To see the other types of publications on this topic, follow the link: Green-kubo.

Journal articles on the topic 'Green-kubo'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Green-kubo.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Goldhirsch, I., and T. P. C. van Noije. "Green-Kubo relations for granular fluids." Physical Review E 61, no. 3 (March 1, 2000): 3241–44. http://dx.doi.org/10.1103/physreve.61.3241.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Visscher, P. B. "Green–Kubo formula for collisional relaxation." Journal of Chemical Physics 89, no. 8 (October 15, 1988): 5137–39. http://dx.doi.org/10.1063/1.455630.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Khrustalyov, Yu V., O. S. Vaulina, O. F. Petrov, and V. E. Fortov. "Thermal Properties of Simulated Non-Ideal Systems." Ukrainian Journal of Physics 56, no. 12 (February 2, 2022): 1287. http://dx.doi.org/10.15407/ujpe56.12.1287.

Full text
Abstract:
The dependence of the thermal conductivity on the temperature is studied for a simulated non-ideal Yukawa system by means of the Green–Kubo formula in a wide range of parameters. The phase state of the system under study is changed from a strongly coupled 2D-solid to a low-coupled hot liquid. A method of calculation of the thermal conductivity for 2D-systems via the Green–Kubo formula is developed.
APA, Harvard, Vancouver, ISO, and other styles
4

Jagannathan, A., Y. Oono, and B. Schaub. "Intrinsic viscosity from the Green–Kubo formula." Journal of Chemical Physics 86, no. 4 (February 15, 1987): 2276–85. http://dx.doi.org/10.1063/1.452126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Searles, Debra J., and Denis J. Evans. "The fluctuation theorem and Green–Kubo relations." Journal of Chemical Physics 112, no. 22 (June 8, 2000): 9727–35. http://dx.doi.org/10.1063/1.481610.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pavliotis, G. A. "Asymptotic analysis of the Green-Kubo formula." IMA Journal of Applied Mathematics 75, no. 6 (June 13, 2010): 951–67. http://dx.doi.org/10.1093/imamat/hxq039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yamagishi, Hidenaga. "The Green-Kubo formula in gauge theories." Physica A: Statistical Mechanics and its Applications 158, no. 1 (May 1989): 251–60. http://dx.doi.org/10.1016/0378-4371(89)90526-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sharma, Bhanuday, Rakesh Kumar, Prateek Gupta, Savitha Pareek, and Ashish Singh. "On the estimation of bulk viscosity of dilute nitrogen gas using equilibrium molecular dynamics approach." Physics of Fluids 34, no. 5 (May 2022): 057104. http://dx.doi.org/10.1063/5.0088775.

Full text
Abstract:
In this work, we present a study for the estimation of bulk viscosity using the equilibrium molecular dynamics-based Green–Kubo method. We have performed a parametric study to find optimal hyper-parameters to estimate bulk viscosity using the Green–Kubo method. Although similar studies exist for shear viscosity, none has been reported so far specifically for bulk viscosity. The expected uncertainty in bulk viscosity for a given length and number of molecular dynamics trajectories used in statistical averaging is determined. The effect of system size, temperature, and pressure on bulk viscosity has also been studied. The study reveals that the decay of autocorrelation function for bulk viscosity is slower than that for shear viscosity and hence requires a longer correlation length. A novel observation has been made that the autocorrelation length required for convergence in the Green–Kubo method for both shear and bulk viscosity of dilute nitrogen gas is of the same mean collision time length units irrespective of simulation pressure. However, when the temperature is varied, the required autocorrelation length remains unaffected for shear viscosity but increases slightly with temperature for bulk viscosity. The results obtained from the Green–Kubo method are compared with experimental and numerical results from the literature with special emphasis on their comparison with the results from the nonequilibrium molecular dynamics-based continuous expansion/compression method. Although the primary focus and novelty of this work are the discussion on bulk viscosity, a similar discussion on shear viscosity has also been added.
APA, Harvard, Vancouver, ISO, and other styles
9

Raineri, Fernando O., and Ernesto O. Timmermann. "A Green–Kubo formula for the sedimentation coefficients." Journal of Chemical Physics 91, no. 6 (September 15, 1989): 3685–88. http://dx.doi.org/10.1063/1.456849.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Duque-Zumajo, D., J. A. de la Torre, and Pep Español. "Non-local viscosity from the Green–Kubo formula." Journal of Chemical Physics 152, no. 17 (May 7, 2020): 174108. http://dx.doi.org/10.1063/5.0006212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Dufty, J. W., and M. H. Ernst. "Green-Kubo relations for lattice gas cellular automata." Journal of Physical Chemistry 93, no. 19 (September 1989): 7015–19. http://dx.doi.org/10.1021/j100356a026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Shibata, Hiroshi. "Green–Kubo formula derived from large deviation statistics." Physica A: Statistical Mechanics and its Applications 309, no. 3-4 (June 2002): 268–74. http://dx.doi.org/10.1016/s0378-4371(02)00567-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Sagis, Leonard M. C. "Green–Kubo relations for dynamic interfacial excess properties." Physica A: Statistical Mechanics and its Applications 391, no. 15 (August 2012): 3805–15. http://dx.doi.org/10.1016/j.physa.2012.03.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Ernst, M. H., and J. W. Dufty. "Green-Kubo relations for lattice gas cellular automata." Physics Letters A 138, no. 8 (July 1989): 391–95. http://dx.doi.org/10.1016/0375-9601(89)90837-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Hayakawa, Hisao. "Generalized Green-Kubo Formula for a Dissipative Quantum System." Progress of Theoretical Physics Supplement 184 (2010): 545–56. http://dx.doi.org/10.1143/ptps.184.545.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Jakšić, V., Y. Ogata, and C. A. Pillet. "The Green-Kubo Formula for the Spin-Fermion System." Communications in Mathematical Physics 268, no. 2 (September 22, 2006): 369–401. http://dx.doi.org/10.1007/s00220-006-0095-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Bernardin, Cédric, François Huveneers, Joel L. Lebowitz, Carlangelo Liverani, and Stefano Olla. "Green-Kubo Formula for Weakly Coupled Systems with Noise." Communications in Mathematical Physics 334, no. 3 (October 21, 2014): 1377–412. http://dx.doi.org/10.1007/s00220-014-2206-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Momenzadeh, Leila, Irina V. Belova, and Graeme E. Murch. "Molecular Dynamics Determination of the Lattice Thermal Conductivity of the Cubic Phase of Hafnium Dioxide." Diffusion Foundations 27 (May 2020): 177–85. http://dx.doi.org/10.4028/www.scientific.net/df.27.177.

Full text
Abstract:
The wide range of industrial applications is the main reason for an increased interest in dioxides such as HfO2. In this study, classical molecular dynamic simulations were performed to calculate the lattice thermal conductivity of the cubic phase of HfO2, over a temperature range of 100-3000 K, based on the Green-Kubo fluctuation method. In this research, the heat current autocorrelation function and lattice thermal conductivity were calculated in the a-direction. The lattice thermal conductivity of the cubic phase of HfO2 was found to be a result of three contributions. These were the optical and acoustic short-range and long-range phonon modes. Comparisons between the results of the research and experimental data when available indicate good agreement. Keywords: lattice thermal conductivity, molecular dynamics, Green-Kubo formalism, heat current autocorrelation function, hafnium dioxid
APA, Harvard, Vancouver, ISO, and other styles
19

Harada, T. "Green-Kubo relationship between fluctuation and response of thermal ratchets." Seibutsu Butsuri 43, supplement (2003): S139. http://dx.doi.org/10.2142/biophys.43.s139_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Zaragoza, A., M. A. Gonzalez, L. Joly, I. López-Montero, M. A. Canales, A. L. Benavides, and C. Valeriani. "Molecular dynamics study of nanoconfined TIP4P/2005 water: how confinement and temperature affect diffusion and viscosity." Physical Chemistry Chemical Physics 21, no. 25 (2019): 13653–67. http://dx.doi.org/10.1039/c9cp02485a.

Full text
Abstract:
The structure and dynamics of TIP4P/2005 water under different nanoconfinements and within a wide temperature range is studied using molecular dynamics. In particular, two different estimates of the viscosity (Green–Kubo formula and confined Stokes–Einstein relation) differ dramatically.
APA, Harvard, Vancouver, ISO, and other styles
21

Lv, Wei, and Asegun Henry. "Phonon transport in amorphous carbon using Green–Kubo modal analysis." Applied Physics Letters 108, no. 18 (May 2, 2016): 181905. http://dx.doi.org/10.1063/1.4948605.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Kundu, Anupam, Abhishek Dhar, and Onuttom Narayan. "The Green–Kubo formula for heat conduction in open systems." Journal of Statistical Mechanics: Theory and Experiment 2009, no. 03 (March 3, 2009): L03001. http://dx.doi.org/10.1088/1742-5468/2009/03/l03001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Lee, M. Howard. "Fick's Law, Green-Kubo Formula, and Heisenberg's Equation of Motion." Physical Review Letters 85, no. 12 (September 18, 2000): 2422–25. http://dx.doi.org/10.1103/physrevlett.85.2422.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Gielerak, R., L. Jakóbczyk, and R. Olkiewicz. "Reconstruction of Kubo–Martin–Schwinger structure from Euclidean Green functions." Journal of Mathematical Physics 35, no. 7 (July 1994): 3726–44. http://dx.doi.org/10.1063/1.530442.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Dünweg, B., V. Lobaskin, K. Seethalakshmy-Hariharan, and C. Holm. "Colloidal electrophoresis: scaling analysis, Green–Kubo relation, and numerical results." Journal of Physics: Condensed Matter 20, no. 40 (September 10, 2008): 404214. http://dx.doi.org/10.1088/0953-8984/20/40/404214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Herz, F., and S. A. Biehs. "Green-Kubo relation for thermal radiation in non-reciprocal systems." EPL (Europhysics Letters) 127, no. 4 (September 9, 2019): 44001. http://dx.doi.org/10.1209/0295-5075/127/44001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Brilliantov, Nikolai V., and Thorsten Pöschel. "Self-diffusion in granular gases: Green–Kubo versus Chapman–Enskog." Chaos: An Interdisciplinary Journal of Nonlinear Science 15, no. 2 (June 2005): 026108. http://dx.doi.org/10.1063/1.1889266.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Zhou, Yanhua, and Gregory H. Miller. "Green−Kubo Formulas for Mutual Diffusion Coefficients in Multicomponent Systems." Journal of Physical Chemistry 100, no. 13 (January 1996): 5516–24. http://dx.doi.org/10.1021/jp9533739.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Jakšić, Vojkan, Yoshiko Ogata, and Claude-Alain Pillet. "The Green–Kubo Formula for Locally Interacting Fermionic Open Systems." Annales Henri Poincaré 8, no. 6 (September 2007): 1013–36. http://dx.doi.org/10.1007/s00023-007-0327-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Jiang, Da-Quan, and Fu-Xi Zhang. "The Green–Kubo formula and power spectrum of reversible Markov processes." Journal of Mathematical Physics 44, no. 10 (2003): 4681. http://dx.doi.org/10.1063/1.1610780.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Bocquet, Lydéric, and Jean-Louis Barrat. "On the Green-Kubo relationship for the liquid-solid friction coefficient." Journal of Chemical Physics 139, no. 4 (July 28, 2013): 044704. http://dx.doi.org/10.1063/1.4816006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Sasada, Makiko. "On the Green–Kubo formula and the gradient condition on currents." Annals of Applied Probability 28, no. 5 (October 2018): 2727–39. http://dx.doi.org/10.1214/17-aap1369.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Oga, Haruki, Yasutaka Yamaguchi, Takeshi Omori, Samy Merabia, and Laurent Joly. "Green-Kubo measurement of liquid-solid friction in finite-size systems." Journal of Chemical Physics 151, no. 5 (August 7, 2019): 054502. http://dx.doi.org/10.1063/1.5104335.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Sarman, Sten. "Green–Kubo relations for the viscosity of biaxial nematic liquid crystals." Journal of Chemical Physics 105, no. 10 (September 8, 1996): 4211–22. http://dx.doi.org/10.1063/1.472288.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Floriani, E., Gy Trefán, P. Grigolini, and B. J. West. "What lies beyond the non-stationary Green-Kubo regime of conduction?" Physics Letters A 218, no. 1-2 (July 1996): 35–41. http://dx.doi.org/10.1016/0375-9601(96)00386-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Evans, Denis J. "Green-Kubo relations for weak vector processes in strongly shearing fluids." Physical Review A 44, no. 6 (September 1, 1991): 3630–32. http://dx.doi.org/10.1103/physreva.44.3630.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Sarkar, Shubhankar, and Nanda Kumar Ghosh. "Equilibrium molecular dynamics simulation for investigation on the enhancement of thermal conductivity in ethylene glycol-based ZnO nanofluid." IOP Conference Series: Materials Science and Engineering 1258, no. 1 (October 1, 2022): 012004. http://dx.doi.org/10.1088/1757-899x/1258/1/012004.

Full text
Abstract:
The thermal conductivity of ethylene-glycol based ZnO nanofluid is computed using Equilibrium Molecular Dynamics Simulations in the Green-Kubo framework, taking into account the impact of nanoparticle volume fraction and nanofluid temperature. Mean square displacement (MSD) of the liquid phase for base fluid and nanofluid is also studied to investigate the thermal conductivity enhancement mechanism.
APA, Harvard, Vancouver, ISO, and other styles
38

Takesue, S. "Fourier’s law and the Green-Kubo formula in a cellular-automaton model." Physical Review Letters 64, no. 3 (January 15, 1990): 252–55. http://dx.doi.org/10.1103/physrevlett.64.252.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Brey, J. Javier, M. J. Ruiz-Montero, P. Maynar, and M. I. García de Soria. "Hydrodynamic modes, Green–Kubo relations, and velocity correlations in dilute granular gases." Journal of Physics: Condensed Matter 17, no. 24 (June 3, 2005): S2489—S2502. http://dx.doi.org/10.1088/0953-8984/17/24/008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Akiner, Tolga, Emir Kocer, Jeremy K. Mason, and Hakan Erturk. "Green–Kubo assessments of thermal transport in nanocolloids based on interfacial effects." Materials Today Communications 20 (September 2019): 100533. http://dx.doi.org/10.1016/j.mtcomm.2019.05.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Zhang, Jun, Dandan Zeng, and Jing Fan. "Analysis of transport properties determined by Langevin dynamics using Green–Kubo formulae." Physica A: Statistical Mechanics and its Applications 411 (October 2014): 104–12. http://dx.doi.org/10.1016/j.physa.2014.06.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Wood, W. W. "Long-time tails of the green-kubo integrands for a binary mixture." Journal of Statistical Physics 57, no. 3-4 (November 1989): 675–727. http://dx.doi.org/10.1007/bf01022828.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Rajpoot, G., K. Kumari, S. Joshi, and S. R. Jain. "Green–Kubo formula for electrical conductivity of a driven $$0$$–$$\pi$$ qubit." Theoretical and Mathematical Physics 213, no. 3 (December 2022): 1727–37. http://dx.doi.org/10.1134/s0040577922120066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Teng, Kuo-Liang, Pai-Yi Hsiao, Shih-Wei Hung, Ching-Chang Chieng, Ming-Shen Liu, and Ming-Chang Lu. "Enhanced Thermal Conductivity of Nanofluids Diagnosis by Molecular Dynamics Simulations." Journal of Nanoscience and Nanotechnology 8, no. 7 (July 1, 2008): 3710–18. http://dx.doi.org/10.1166/jnn.2008.18336.

Full text
Abstract:
Molecular Dynamics simulations are performed to calculate the thermal conductivity of nanofluids, and to understand the fundamental physics of the enhancement of thermal conductivity observed in experiments. Based on the analysis, intermolecular interactions between copper–copper atoms, layer structure surrounding nanoparticles, convection effect induced by the Brownian motion of copper atoms, as well as particle–particle interactions are identified and confirmed on the enhancement using Green-Kubo method in thermal conductivity.
APA, Harvard, Vancouver, ISO, and other styles
45

Deutsch, C., and R. Popoff. "Low velocity ion slowing down in a strongly magnetized plasma target." Laser and Particle Beams 27, no. 4 (December 2009): 739–42. http://dx.doi.org/10.1017/s0263034609990462.

Full text
Abstract:
AbstractIon projectile stopping at velocity smaller than target electron thermal velocity in a strong magnetic field is investigated within a novel diffusion formulation, based on Green-Kubo integrands evaluated in magnetized one component plasma models, respectively, framed on target ions and electron. Analytic expressions are reported for slowing down orthogonal and parallel to an arbitrary large magnetic field, which are free from the usual uncertainties plaguing the standard perturbative derivations.
APA, Harvard, Vancouver, ISO, and other styles
46

Sevinçli, H., S. Roche, G. Cuniberti, M. Brandbyge, R. Gutierrez, and L. Medrano Sandonas. "Green function, quasi-classical Langevin and Kubo–Greenwood methods in quantum thermal transport." Journal of Physics: Condensed Matter 31, no. 27 (April 26, 2019): 273003. http://dx.doi.org/10.1088/1361-648x/ab119a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Lv, Wei, and Asegun Henry. "Direct calculation of modal contributions to thermal conductivity via Green–Kubo modal analysis." New Journal of Physics 18, no. 1 (January 12, 2016): 013028. http://dx.doi.org/10.1088/1367-2630/18/1/013028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Sharma, A., and J. M. Brader. "Communication: Green-Kubo approach to the average swim speed in active Brownian systems." Journal of Chemical Physics 145, no. 16 (October 28, 2016): 161101. http://dx.doi.org/10.1063/1.4966153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Yang, Fengxia, Yong Chen, and Yong Liu. "The Green–Kubo formula for general Markov processes with a continuous time parameter." Journal of Physics A: Mathematical and Theoretical 43, no. 24 (May 25, 2010): 245002. http://dx.doi.org/10.1088/1751-8113/43/24/245002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Rose, J. B., J. M. Torres-Rincon, D. Oliinychenko, A. Schäfer, and H. Petersen. "Systematic errors in transport calculations of shear viscosity using the Green-Kubo formalism." Journal of Physics: Conference Series 1024 (May 2018): 012028. http://dx.doi.org/10.1088/1742-6596/1024/1/012028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography