dynamics trajectories used in statistical averaging is determined. The effect of system size, temperature, and pressure on bulk viscosity has also been studied. The study reveals that the decay of autocorrelation function for bulk viscosity is slower than that for shear viscosity and hence requires a longer correlation length. A novel observation has been made that the autocorrelation length required for convergence in the Green–Kubo method for both shear and bulk viscosity of dilute nitrogen gas is of the same mean collision time length units irrespective of simulation pressure. However, when the temperature is varied, the required autocorrelation length remains unaffected for shear viscosity but increases slightly with temperature for bulk viscosity. The results obtained from the Green–Kubo method are compared with experimental and numerical results from the literature with special emphasis on their comparison with the results from the nonequilibrium molecular dynamics-based continuous expansion/compression method. Although the primary focus and novelty of this work are the discussion on bulk viscosity, a similar discussion on shear viscosity has also been added.
APA, Harvard, Vancouver, ISO, and other styles
9

Raineri, Fernando O., and Ernesto O. Timmermann. "A Green–Kubo formula for the sedimentation coefficients." Journal of Chemical Physics 91, no. 6 (September 15, 1989): 3685–88. http://dx.doi.org/10.1063/1.456849.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Duque-Zumajo, D., J. A. de la Torre, and Pep Español. "Non-local viscosity from the Green–Kubo formula." Journal of Chemical Physics 152, no. 17 (May 7, 2020): 174108. http://dx.doi.org/10.1063/5.0006212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Green-kubo"

1

Trindade, Ranyere Deyler. "Cálculo da condutividade térmica do Argônio sólido puro e com defeito pontual." Universidade Federal de Goiás, 2008. http://repositorio.bc.ufg.br/tede/handle/tde/2865.

Full text
Abstract:
Submitted by Cássia Santos (cassia.bcufg@gmail.com) on 2014-07-31T12:16:56Z No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Calculo_da_condutividade_termica_do_argonio_solido_puro_e_com_defeito_pontual.pdf: 283748 bytes, checksum: d7815053104cf5341740be05c829feff (MD5)
Made available in DSpace on 2014-07-31T12:16:57Z (GMT). No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Calculo_da_condutividade_termica_do_argonio_solido_puro_e_com_defeito_pontual.pdf: 283748 bytes, checksum: d7815053104cf5341740be05c829feff (MD5) Previous issue date: 2008-03-14
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
In this work, using the Green-Kubo method combined with Molecular Dynamic (DM), we calculate the thermal conductivity of a solid Argon "free of defects"and with point defect present, for temperatures varying from 10 up to 60 K at density 22,3 ml/mol. The obtained results are in good agreement with the available theoretical and experimental results in the limites of low and high temperatures, but with some discrepances in about 15 % for intermediate values of temperatures. The purpose to include point defects with the objective of correction of the simulational results to compare with experimental measuremments for intermediate temperatues had not the expected e?ect. However, we believe that it should be due to the fact that the density used in the simulation for the point defect is high based on the experimental estimates of point defect density in this system. Our results suggest that the Green-Kubo method combined with Molecular Dynamics is a powerful tool to calculate the thermal conductivity of solids at high temperatures. With the construction of accurate and reliable interatomic potentials to describe more complex materials, such as high temperature ceramic and minerals at extreme condiction of pressure and temperature, this method could soon become very useful to calculate thermal conductivity in materials where the access to experimental data is hard.
Neste trabalho, usando o método de Green-Kubo combinado com a Dinâmica Molecular (DM), calculamos a condutividade têrmica do Argônio sólido livre de defeitos ;e com defeitos pontuais presentes, para um intervalo de temperatura variando de 10 a 60 K e uma densidade de 22,3 ml/mol. Os resultados obtidos estão em pleno acordo com os resultados teóricos e experimentais disponíveis nos limites de baixa e alta temperatura, mas com alguma discrepância em torno de 15 % para valores intermediários de temperatura. A proposta para incluir defeitos pontuais com o objetivo de correção dos resultados da simulação para comparar com as medidas experimentais para temperaturas intermediárias não surtiu o efeito esperado, no entanto, acreditamos que isto se deve ao fato da densidade de defeitos ser alta baseado em estimativas da densidade de defeitos neste sistema. Nossos resultados sugerem que o método de Green-Kubo combinado com DM é uma ferramenta poderosa para se calcular a condutividade térmica de sólidos a altas temperaturas. Com a construção de potenciais interatômicos mais precisos e con fiáveis para descrever materiais mais complexos, como é o caso de cerâmicas a altas temperaturas e minerais em condições extrema de pressão e temperatura, esse método poderá em breve ser muito útil para calcular a condutividade térmica em materiais onde o acesso a dados experimentais é mais difícil.
APA, Harvard, Vancouver, ISO, and other styles
2

Matsuda, Hidefumi. "Shear viscosity of classical fields using the Green-Nakano-Kubo formula on a lattice." Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263463.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Simon, Marielle. "Problèmes de diffusion pour des chaînes d’oscillateurs harmoniques perturbées." Thesis, Lyon, École normale supérieure, 2014. http://www.theses.fr/2014ENSL0904/document.

Full text
Abstract:
L'équation de la chaleur est un phénomène macroscopique, émergeant après une limite d’échelle diffusive (en espace et en temps) d’un système d'oscillateurs couplés. Lorsque les interactions entre oscillateurs sont linéaires, l'énergie évolue de manière balistique, et la conductivité thermique est infinie. Certaines non-linéarités doivent donc apparaître au niveau microscopique, si l’on espère observer une diffusion normale. Pour apporter de l'ergodicité, on ajoute à la dynamique déterministe une perturbation stochastique qui conserve l'énergie. En premier lieu nous étudions la dynamique Hamiltonienne d'un système d'oscillateurs linéaires, perturbé par un bruit stochastique dégénéré conservatif. Ce dernier transforme à des temps aléatoires les vitesses en leurs opposées. On montre que l'évolution macroscopique du système est caractérisée par un système parabolique non-linéaire couplé pour les deux lois de conservation du modèle. Ensuite, nous supposons que les oscillateurs évoluent en environnement aléatoire. La perturbation stochastique est très dégénérée, et on prouve que le champ de fluctuations de l'énergie à l'équilibre converge vers un processus d'Ornstein-Uhlenbeck généralisé dirigé par l’équation de la chaleur.Il est désormais connu que les systèmes unidimensionnels présentent une diffusion anormale lorsque le moment total est conservé en plus de l'énergie. Dans une troisième partie, on considère deux perturbations, l'une préservant le moment, l'autre détruisant cette conservation. En faisant décroître l'intensité de la seconde perturbation, on observe une transition de phase entre un régime de diffusion normale et un régime de superdiffusion
The heat equation is known to be a macroscopic phenomenon, emerging after a diffusive rescaling of space and time. In linear systems of interacting oscillators, the energy ballistically disperses and the thermal conductivity is infinite. Since the Fourier law is not valid for linear interactions, non-linearities in the microscopic dynamics are needed. In order to bring ergodicity to the system, we superpose a stochastic energy conserving perturbation to the underlying deterministic dynamics.In the first part we study the Hamiltonian dynamics of linear coupled oscillators, which are perturbed by a degenerate conservative stochastic noise. The latter flips the sign of the velocities at random times. The evolution yields two conservation laws (the energy and the length of the chain), and the macroscopic behavior is given by a non-linear parabolic system.Then, we suppose the harmonic oscillators to evolve in a random environment, in addition to be stochastically perturbed. The noise is very degenerate, and we prove a macroscopic behavior that holds at equilibrium: precisely, energy fluctuations at equilibrium evolve according to an infinite dimensional Ornstein-Uhlenbeck process driven by the linearized heat equation.Finally, anomalous behaviors have been observed for one-dimensional systems which preserve momentum in addition to the energy. In the third part, we consider two different perturbations, the first one preserving the momentum, and the second one destroying that new conservation law. When the intensity of the second noise is decreasing, we observe (in a suitable time scale) a phase transition between a regime of normal diffusion and a regime of super-diffusion
APA, Harvard, Vancouver, ISO, and other styles
4

Yeandel, Stephen. "Atomistic simulation of thermal transport in oxide nanomaterials." Thesis, University of Bath, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.687351.

Full text
Abstract:
The aim of this work has been to use atomistic computer simulation methods to calculate the thermal conductivity and investigate factors that will modify the behaviour when applied to three different oxide materials: MgO, SiO2 and SrTiO3. These were chosen as they represent distinct classes of materials and are substrates for thermoelectric devices, where one of the primary goals is to tailor the system to reduce the thermal conductivity. Chapter 1 introduces thermoelectric concepts, gives a background of the theory and a review of various important thermoelectric materials. In Chapter 2 an overview of the interatomic interactions is presented along with details on the implementation of these interactions in a simulation of a 3D periodic crystal. Chapter 3 outlines the importance of phonon processes in crystals and several approaches to the calculation of thermal conductivity are presented. MgO results are given in Chapter 4. Both the Green-Kubo and Boltzmann transport equation (BTE) methods of calculating thermal conductivity were used. The effect on thermal conductivity of two different grain boundary systems are then compared and finally extended to MgO nanostructures, thus identifying the role of surfaces and complex nanostructure architectures on thermal conductivity. In Chapter 5 two different materials with the formula unit SiO2 are considered. The two materials are quartz and silicalite which show interesting negative thermal expansion behaviour which may impact upon the thermal transport within the material. Chapter 6 presents results on the promising thermoelectric material STO. Once again the results from both Green-Kubo and BTE calculations are compared. Grain boundaries are also studied and the effect of inter-boundary distance and boundary type on the thermal conductivity is explored. Finally, a nanostructured STO system (assembled nanocubes) with promising thermoelectric applications is studied. Chapter 7 outlines the conclusions made from this work and suggests areas for future study.
APA, Harvard, Vancouver, ISO, and other styles
5

Tu, Kai-Ming. "Spatial-Decomposition Analysis of Electrical Conductivity in Concentrated Ionic Systems." 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/199125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nakano, Hiroyoshi. "Singular behavior near surfaces: boundary conditions on fluids and surface critical phenomena." Kyoto University, 2019. http://hdl.handle.net/2433/242589.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Garrity, Patrick Louis. "Nanoscale Thermal Fluctuation Spectroscopy." ScholarWorks@UNO, 2009. http://scholarworks.uno.edu/td/912.

Full text
Abstract:
The utilization of thermal fluctuations or Johnson/Nyquist noise as a spectroscopic method to determine transport properties in conductors or semiconductors is developed in this paper. The autocorrelation function is obtained from power spectral density measurements thus enabling electronic transport property calculation through the Green-Kubo formalism. This experimental approach is distinct from traditional numerical methods such as molecular dynamics simulations, which have been used to extract the autocorrelation function and directly related physics only. This work reports multi-transport property measurements consisting of the electronic relaxation time, resistivity, mobility, diffusion coefficient, electronic contribution to thermal conductivity and Lorenz number from experimental data. Double validation of the experiment was accomplished through the use of a standard reference material and a standard measurement method, i.e. four-probe collinear resistivity technique. The advantages to this new experimental technique include the elimination of any required thermal or potential gradients, multi-transport property measurements within one experiment, very low error and the ability to apply controlled boundary conditions while gathering data. This research has experimentally assessed the gas pressure and flow effects of helium and argon on 30 nm Au and Cu thin films. The results show a reduction in Au and Cu electronic thermal conductivity and electrical resistivity when subjected to helium and argon pressure and flow. The perturbed electronic transport coefficients, attributed to increased electron scattering at the surface, were so dominant that further data was collected through straight-forward resistance measurements. The resistance data confirmed the thermal noise measurements thus lending considerable evidence to the presence of thin film surface scattering due to elastic and inelastic gas particle scattering effects with the electron ensemble.
APA, Harvard, Vancouver, ISO, and other styles
8

Mouas, Mohamed. "Etude par dynamique moléculaire de la structure atomique et de la compressibilité isotherme de métaux liquides. Calcul de la diffusion et de la viscosité de soudures sans plomb par le formalisme de Green-Kubo." Thesis, Université de Lorraine, 2012. http://www.theses.fr/2012LORR0057/document.

Full text
Abstract:
Les propriétés physiques et thermodynamiques des métaux liquides dépendent de la structure électronique. La structure ionique est décrite soit par la fonction de corrélation de paires dans l'espace réel ou par le facteur de structure dans l'espace réciproque. Celui-ci est directement accessible par diffraction de neutrons ou de rayons X. Le formalisme du pseudopotentiel nous permet de construire le potentiel effectif interionique, ce dernier est utilisé dans la simulation par dynamique moléculaire pour étudier les propriétés statiques comme la structure atomique et les propriétés dynamiques comme la diffusion et la viscosité. Les calculs ont été faits pour l'étain liquide, pour les métaux nobles ainsi que pour leurs alliages constituant les soudures sans plomb. Nous décrivons dans le premier chapitre les différentes propriétés des métaux liquides. Dans le chapitre II, nous présentons le formalisme du pseudopotentiel et la méthode de simulation par dynamique moléculaire. Dans le chapitre III, nous testons d'abord différents pseudopotentiels sur l'étain liquide et nous prouvons que le pseudopotentiel de Shaw local est le seul qui décrit d'une manière correcte la structure atomique. On utilise ensuite ce potentiel pour déterminer le coefficient de diffusion à partir de la fonction d'autocorrélation de vitesse et de sa transformée de Fourier: la densité spectrale. La viscosité de cisaillement est enfin calculée, pour la première fois à notre connaissance, pour l'étain liquide en utilisant la formule de Green-Kubo par intégration de la fonction d'autocorrélation des contraintes. Il est aussi particulièrement difficile de décrire correctement les métaux nobles avec la théorie des pseudopotentiels. En effet leur densité d'états est influencée par leur bande d. Pour surmonter cette difficulté, nous associons le concept de valence effective au potentiel de Shaw local. Les facteurs de structure calculés en fonction de la température sont en très bon accord avec les valeurs expérimentales. L'adéquation du choix du pseudopotentiel est confirmée par les résultats des coefficients de diffusion et de viscosités de cisaillement. Les propriétés des métaux purs et des alliages (soudures sans plomb) calculées en fonction de la température sont en bon accord avec les valeurs expérimentales, prouvant que le pseudopotentiel est transférable aux alliages. Cela confirme notre choix initial du pseudopotentiel local de Shaw et l'introduction du concept de valence effective. Une bonne connaissance de la diffusion et de la viscosité est très importante d'un point de vue industriel pour comprendre les problèmes technologiques liés au mouillage des substrats par les soudures et à la formation d'intermétalliques entre les soudures et le substrat
The physical and thermodynamical properties of liquid metals depend on the electronic structure. The ionic structure is described either by the pair correlation function in real space or by the structure factor in reciprocal space which is directly accessible by neutrons or X rays diffraction measurements. Pseudopotential formalism allows us to construct an ionic effective potential. It is used in Molecular Dynamics simulation to study the static properties like the atomic structure and the dynamic ones like diffusion and viscosity. These calculations have been done for liquid tin, for noble metals and for theirs alloys forming lead-free solders. We first describe in chapter I the different properties of liquid metals. In chapter II we present the pseudopotential formalism and the Molecular Dynamics method. In chapter III we first test different pseudopotentials on liquid tin and we prove that the Shaw local model potential is the only one able to describe adequately the atomic structure. Then we used it to determine the diffusion coefficient from the velocity autocorrelation function and from its Fourier transform: the spectral density. Finally, we calculated, for the first time to our knowledge, the shear viscosity of liquid tin with Green-Kubo formula by integrating the stress autocorrelation function. It is also particularly difficult to describe correctly liquid noble metals with pseudopotentials since their density of states is influenced by their d band. To overcome this difficulty we associate the concept of effective valence (determined theoretically) to the Shaw local potential. The calculated structure factors as function of temperature are in a very good agreement with the experimental ones. The adequacy of the choice of our pseudopotential is confirmed by the results of diffusion coefficients and shear viscosities. The properties of pure metals and alloys (lead free solders) as function of temperature are in good agreement with experimental values proving that the Shaw local pseudopotential is transferable to alloys. This confirms our initial choice of pseudopotential and effective valence. Having a good knowledge of diffusion and viscosity is very important from an industrial point of view. Indeed, we need understanding technological problems linked to the wetting of a solder on a substrate and to the formation of intermetallics between the solder and the substrate
APA, Harvard, Vancouver, ISO, and other styles
9

Simon, Marielle. "Problèmes de diffusion pour des chaînes d'oscillateurs harmoniques perturbées." Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2014. http://tel.archives-ouvertes.fr/tel-01061443.

Full text
Abstract:
L'équation de la chaleur est un phénomène macroscopique, émergeant après une limite d'échelle diffusive (en espace et en temps) d'un système d'oscillateurs couplés. Lorsque les interactions entre oscillateurs sont linéaires, l'énergie évolue de manière balistique, et la conductivité thermique est infinie. Certaines non-linéarités doivent donc apparaître au niveau microscopique, si l'on espère observer une diffusion normale. Pour apporter de l'ergodicité, on ajoute à la dynamique déterministe une perturbation stochastique qui conserve l'énergie. En premier lieu nous étudions la dynamique Hamiltonienne d'un système d'oscillateurs linéaires, perturbé par un bruit stochastique dégénéré conservatif. Ce dernier transforme à des temps aléatoires les vitesses en leurs opposées. On montre que l'évolution macroscopique du système est caractérisée par un système parabolique non-linéaire couplé pour les deux lois de conservation du modèle. Ensuite, nous supposons que les oscillateurs évoluent en environnement aléatoire. La perturbation stochastique est très dégénérée, et on prouve que le champ de fluctuations de l'énergie à l'équilibre converge vers un processus d'Ornstein-Uhlenbeck généralisé dirigé par l'équation de la chaleur.Il est désormais connu que les systèmes unidimensionnels présentent une diffusion anormale lorsque le moment total est conservé en plus de l'énergie. Dans une troisième partie, on considère deux perturbations, l'une préservant le moment, l'autre détruisant cette conservation. En faisant décroître l'intensité de la seconde perturbation, on observe une transition de phase entre un régime de diffusion normale et un régime de superdiffusion.
APA, Harvard, Vancouver, ISO, and other styles
10

Momenzadeh, Leila. "Prediction of phonon thermal conductivity of materials by molecular dynamics simulation." Thesis, 2016. http://hdl.handle.net/1959.13/1314291.

Full text
Abstract:
Research Doctorate - Doctor of Philosophy (PhD)
In this study, the phonon dynamics and lattice thermal conductivity of f.c.c. Copper (Cu), Aluminium (Al), Nickel (Ni) and Silver (Ag), as case studies, are investigated over a wide range of temperatures in detail. Calculations are performed within the framework of equilibrium molecular dynamics simulations in conjunction with the Green-Kubo formalism. To describe the interatomic interaction, the most reliable embedded-atom method potentials are used. It should be noted that for Ni two different embedded-atom method interatomic potentials are considered. Hereafter, the first potential is referred to as NiEAM1 (published in 1999) while the second potential is referred to as NiEAM2 (published in 2004). In all the models considered, a two-stage decay in the heat current autocorrelation function was observed. After the first stage of decay, the heat current autocorrelation function showed a peak in the low temperature range. The intensity of the peak decreased as the temperature increased. Furthermore, it transformed to a shoulder which diminished at high temperatures. It was revealed that the lattice thermal conductivity of a monatomic lattice can be decomposed into two contributions due to the acoustic short- and long-range phonon modes. These two contributions can be presented in the form of simple kinetic formulas consisting of the products of the heat capacity, the square of the average phonon velocity and the average relaxation time of the acoustic short- and long-range phonon modes, respectively. In addition, this analysis allowed for numerical evaluations of all these quantities, in a self consistent manner, from the heat current autocorrelation function. In particular, it was shown that the average phonon velocities of the acoustic short- and long-range phonon modes must be equal to each other and can be expressed via second-order fluctuations of the heat current vector. This was followed by an extensive consideration of the spectral representation of the analytical model for the heat current autocorrelation function. This has the potential to be used to efficiently decode the generic information on the lattice thermal conductivity and phonon dynamics from spectroscopic measurements, with no gradients imposed on the studied crystal, if a proper resolution of the frequency range of approximately 1 – 20 THz is accessible. In this research, the contribution to the lattice thermal conductivity determined by the phonon-electron scattering processes was intentionally ignored, and only the contribution due to the phonon-phonon scattering processes was considered. However, during comparisons of the data with the experiments, an estimation of the first contribution was made. Moreover, it is also of great interest, for practical applications, to have simple scaling relations between the lattice thermal conductivity and the other lattice properties readily accessible in experiments, such as the thermal expansion and elasticity. In this context, the scaling relations of the lattice thermal conductivity with the coefficient of the thermal expansion and the bulk modulus were estimated.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Green-kubo"

1

Balakrishnan, V. "Kubo-Green Formulas." In Elements of Nonequilibrium Statistical Mechanics, 203–22. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62233-6_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Baroni, Stefano, Riccardo Bertossa, Loris Ercole, Federico Grasselli, and Aris Marcolongo. "Heat Transport in Insulators from Ab Initio Green-Kubo Theory." In Handbook of Materials Modeling, 809–44. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-44680-6_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Baroni, Stefano, Riccardo Bertossa, Loris Ercole, Federico Grasselli, and Aris Marcolongo. "Heat Transport in Insulators from Ab Initio Green-Kubo Theory." In Handbook of Materials Modeling, 1–36. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-50257-1_12-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dürr, Detlef, Nino Zanghi, and Hans Zessin. "On rigorous Hydrodynamics, Self-diffusion and the Green-Kubo formulae." In Stochastic Processes and their Applications, 123–47. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-2117-7_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Petrosky, T. "Transport Theory for Collective Modes and Green-Kubo Formalism for Moderately Dense Gases." In Advances in Chemical Physics, 129–59. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2003. http://dx.doi.org/10.1002/0471619574.ch8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Heinen, Matthias, Simon Homes, Gabriela Guevara-Carrion, and Jadran Vrabec. "Mass Transport Across Droplet Interfaces by Atomistic Simulations." In Fluid Mechanics and Its Applications, 251–68. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-09008-0_13.

Full text
Abstract:
AbstractDue to availability of powerful computers and efficient algorithms, physical processes occurring at the micrometer scale can nowadays be studied with atomistic simulations. In the framework of the collaborative research center SFB-TRR75 “Droplet dynamics under extreme ambient conditions”, investigations of the mass transport across vapour-liquid interfaces are conducted. Non-equilibrium molecular dynamics simulation is employed to study single- and two-phase shock tube scenarios for a simple noble gas-like fluid. The generated data show an excellent agreement with computational fluid dynamics simulations. Further, particle and energy flux during evaporation are sampled and analysed with respect to their dependence on the interface temperature, employing a newly developed method which ensures a stationary process. In this context, the interface properties between liquid nitrogen and hydrogen under strong gradients of temperature and composition are investigated. Moreover, the Fick diffusion coefficient of strongly diluted species in supercritical CO$$_{2}$$ 2 is predicted by equilibrium molecular dynamics simulation and the Green-Kubo formalism. These results are employed to assess the performance of several predictive equations from the literature.
APA, Harvard, Vancouver, ISO, and other styles
7

EVANS, DENIS J., and GARY P. MORRISS. "The Green–Kubo relations." In Statistical Mechanics of Nonequilibrium Liquids, 77–93. Elsevier, 1990. http://dx.doi.org/10.1016/b978-0-12-244090-8.50009-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

"The Green–Kubo formulae." In An Introduction to Chaos in Nonequilibrium Statistical Mechanics, 75–88. Cambridge University Press, 1999. http://dx.doi.org/10.1017/cbo9780511628870.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

"Fractal forms in Green–Kubo relations." In An Introduction to Chaos in Nonequilibrium Statistical Mechanics, 195–202. Cambridge University Press, 1999. http://dx.doi.org/10.1017/cbo9780511628870.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

"Diffusion hypothesis and the Green-Kubo-Streda formula." In Graduate Studies in Mathematics, 199–214. Providence, Rhode Island: American Mathematical Society, 2015. http://dx.doi.org/10.1090/gsm/168/13.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Green-kubo"

1

Brey, J. Javier. "Green-Kubo representation of the viscosity of granular gases." In RAREFIED GAS DYNAMICS: 24th International Symposium on Rarefied Gas Dynamics. AIP, 2005. http://dx.doi.org/10.1063/1.1941635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Boi, S., A. Mazzino, and P. Muratore-Ginanneschi. "Taylor-Green-Kubo formula and asymptotic transport of inertial particles." In THMT-18. Turbulence Heat and Mass Transfer 9 Proceedings of the Ninth International Symposium On Turbulence Heat and Mass Transfer. Connecticut: Begellhouse, 2018. http://dx.doi.org/10.1615/thmt-18.1240.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bhesania, Abhishek, kishore K. kammara, Rakesh K. Mathpal, and Vaibhav Arghode. "Extracting Thermal Conductivity of Organic Materials using the Green-Kubo Method." In AIAA AVIATION 2021 FORUM. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2021. http://dx.doi.org/10.2514/6.2021-3126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sellan, Daniel P., Eric S. Landry, Joseph E. Turney, Alan J. H. McGaughey, and Cristina H. Amon. "Size Effects in Green-Kubo and Direct Method Molecular Dynamics Predictions of Thermal Conductivity." In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-38841.

Full text
Abstract:
The bulk thermal conductivity of Lennard-Jones argon and Stillinger-Weber silicon is predicted using the Green-Kubo (GK) and direct methods in classical molecular dynamics simulations. While system-size independent thermal conductivities can be obtained with less than 1000 atoms for both materials using the GK method, the linear extrapolation procedure [Schelling et al. Phys. Rev. B 65, 144306 (2002)] must be applied to direct method results for multiple system sizes. It is found that applying the linear extrapolation procedure in a manner consistent with previous researchers can lead to an underprediction of the GK thermal conductivity (e.g., by a factor of 2.5 for Stillinger-Weber silicon at a temperature of 500 K). To understand this discrepancy, phonon properties are predicted from lattice dynamics calculations, and from these, length-dependent thermal conductivities. These results show that the linear extrapolation procedure is only accurate when the minimum system size used in the direct method simulations is comparable to the largest mean free paths of the phonons that dominate the thermal transport. This condition has not typically been satisfied in previous works.
APA, Harvard, Vancouver, ISO, and other styles
5

Landry, E. S., A. J. H. McGaughey, and M. I. Hussein. "Superlattice Analysis for Tailored Thermal Transport Characteristics." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-13673.

Full text
Abstract:
Molecular dynamics simulations and the Green-Kubo method are used to predict the thermal conductivity of binary Lennard-Jones superlattices and alloys. The superlattice thermal conductivity trends are in agreement with those obtained through the direct method, verifying that the Green-Kubo method can be used to examine thermal transport in heterostructures. The simulation temperature and the constituent species are fixed while the superlattice period structure is varied with the goals of (i) minimizing the cross-plane thermal conductivity and (ii) maximizing the ratio of in-plane to cross-plane thermal conductivities. The superlattice thermal conductivity in both the cross-plane and in-plane directions is found to be greater than the corresponding alloy value and less than the value predicted from continuum theory. The anisotropy of the thermal conductivity tensor is found to be at a maximum for a superlattice with a uniform layer thickness. Lattice dynamics calculations are used to investigate the role of optical phonons in the thermal transport.
APA, Harvard, Vancouver, ISO, and other styles
6

Bharathi, Arvind Krishnasamy, and Adri van Duin. "Analysis of Thermal Transport in Zinc Oxide Nanowires Using Molecular-Dynamics Simulations With the ReaxFF Reactive Force-Field." In 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-22733.

Full text
Abstract:
The objective of this paper is to determine the thermal conductivity of Zinc Oxide nanowire by Steady State Non-equilibrium and Transient Non-equilibrium Molecular Dynamics (SS-NEMD and T-NEMD) simulations using the ReaxFF reactive force field [5]. While SS-NEMD uses an equilibrated system and statistical averaging; T-NEMD uses cooling/heating rates in order to calculate the conductivity. The validity of the methods is first verified using Argon as a test case. The thermal conductivity of Argon thus calculated is compared with those presented by Bhowmick and Shenoy [20]. We then study the effects of system size using SS-NEMD method while effects of periodic boundary conditions — 1D, 2D and bulk variation of conductivity with temperature are analyzed using T-NEMD simulations. The results obtained compare favorably with those measured experimentally [12, 13]. Thus the SS-NEMD and T-NEMD methods are alternatives to the traditional Green-Kubo approach. In conjunction with ReaxFF, they are computationally cheaper than the Green-Kubo method and can be used to determine the thermal conductivity of materials involved in surface chemistry reactions such as catalysis and sintering.
APA, Harvard, Vancouver, ISO, and other styles
7

Burt, Jonathan M., and Eswar Josyula. "A Green-Kubo approach to reduce collision separation error in the direct simulation Monte Carlo method." In 30TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS: RGD 30. Author(s), 2016. http://dx.doi.org/10.1063/1.4967608.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gomes, Carlos J., Marcela Madrid, Javier V. Goicochea, and Cristina H. Amon. "Silicon Thin Film Thermal Conductivity in Ballistic and Diffusive Regimes Predicted by Molecular Dynamics." In ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems. ASMEDC, 2005. http://dx.doi.org/10.1115/ht2005-72434.

Full text
Abstract:
The thermal conductivity of silicon thin films is predicted in the directions parallel and perpendicular to the film surfaces (in-plane and out-of-plane, respectively) using equilibrium molecular dynamics, the Green-Kubo relationship and the Stillinger-Weber interatomic potential. Film thicknesses range from 2 to 220 nm and temperatures from 300 to 1000 K. In this range of temperatures, the relation between the phonon mean free path (Λ) and the film thickness (ds) spans from the ballistic regime (≫ ds) to the diffusive, bulk-like regime (≪ ds). We show that equilibrium molecular dynamics and the Green-Kubo relationship can be applied to the study of the thermal conductivity of thin films in the ballistic, transitional and diffusive regimes. When the film is thin enough, the thermal conductivity becomes orthotropic and decreases with decreasing film thickness as a consequence of the scattering of phonons with the film boundaries. The in-plane thermal conductivity follows the trend observed experimentally at 300 K. In the ballistic limit, in accordance with the kinetic theory, the predicted out-of-plane thermal conductivity varies linearly with the film thickness and is temperature-independent for temperatures near or above Debye’s temperature. This paper was also originally published as part of the Proceedings of the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems.
APA, Harvard, Vancouver, ISO, and other styles
9

Kang, Hongbo, Yuwen Zhang, Mo Yang, and Ling Li. "Molecular Dynamics Simulation of Thermal Conductivity and Viscosity of a Nanofluid: Effect of Nanoparticle Aggregation." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-62297.

Full text
Abstract:
Effect of nanoparticle aggregation on the thermal conductivity and viscosity of nanofluids is studied by molecular dynamics simulation in this work. Thermal conductivity and viscosity of the nanofluid are calculated using Green-Kubo method and results show that the nanoparticle aggregation induces a significant enhancement of thermal conductivity in nanofluid, while the increase of viscosity is moderate. The results also indicate that different configurations of the nanoparticle cluster result in different enhancements of thermal conductivity and increase of viscosity in the nanofluid. The differences between equilibrium molecular dynamics (EMD) approach and non-equilibrium molecular dynamics (NEMD) approach in obtaining the thermophysical properties of nanofluids are also discussed.
APA, Harvard, Vancouver, ISO, and other styles
10

Madadi, Mahyar, and Marjan Mehrabi. "Flow in 2D-Nanotubes by Stochastic Rotation Dynamics Algorithm." In ASME 4th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2006. http://dx.doi.org/10.1115/icnmm2006-96064.

Full text
Abstract:
We use the Stochastic Rotation Dynamics (SRD) to simulate the fluid flow in 2D Carbon Nanotubes. The SRD algorithm is able to simulate flow in different length scale of the fluids. First of all, we use SRD algorithm to simulate the macroscopic Helium flow as a simple interacting system. Using Green-Kubo formula, viscosity of the system as a macroscopic quantity has been calculated. Then, we apply our algorithm to simulate the Helium flow through the Carbon Nanotube in two dimensions. Finally, we find the effect of interaction of Carbon Nanotube with viscosity as a function of temperature. Also, our simulation shows the viscoelastic effects in 2D flow.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography