Academic literature on the topic 'Green-Tao theorem'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Green-Tao theorem.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Green-Tao theorem"
Conlon, David, Jacob Fox, and Yufei Zhao. "The Green-Tao theorem: an exposition." EMS Surveys in Mathematical Sciences 1, no. 2 (2014): 257–91. http://dx.doi.org/10.4171/emss/6.
Full textLê, Thái Hoàng. "Green–Tao theorem in function fields." Acta Arithmetica 147, no. 2 (2011): 129–52. http://dx.doi.org/10.4064/aa147-2-3.
Full textZHAO, YUFEI. "An arithmetic transference proof of a relative Szemerédi theorem." Mathematical Proceedings of the Cambridge Philosophical Society 156, no. 2 (November 14, 2013): 255–61. http://dx.doi.org/10.1017/s0305004113000662.
Full textRimanić, Luka, and Julia Wolf. "Szemerédi's Theorem in the Primes." Proceedings of the Edinburgh Mathematical Society 62, no. 2 (November 19, 2018): 443–57. http://dx.doi.org/10.1017/s0013091518000561.
Full textSANDERS, TOM. "Approximate groups and doubling metrics." Mathematical Proceedings of the Cambridge Philosophical Society 152, no. 3 (December 13, 2011): 385–404. http://dx.doi.org/10.1017/s0305004111000740.
Full textKra, Bryna. "The Green-Tao Theorem on arithmetic progressions in the primes: an ergodic point of view." Bulletin of the American Mathematical Society 43, no. 01 (October 6, 2005): 3–24. http://dx.doi.org/10.1090/s0273-0979-05-01086-4.
Full textChen, Yong-Gao, and Ying Shi. "Dynamics of the $w$ function and the Green-Tao theorem on arithmetic progressions in the primes." Proceedings of the American Mathematical Society 136, no. 07 (March 4, 2008): 2351–57. http://dx.doi.org/10.1090/s0002-9939-08-09207-1.
Full textPambuccian, Victor. "The Green-Tao theorem on primes in arithmetical progressions in the positive cone of $\mathbb Z [X]$." Elemente der Mathematik 69, no. 1 (2014): 30–32. http://dx.doi.org/10.4171/em/242.
Full textSun, Yu-Chen, and Hao Pan. "The Green–Tao theorem for primes of the form $$x^2+y^2+1$$ x 2 + y 2 + 1." Monatshefte für Mathematik 189, no. 4 (December 15, 2018): 715–33. http://dx.doi.org/10.1007/s00605-018-1245-0.
Full textEVEN-ZOHAR, CHAIM. "On Sums of Generating Sets in ℤ2n." Combinatorics, Probability and Computing 21, no. 6 (August 3, 2012): 916–41. http://dx.doi.org/10.1017/s0963548312000351.
Full textDissertations / Theses on the topic "Green-Tao theorem"
Henriot, Kevin. "Structures linéaires dans les ensembles à faible densité." Thèse, Paris 7, 2014. http://hdl.handle.net/1866/11116.
Full textNous présentons trois résultats en combinatoire additive, un domaine récent à la croisée de la combinatoire, l'analyse harmonique et la théorie analytique des nombres. Le thème unificateur de notre thèse est la détection de structures additives dans les ensembles arithmétiques à faible densité, avec un intérêt particulier pour les aspects quantitatifs. Notre première contribution est une estimation de densité améliorée pour le problème, initié entre autres par Bourgain, de trouver une longue progression arithmétique dans un ensemble somme triple. Notre deuxième résultat consiste en une généralisation des bornes de Sanders pour le théorème de Roth, du cas d'un ensemble dense dans les entiers à celui d'un ensemble à faible croissance additive dans un groupe abélien arbitraire. Finalement, nous étendons les meilleures bornes quantitatives connues pour le théorème de Roth dans les premiers, à tous les systèmes d'équations linéaires invariants par translation et de complexité un.
We present three results in additive combinatorics, a recent field at the interface of combinatorics, harmonic analysis and analytic number theory. The unifying theme in our thesis is the detection of additive structure in arithmetic sets of low density, with an emphasis on quantitative aspects. Our first contribution is an improved density estimate for the problem, initiated by Bourgain and others, of finding a long arithmetic progression in a triple sumset. Our second result is a generalization of Sanders' bounds for Roth's theorem from the dense setting, to the setting of small doubling in an arbitrary abelian group. Finally, we extend the best known quantitative results for Roth's theorem in the primes, to all translation-invariant systems of equations of complexity one.
Book chapters on the topic "Green-Tao theorem"
Kullmann, Oliver. "Green-Tao Numbers and SAT." In Theory and Applications of Satisfiability Testing – SAT 2010, 352–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14186-7_32.
Full text