Academic literature on the topic 'Greenhouse automation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Greenhouse automation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Greenhouse automation"

1

Shirsath, Prof D. O., Punam Kamble, Rohini Mane, Ashwini Kolap, and Prof R. S. More. "IOT Based Smart Greenhouse Automation Using Arduino." International Journal of Innovative Research in Computer Science & Technology 5, no. 2 (March 31, 2017): 234–38. http://dx.doi.org/10.21276/ijircst.2017.5.2.4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yamashita, Jun, and Kazunobu Sato. "Automated Vehicles for Greenhouse Automation." Journal of Robotics and Mechatronics 11, no. 3 (June 20, 1999): 200–207. http://dx.doi.org/10.20965/jrm.1999.p0200.

Full text
Abstract:
We designed and manufactured one prototype trackless autonomous transport vehicle to travel in row spacing and another to travel between cultivation beds to ease harsh transport labor in greenhouses for soil cultivation and hydroponics. The vehicle traveling in row spacing was four-wheeled with an independent rear drive featuring 1) a rolling bearing used for self-heading correction; 2) a spin turn at the end of a row; and 3) a microcomputer letting it travel autonomously in the greenhouse. The vehicle traveling between cultivation beds was fourwheeled with an independent rear drive and antiphase four-wheeled steering, controlling heading while measuring the distance to a cultivation bed wall with ultrasonic sensors. We also manufactured a gantry for strawberry cultivation using machinery for automatic work on a wide-bed truck traveling automatically on rails. This paper discusses these prototypes and run perf0mance tests in a greenhouse.
APA, Harvard, Vancouver, ISO, and other styles
3

Shinde, Mr Harshal Vijay. "IOT based Greenhouse Automation System." International Journal for Research in Applied Science and Engineering Technology 7, no. 5 (May 31, 2019): 606–9. http://dx.doi.org/10.22214/ijraset.2019.5103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ting, K. C. "Mechanization, Automation, and Computerization for Greenhouse Production." HortTechnology 2, no. 1 (January 1992): 59–63. http://dx.doi.org/10.21273/horttech.2.1.59.

Full text
Abstract:
Availability and capability of labor have become dominating factors affecting agriculture's productivity and sustainability. Agricultural mechanization can substitute for human and animal physical power and improve operational uniformity. Automation complements mechanization by implementing the capabilities of automatic perception, reasoning, communication, and task planning. Fixed automation is traditionally cost-effective for mass production of standard items. In addition, flexible automation responds to make-to-order batch processing. The appropriateness of each automation type depends on the situation at hand. Because of their vast memory and high calculation speed, computers are highly effective for rapid information processing. Incorporating state-of-the-art hardware and software, computers can generate status reports, provide decision support, gather sensor signals, and/or instruct machines to perform physical work. It is no surprise, therefore, that computerization is essential to the evolutionary process, from mechanization through fixed automation to flexible automation. Fundamentals of agricultural mechanization, automation, and computerization applied to greenhouse production are discussed. Recent research activities conducted at Rutgers Univ. are presented for illustrative purposes.
APA, Harvard, Vancouver, ISO, and other styles
5

S. Raj, Jennifer, and Vijitha Ananthi J. "AUTOMATION USING IOT IN GREENHOUSE ENVIRONMENT." Journal of Information Technology and Digital World 01, no. 01 (September 25, 2019): 38–47. http://dx.doi.org/10.36548/jitdw.2019.1.005.

Full text
Abstract:
Green house is generally a building of small or large structures. The structure of the green house is made of walls and the translucent roof, with the capability of maintaining the planned climatic condition. It ensures the growth of plants that requires a specified level of soil moisture, sunlight, humidity and temperature. The green house systems available are human monitored systems that entail the continuous human visit causing distress to the worker and also decrease in the yield if the temperature and the humidity are not properly and regularly maintained. This paves way for the concept of the green house automation. The green house automation formed by the incorporation of the Internet of things and the embedded system addresses the problem faced in the green house and provides with the automated controlling and monitoring of the green house environment replacing the undeviating administration of the farmers. This paper also proposes the automation using internet of things in green house environment by using the Netduino 3 and employing the sensors for the sensing the moisture, temperature, sunlight and humidity, to enhance the production rate and minimize the discomfort caused to the farmers.
APA, Harvard, Vancouver, ISO, and other styles
6

RodríGuez, M., A. Ayala, F. Herrera, and F. H. Priano. "Greenhouse Automation Through Computer and Hertzian Link." International Journal of Electrical Engineering & Education 33, no. 1 (January 1996): 66–88. http://dx.doi.org/10.1177/002072099603300110.

Full text
Abstract:
Greenhouse automation through computer and Hertzian link Sometimes Electronic and Computer Science are the best support for many applications. The following paper shows a practical experience, the automation of a controlled farming greenhouse, where the engineering student can develop one of these multiple applications.
APA, Harvard, Vancouver, ISO, and other styles
7

Dario, P., G. Sandini, B. Allotta, A. Bucci, F. Buemi, M. Massa, F. Ferrari, et al. "THE AGROBOT PROJECT FOR GREENHOUSE AUTOMATION." Acta Horticulturae, no. 361 (June 1994): 85–92. http://dx.doi.org/10.17660/actahortic.1994.361.7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

KORADE, TUSHAR C., and DR A. A. SHINDE. "Wireless Sensor Network for Greenhouse Automation." International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering 3, no. 7 (July 20, 2014): 10647–53. http://dx.doi.org/10.15662/ijareeie.2014.0307052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Korzhakov, Alexey, Sergei Oskin, Valery Korzhakov, and Svetlana Korzhakova. "The Simulation of Heat Supply System with a Scale Formation Factor to Enable Automation of Greenhouse Geothermal Heat Supply System." Machines 9, no. 3 (March 14, 2021): 64. http://dx.doi.org/10.3390/machines9030064.

Full text
Abstract:
This article presents the results of the simulation of an automatic control system for the heat supply of a greenhouse complex with a geothermal heat source, conducted in order to study the possibility of geothermal heat supply system automation. Scilab version 6.1 was used for simulation. Based on the results of the simulation, the optimal mode of the automation system function of the heat exchanger primary circuit was developed and implemented. Reagentless treatment of geothermal water in the heat supply system with an acoustic–magnetic device (designed and patented by the authors of this paper) can significantly reduce the intensity of scale formation in the heat exchanger and geothermal heat supply system equipment. It provides conditions for the automation of geothermal heat supply systems of greenhouses with a surface heat exchanger. Using an automation system allows greater accuracy and reliability in maintaining the required temperature regime (18–20 °C) in the greenhouse, reduces the frequency of system shutdown for unplanned cleaning of the heat exchanger and equipment, reduces the complexity of manual operations of heat exchanger and equipment maintenance (removal of sludge, scale) and reduces the economic costs of transportation and heat consumption.
APA, Harvard, Vancouver, ISO, and other styles
10

Ganzhur, Marina, Alexey Ganzhur, Andrey Kobylko, and Denis Fathi. "Automation of microclimate in greenhouses." E3S Web of Conferences 210 (2020): 05004. http://dx.doi.org/10.1051/e3sconf/202021005004.

Full text
Abstract:
An agricultural greenhouse is a complex system with many input features. Taking these features into consideration creates favorable conditions for the production of plants. The parameters are temperature and internal humidity, which have a significant impact on the yield. The aim of this study was to propose a dynamic simulation model in the MATLAB/Simulink environment for experimental validation. In addition, a fuzzy controller for the indoor climate of the greenhouse with an asynchronous motor for ventilation, heating, humidification, etc. has been designed. The model includes an intelligent control system for these drives in order to ensure optimal indoor climate. The dynamic model was validated by comparing simulation results with experimental measurement data. These results showed the effectiveness of the control strategy in regulating the greenhouse indoor climate.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Greenhouse automation"

1

Johansson, Oscar, and Gustav Andersson. "Smart Greenhouse : A microcontroller based architecture for autonomous and remote control." Thesis, Högskolan i Halmstad, Akademin för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-42284.

Full text
Abstract:
Expensive and complex automated systems for greenhouses are frequently utilized in the horticulture industry. In parallel, smart systems for home automation has recently seen a rapid increase in popularity. This project aims to combine the climate optimization capabilities of industrial systems with the convenience of home automation systems. More specifically, this project is focused on the design and implementation of electrical and mechanical requirements of a smart greenhouse system. This involved the selection of hardware components, such as sensors, actuators and controllers. It also involved the interconnection between these components and the development of measurement and control systems to autonomously manage the greenhouse. The system is based on a WiFi-connected microcontroller. Parameters monitored include; temperature, humidity and wind-speed. Irrigation is controlled by a solenoid valve and can be scheduled to desired intervals. Ventilation and temperature optimization is done by controlling the roof-hatch with a linear actuator and control of a heater. The results demonstrate a accurate and reliable system with low power consumption. The resulting prototype can be installed in new and existing greenhouses. Functionalities can be remotely controlled and monitored by the convenience of an android application. The total cost of the components used was around 4 500 SEK. Further development could be done to enable seamless scalability with additional components and functionalities. Climate optimization by incorporation of weather forecast as a parameter could be implemented to further reduce energy consumption.
Dyra och komplexa automatiserade växthussystem är vanligt förekommande inom industrin för hortikultur. Parallellt har populariteten för "Smart Home" system för hemautomatisering radikalt ökat. Målet med detta projekt är att kombinera klimatoptimiseringsmöjligheterna hos industriella system med lättanvändligheten hos system för hemautomatisering. Detta projekt fokuserar specifikt på designen och implementationen av de elektriska och mekaniska krav som ställs på ett "smart greenhouse system". Detta innefattar; val av komponenter såsom sensorer, aktuatorer samt styrenhet men även sammankopplingen mellan dessa komponenter och utvecklingen av mjukvara till reglersystemet, som i sin tur syftar till automatiseringen i växthuset. Systemet är baserat på en WiFi-uppkopplad mikrokontroller. Parametrar som monitoreras är; temperatur, luftfuktighet och vindhastighet. Bevattning kontrolleras av en magnetventil och kan schemaläggas för bevattning i önskade intervall. Ventilering och temperaturoptimisering sker genom kontroll av taklucka med hjälp av ett linjärt ställdon samt kontroll av ett värmeelement. Resultatet demonstrerar ett pålitligt och punktligt system med låg energiförbrukning. Prototypen som utvecklats kan installeras i både nya och befintliga växthus. Funktionaliteterna kan smidigt fjärrkontrolleras och monitoreras från en android applikation. Den totala kostnaden för de komponenter som använts var runt 4500 kr. Vidareutveckling vad gäller skalbarhet för att sömlöst lägga till komponenter och funktionaliteter bör övervägas. För ytterligare minskad energiförbrukning med hjälp av klimatoptimering kan väderprognos adderas som en parameter.
APA, Harvard, Vancouver, ISO, and other styles
2

Cansado, Jacinto Carlos Ascencio. "AGRILOGIC sistema para experimentação de controle climático de casas de vegetação." Universidade de São Paulo, 2003. http://www.teses.usp.br/teses/disponiveis/3/3141/tde-06032004-174935/.

Full text
Abstract:
A agricultura tradicional realizada em campo aberto é dependente do meio físico natural, sendo sua prosperidade resultado de circunstâncias favoráveis do solo, do clima e água, entre outros. A necessidade crescente de se produzir vegetais com alta qualidade, do planejamento da produção agrícola em termos de quantidade e prazo, da redução dos custos por unidade de produção, com a manutenção ou aumento da qualidade têm levado a um aumento da utilização de cultivo protegido. A realização da produção agrícola com uma certa independência das condições climáticas pode ser obtida através da utilização de casas de vegetação, comercialmente conhecidas como estufas. Diversos estudos mostram que as principais variáveis climáticas envolvidas no processo de produção vegetal são: a temperatura, a umidade, a luminosidade e a concentração de gás carbônico. A presença desses fatores, dentro de certos limites mínimos e máximos, proporciona condições propícias para o desenvolvimento vegetal, enquanto que fora desses limites, o desenvolvimento é prejudicado. Portanto, uma boa política de controle dessas variáveis torna-se imprescindível. Este trabalho apresenta um sistema desenvolvido para a pesquisa em controle climático em casas de vegetação, denominado Agrilogic. Ele utiliza elementos comumente encontrados em automação industrial, como CLP (Controlador Lógico Programável) para as atividades consideradas de curto prazo e um software supervisório do tipo SCADA (Supervisory Control And Data Acquisition) para controlar as atividades consideradas de longo prazo e para a IHM (Interface Homem Máquina) de mais alto nível, num computador pessoal. A interligação do CLP com o computador pessoal é feita via modem através de uma linha telefônica. O sistema foi instalado em uma casa de vegetação do Instituto de Biociências da USP para monitoração e controle da temperatura, da umidade relativa do ar e do fotoperíodo, enquanto o computador de supervisão está localizado no Laboratório de Automação Agrícola, na Escola Politécnica da USP.
Traditional open field agriculture is dependent on the natural environment, and its profit is a result of/ derives from favorable soil, weather and water conditions, among other factors. The increasing need to produce high quality crops, to plan agricultural production in terms of quantity and time, to decrease costs, while maintaining or increasing quality has led to protected agriculture. Agricultural production with some independence of weather conditions can be obtained using greenhouses, which provide good weather protection for the crop. There are many studies showing that the main variables related to crop production are: air temperature, air humidity, solar radiation and carbon dioxide concentration. The maintenance of these variables between a minimum and a maximum limit provides good conditions for crop development, whereas, beyond these limits, the development is restrained. Consequently, a good control policy for these variables is deemed necessary. This work presents Agrilogic, a system for research on greenhouse climate control. It uses industrial automation devices, such as PLC (Programmable Logic Controller), which accounts for short time activities and SCADA (Supervisory Control And Data Acquisition), software responsible for the MMI (Man Machine Interface), which accounts for the long-term activities. The system was installed in a greenhouse at Instituto de Biociências, Universidade de São Paulo for temperature, air relative humidity and photoperiod monitoring and control, and it is linked to a personal computer located at the Agricultural Automation Laboratory, at Escola Politécnica da USP, via a modem and a telephone line.
APA, Harvard, Vancouver, ISO, and other styles
3

Josefsson, Simon. "Adoption of Automation in the Horticulture Industry : A Case Study at a Robotics Company in the U.S. and Canada." Thesis, KTH, Industriell Management, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-253903.

Full text
Abstract:
The purpose of this thesis is to fill the previous research gap concerning automation in the horticulture industry by discovering the adoption of automation in the U.S. and Canada, exploring the possibilities of introducing autonomous solutions and provide recommendations as to how this could create opportunities for small robotics companies targeting the industry. A case company in the U.S. and Canada was used as an example of a small robotics company for the case study. Two research questions were formulated: RQ1: Which major tasks in the horticulture industry should a small robotics company aim to automate? RQ2: What are the barriers for companies in the horticulture industry to invest in automated solutions? A mixed methods research with a pragmatic, inductive and exploratory approach was employed. The primary source of data was gathered from surveys, due to the geographical diversity of the region studied. The surveys reveal that the average level of automation across all respondents averaged at 47%. Given the strategy of the case company, a small robotics company is argued to aim to automate the following tasks: placing plant liners, sticking cuttings and planting seed, spacing of plants and containers, plant pruning, harvesting and grading production, and pesticide application. The horticulture industry is showing low barriers to invest in automation. The relatively high levels of automation are leading to increased trust in automation and further investments in automation. This is shown in the technology being perceived as useful amongst 75-85% of respondents and perceived as easy to use amongst 94% of respondents.
Syftet med denna avhandling är att fylla det tidigare forskargapet om automatisering inom hortikultur, genom att utforska acceptansen av automatisering i USA och Kanada, utforska möjligheterna att införa autonoma lösningar och ge rekommendationer om hur detta kan skapa möjligheter för små robotföretag som riktar sig mot branschen. En fallstudie på ett robotföretag i USA och Kanada användes som ett exempel på ett litet robotföretag. Två forskningsfrågor formulerades: RQ1: Vilka stora uppgifter inom hortikultur bör ett litet robotföretag sträva efter att automatisera?RQ2: Vilka hinder finns för företag inom hortikultur att investera i automatiserade lösningar? En blandad metodforskning med ett pragmatiskt, induktivt och utforskande tillvägagångssätt användes. Den primära källan till data samlades från undersökningar, på grund av den geografiska mångfalden i regionen som studerades. Undersökningarna visar att den genomsnittliga automatiseringsgraden för alla svarande i genomsnitt uppgick till 47%. Med tanke på bolagets strategi rekommenderas ett litet robotföretag att automatisera följande uppgifter: rada upp plantor, stick och plantera frön, skapa avstånd mellan växter och behållare, beskära och kvalitetsgranska skördar, och applicera bekämpningsmedel. Hortikulturindustrin visar låga hinder för investeringar i automatisering. De relativt höga automatiseringsnivåerna leder till ökat förtroende för automatisering och ytterligare investeringar i automation. Detta framgår av tekniken som uppfattas som användbar bland 75–85% av de svarande och uppfattas som lätt att använda bland 94% av de svarande.
APA, Harvard, Vancouver, ISO, and other styles
4

Lacroix, René. "A framework for the design of simulation-based greenhouse control." Thesis, McGill University, 1994. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=41652.

Full text
Abstract:
The main objectives were: (1) to develop tools to aid in the design of enclosed agro-ecosystems, and (2) to use these tools to develop a prototype simulation-based control system. Three tools were developed: (1) a conceptual framework, (2) a (simulated) greenhouse system and (3) a simulation approach within OS/2.
Part of the conceptual framework was dedicated to "conscious control", defined as a form of control practised by an entity that uses models of itself in its decision-making processes. The greenhouse system was composed of six modules (a simulation manager, a weather generator, a greenhouse model, a crop model, a Pavlovian controller and a cognitive controller), which were implemented under OS/2 as separate processes.
The greenhouse system was used to develop a prototype simulation-based controller. Primarily, the role of the controller was to determine temperature setpoints that would minimize the heating load. The simulation model used by the controller was an artificial neural network. The controller adapted temperature setpoints to anticipated meteorological conditions and reduced greenhouse energy consumption, in comparison with a more traditional controller.
Generally, the results showed the feasibility and illustrated some of the advantages of using simulation-based control. The research resulted in the definition of elements that will allow the creation of a methodological framework for the design of simulation-based control and, eventually, a theory of conscious control.
APA, Harvard, Vancouver, ISO, and other styles
5

Ignácio, Bruno Alvarez Ferreira. "Metodologia para redução da emissão de gases de efeito estufa em uma cadeia de suprimentos de etanol suportada pela tecnologia da automação e de informação." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/3/3143/tde-26082016-143946/.

Full text
Abstract:
Os aspectos ambientais vêm ganhando importância para a gestão de grandes, e até mesmo, de pequenas empresas, que passaram a adotar práticas sustentáveis para atender às legislações governamentais, além de buscar eventuais retornos econômicos e mercadológicos. Assim, considerando este cenário, este estudo tem como foco a análise da emissão de gases de efeito estufa, partindo da premissa de que para minimizar esta emissão é necessário examinar todos os processos de extração, produção e transporte ocorridos ao longo da cadeia de suprimentos. Nesse sentido, este estudo tem como objetivo principal o desenvolvimento de uma metodologia para redução da emissão de tais gases em uma cadeia de suprimentos, utilizando tecnologias da automação e de informação. Para verificar sua efetividade, tal metodologia foi aplicada em uma cadeia de suprimentos de etanol, que teve suas emissões estimadas, avaliadas e aperfeiçoadas por meio do uso de um Sistema Inteligente de Navegação, que pretendia diminuir as distâncias rodadas e o consumo de combustível dos veículos usados na distribuição do produto. Os resultados obtidos nas simulações realizadas expõem a possibilidade de reduzir, em um cenário otimista, até 13,42% das emissões da cadeia analisada.
Environmental aspects are gaining importance for the management of big and small organizations. These have adopted environmental practices to meet government laws and to pursue economic and market returns. So, considering this scenario, this study focuses on the analysis of the emission of greenhouse gases, on the premise that to minimize this issue is necessary to examine all processes of extraction, production and transportation occurring along the supply chain. In this sense, this thesis has as main objective the development of a methodology that seeks to reduce the emission of greenhouse gases in a supply chain, using for this technologies of automation and information. To evaluate its effectiveness, the methodology is applied in an ethanol supply chain located in Brazil, which has its emissions estimated, evaluated and possibly optimized through the use of an intelligent navigation system during the distribution process. This technology intends to assist the vehicle\'s driver to find routes that minimize the distance traveled and to maintain an optimal speed set by the manufacturer to reduce the consumption of energy. The results obtained in the simulations show that the implementation of the methodology can reduce, in an optimistic scenario, up to 13.42 % of the greenhouse gases emissions of the ethanol SC analyzed.
APA, Harvard, Vancouver, ISO, and other styles
6

Beeman, Jai Chowdhry. "Le rôle des gaz à effet de serre dans les variations climatiques passées : une approche basée sur des chronologies précises des forages polaires profonds." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAU023/document.

Full text
Abstract:
Les forages polaires profonds contiennent des enregistrements des conditions climatiques du passé et de l'air piégé qui témoignent des compositions atmosphériques du passé, notamment des gaz à effet de serre. Cette archive nous permet de décrypter le rôle des gaz à effet de serre dans les variations climatiques pendant huit cycles glaciaire-interglaciaires, soit l'équivalent de plus de 800 000 ans. Les carottes de glace, comme toute archive paléoclimatique, sont caractérisées par des incertitudes liées aux processus qui traduisent les variables climatiques en proxy, ainsi que par des incertitudes dues aux chronologies de la glace et des bulles d'air piégées. Nous développons un cadre méthodologique, basé sur la modélisation inverse dite Bayesienne et l'évaluation de fonctions complexes de densité de probabilité, pour traiter les incertitudes liées aux enregistrements paléoclimatiques des carottes de glace de manière précise. Nous proposons deux études dans ce cadre. Pour la première étude, nous identifions les probabilités de localisation des points de changement de pente de l'enregistrement du CO2 dans la carotte de WAIS Divide et d'un stack d'enregistrements de paléotempérature a partir de cinq carottes Antarctiques avec des fonctions linéaires par morceaux. Nous identifions aussi les probabilités pour chaque enregistrement individuel de température. Cela nous permet d'examiner les changements de pente à l'échelle millénaire dans chacune des séries, et de calculer les déphasages entre les changements cohérents. Nous trouvons que le déphasage entre la température en Antarctique et le CO2 à probablement varié (en restant inferieur, generalement, à 500 ans) lors de la déglaciation. L'âge des changements de temperature varie probablement entre les sites de carottage aussi. Ce résultat indique que les mécanismes qui reliaient la température en Antarctique et le CO2 lors de la déglaciation pouvaient être differents temporellement et spatialement. Dans la deuxième étude nous développons une méthode Bayesienne pour la synchronisation des carottes de glace dans le modèle inverse chronologique IceChrono. Nos simulations indiquent que cette méthode est capable de synchroniser des séries de CH4 avec précision, tout en prenant en compte des observations chronologiques externes et de l'information à priori sur les caractéristiques glaciologiques aux sites de forage. La méthode est continue et objective, apportant de la précision à la synchronisation des carottes de glace
Deep polar ice cores contain records of both past climate and trapped air that reflects past atmospheric compositions, notably of greenhouse gases. This record allows us to investigate the role of greenhouse gases in climate variations over eight glacial-interglacial cycles. The ice core record, like all paleoclimate records, contains uncertainties associated both with the relationships between proxies and climate variables, and with the chronologies of the records contained in the ice and trapped air bubbles. In this thesis, we develop a framework, based on Bayesian inverse modeling and the evaluation of complex probability densities, to accurately treat uncertainty in the ice core paleoclimate record. Using this framework, we develop two studies, the first about Antarctic Temperature and CO2 during the last deglaciation, and the second developing a Bayesian synchronization method for ice cores. In the first study, we use inverse modeling to identify the probabilities of piecewise linear fits to CO2 and a stack of Antarctic Temperature records from five ice cores, along with the individual temperature records from each core, over the last deglacial warming, known as Termination 1. Using the nodes, or change points in the piecewise linear fits accepted during the stochastic sampling of the posterior probability density, we discuss the timings of millenial-scale changes in trend in the series, and calculate the phasings between coherent changes. We find that the phasing between Antarctic Temperature and CO2 likely varied, though the response times remain within a range of ~500 years from synchrony, both between events during the deglaciation and accross the individual ice core records. This result indicates both regional-scale complexity and modulations or variations in the mechanisms linking Antarctic temperature and CO2 accross the deglaciation. In the second study, we develop a Bayesian method to synchronize ice cores using corresponding time series in the IceChrono inverse chronological model. Tests show that this method is able to accurately synchronize CH4 series, and is capable of including external chronological observations and prior information about the glaciological characteristics at the coring site. The method is continuous and objective, bringing a new degree of accuracy and precision to the use of synchronization in ice core chronologies
APA, Harvard, Vancouver, ISO, and other styles
7

Hellman, Mikael. "Optimering av fotonbombardemang inom PAR-området för ökad fotosyntes." Thesis, Mittuniversitetet, Institutionen för elektronikkonstruktion, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-42527.

Full text
Abstract:
Fotosyntes är central för vår överlevnad. I denna studie har en artificel ljuskälla reglerats för att optimera fotonintensiteten då intensiteten från solen varit för låg. Fokus är lagt på PAR-vågbandet vilket är de våglängder som anses ha störst inverkan på fotosyntes. En kalibrerad sensor användes för att ge pålitliga mätvärden av fotonintensiteten. En billig sensor konstruerades för mätning av densamma och även manuell mätning med lux-meter där värdena konverterades till fotonintensitet. För att studera hur tillväxten påverkas av fotonintensiteten har en testgrupp och en kontrollgrupp med morötter används. Morötterna placerades i ett växthus under liknande förutsättningar med avseende på till exempel näring och värme. Testgruppen fick tillgång till artificellt ljus då intensiteten från solen var för låg under dagstid. Kontrollgruppen fick endast tillgång till solljus. Tillväxten för testgruppen blev större än för kontrollgruppen. För vidare forskning skulle en steglös reglering av fotonbombardemanget kunna optimera processen. Denna förbättring innebär ekonomisk besparing i form av högre biologisk tillväxt vid lägre energiförbrukning. Slutsatsen av denna studie är att optimering av fotonbombardemang kan medföra ekonomisk besparing och även minskad negativ miljöpåverkan på grund av lägre energiförbrukning.
Photosynthesis is central to our survival. In this study, an artificial light source has been regulated to optimize the photon intensity when the intensity from the sun has been too low. The focus is on the PAR waveband, which are the wavelengths that are considered to have the greatest impact on photosynthesis. A calibrated sensor was used to provide reliable measurements of the photon intensity. An inexpensive sensor was designed for measuring the same and also manual measurement with lux-meter where the values ​​were converted to photon intensity. To study how growth is affected by photon intensity, a test group and a control group with carrots were used. The carrots were placed in a greenhouse under similar conditions with regard to, for example, nutrition and heat. The test group gained access to artificial light when the intensity from the sun was too low during the day. The control group only had access to sunlight. The growth for the test group was greater than for the control group. For further research, a stepless regulation of photon bombardment could optimize the process. This improvement means economic saving in the form of higher biological growth at lower energy consumption. The conclusion of this study is that optimization of photon bombardment can lead to economic saving and also reduced negative environmental impact due to lower energy consumption.
APA, Harvard, Vancouver, ISO, and other styles
8

Ruei-YenChang and 張瑞晏. "Greenhouse Automatic Control and Monitoring Service System." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/4bbw99.

Full text
Abstract:
碩士
國立成功大學
製造資訊與系統研究所
105
A Greenhouse automatic control and monitoring service system is developed in this paper realized the wireless communication by client-server architecture, we can monitor the environment and control the hardware of the farm remotely by terminator device which via web browser, the data transmission between embedded system and server is realized by the TCP/IP communication protocol. This research mechanism includes remote monitoring cloud service platform, embedded wireless transmission, environment sensing, automatic control system. In environment sensing, we have integrated temperature, humidity, co and soil moisture to building the monitoring system, in automatic control, the automatic irrigation and temperature control system is developed in this paper. And the solar tracking system is developed in this paper to improve the efficiency of green power. This research implemented cloud server software and hardware architecture that saving the cost of the hardware.
APA, Harvard, Vancouver, ISO, and other styles
9

Liou, Kun-Lin, and 劉昆林. "Greenhouse automatic control system based on MSP430." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/26282679651658223965.

Full text
Abstract:
碩士
龍華科技大學
電機工程系碩士班
103
Micro Controller Unit was produced in the 1980s. It was researched and developed from General Instrument, its features of low price, multi-function, user-friendly, and its volume is small. Up to now, Micro Controller Unit is be used in many fields, such as automobiles, biomedical engineering, motor controllers, vending machines, sirens, electric vehicle, and so on. Many different types of Micro Controller Unit are promoted continuously. For example: 8051, PIC, HT, and MPC. This essay discusses MSP430 mainly which was developed by Texas Instrument Company. Its major characteristic has a low power design. Moreover, Texas Instrument Company launched many different series of MSP430 and varied packing. MSP430 is highly integrated circuits. It is not only save many peripheral devices but also has many powerful functions. This essay applies the internal ADC12 of MSP430 to transfer analog signals to digital signals of temperature-humidity and illumination so on. Afterwards, we control the MSP430 modules to reveal the messages according to the digital signals from the computer.
APA, Harvard, Vancouver, ISO, and other styles
10

"Multi-variable control techniques for greenhouses." Thesis, 2012. http://hdl.handle.net/10210/5421.

Full text
Abstract:
M.Ing.
This research project is dedicated to the automation of environmental control within greenhouses. To create an optimal climate in the greenhouse, the main environmental parameters that need to be controlled are temperature, humidity and light intensity. As a result of process dead times and the extreme interdependence of these parameters, the control problem can be classified as non-linear and multi-variable. In the past, most greenhouse environmental control systems depended on the decision making of an experienced human operator. This often gave rise to trial and error, especially when new species were established. With the current advances in "intelligent" control systems and high accuracy sensors, more and more of the decisions involved in greenhouse control can be automated. In this way more emphasis can be placed on emulating the abilities of an expert operator, by means of a computerbased automatic control system. In this research project, "intelligent" as well as "non-intelligent" control techniques, for addressing the problem of automated climate control in a greenhouse, are investigated. These include PID-control as a "non-intelligent" technique, and rule-based fuzzy logic control and self-learning fuzzy logic control as two "intelligent" control techniques. These techniques are all applied to experimental greenhouse which is equipped with management mechanisms, such as fans, heaters, sprinklers and lights. The results of the experiments are evaluated according to two performance parameters: the Control Performance Index (CPI) and the Mean Square Error (MSE). The three techniques are not only assessed for their efficiency, but also for their applicability to the greenhouse environmental problem. Each of the control techniques has a unique characteristic response to the non-linear, non-stationary, multi-variable problem of environmental control and are subsequently addressed in the respective chapter.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Greenhouse automation"

1

International Symposium on Plant Production in Closed Ecosystems (1996 Narita, Japan). International symposium on plant production in closed ecosystems: Automation, culture and environment : Narita, Japan, 26-29 August, 1996. Edited by Kozai T, Japanese Society of Environment Control in Biology., and International Society for Horticultural Science. Commission for Horticultural Engineering. [Wageningen]: ISHS, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

International, Workshop on Sensors in Horticulture (1st 1991 Noordwijkerhout Netherlands). First International Workshop on Sensors in Horticulture: Noordwijkerhout, the Netherlands, January 29-31, 1991. Wageningen, Netherlands: International Society for Horticultural Science, Commission for Horticultural Engineering, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

International Symposium on Sensors in Horticulture (3rd 1997 Haifa, Israel). Proceedings of the Third International Symposium on Sensors in Horticulture: Haifa, Israel, 17-21 August, 1997. Leuven, Belgium: International Society for Horticultural Science, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

International Symposium on Sensors in Horticulture (3rd 1997 Haifa, Israel). Proceedings of the Third International Symposium on Sensors in Horticulture: Haifa, Israel, 17-21 August, 1997. Leuven, Belgium: International Society for Horticultural Science, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Weiss, John. Automatic jet contrail detection and segmentation. [Washington, DC: National Aeronautics and Space Administration, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Weiss, John. Automatic jet contrail detection and segmentation. [Washington, DC: National Aeronautics and Space Administration, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

IFAC/ISHS Workshop on Mathematical and Control Applications in Agriculture and Horticulture (2nd 1994 Silsoe, Bedfordshire). Second I.F.A.C./I.S.H.S. Workshop on Mathematical and Control Applications in Agriculture and Horticulture: Silsoe, United Kingdom, 12-15 September 1994. Leiden, Netherlands: ISHS, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Climate under cover: Digital dynamic simulation in plant bio-engineering. Dordrecht: Kluwer Academic Publishers, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wei, Fang, ed. Climate under cover. 2nd ed. Dordrecht: Kluwer Academic Publishers, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

1957-, Kano A., Bailey Bernard J, Takakura T. 1937-, International Society for Horticultural Science., and International Horticultural Congress (24th : 1994 : Kyoto, Japan), eds. Greenhouse environment control and automation: XXIVth International Horticultural Congress, Kyoto International Conference Hall, 21-27 August 1994, Kyoto, Japan. Leuven, Belgium: International Society for Horticultural Science, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Greenhouse automation"

1

Fei-qing, Wu, Li Lin-gong, Ma Xiu-shui, Qiu Jun, and He Xian-tu. "Development of Wireless Monitor System on Greenhouse Environment Based on GSM." In Future Control and Automation, 371–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31006-5_44.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shi, Lijuan, Qing Li, and Shengqiang Qian. "Design of Greenhouse Environmental Monitoring System Based on Arduino and ZigBee." In Advanced Manufacturing and Automation VIII, 576–82. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2375-1_72.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Morgan, Lynette. "The greenhouse environment and energy use." In Hydroponics and protected cultivation: a practical guide, 30–46. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789244830.0030.

Full text
Abstract:
Abstract This chapter discusses the greenhouse environment and its energy use. Its heating, cooling, shading, ventilation and air movement, humidity, carbon dioxide enrichment, automation, energy use and conservation in protected cropping, renewable energy sources for protected cropping such as geothermal energy, solar energy, passive solar energy, wind-generated energy, biomass and biofuels are also discussed.
APA, Harvard, Vancouver, ISO, and other styles
4

Morgan, Lynette. "The greenhouse environment and energy use." In Hydroponics and protected cultivation: a practical guide, 30–46. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789244830.0003.

Full text
Abstract:
Abstract This chapter discusses the greenhouse environment and its energy use. Its heating, cooling, shading, ventilation and air movement, humidity, carbon dioxide enrichment, automation, energy use and conservation in protected cropping, renewable energy sources for protected cropping such as geothermal energy, solar energy, passive solar energy, wind-generated energy, biomass and biofuels are also discussed.
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Hui, Xue-ren Dong, Yu-zhen Ma, Xiao-wei Yang, and Feng-nan Liu. "Design of Greenhouse Environment Wireless Monitoring System Based on ZigBee." In Informatics in Control, Automation and Robotics, 579–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-25899-2_78.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ahmad, Asim, and Om Prakash. "Modelling of a Greenhouse Drying System Using COMSOL Multi-physics." In Advances in Smart Grid Automation and Industry 4.0, 287–94. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-7675-1_28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Alimardani, R., P. Javadikia, A. Tabatabaeefar, M. Omid, and M. Fathi. "Retracted: Implementation of On/Off Controller for Automation of Greenhouse Using LabVIEW." In Artificial Intelligence and Computational Intelligence, 251–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-05253-8_28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Portero A., Flavio J., Jorge V. Quimbiamba C., Angel G. Hidalgo O., and Ramiro S. Vargas C. "Economic Assessment of Hydroponic Greenhouse Automation: A Case Study of Oat Farming." In Advances in Intelligent Systems and Computing, 139–50. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-63665-4_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Alimardani, R., P. Javadikia, A. Tabatabaeefar, M. Omid, and M. Fathi. "Erratum to: Implementation of On/Off Controller for Automation of Greenhouse Using LabVIEW." In Artificial Intelligence and Computational Intelligence, E1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-05253-8_80.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lee, Young-Jae, Kyung-Wook Park, and Eung-Kon Kim. "Automatic Dehumidifier Control System for Greenhouse Using Smart Phone." In Lecture Notes in Electrical Engineering, 257–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-47487-7_38.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Greenhouse automation"

1

Siddiqui, Muhammad Faizan, Asim ur Rehman Khan, Neel Kanwal, Haider Mehdi, Aqib Noor, and M. Asad Khan. "Automation and monitoring of greenhouse." In 2017 International Conference on Information and Communication Technologies (ICICT). IEEE, 2017. http://dx.doi.org/10.1109/icict.2017.8320190.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Silva, Luciano M. da, Elpidio H. Junior, Kayque J. P. Carneiro, Johthema M. de Matos, A. P. Anacilia M C. de Vieira, and Raimundo da Silva Barreto. "Tellus – Greenhouse Irrigation Automation System." In 2018 IEEE Symposium on Computers and Communications (ISCC). IEEE, 2018. http://dx.doi.org/10.1109/iscc.2018.8538494.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bhuvaneswari, Thangavel, and Joshua Tan Hong Yao. "Automated greenhouse." In 2014 IEEE International Symposium on Robotics and Manufacturing Automation (ROMA). IEEE, 2014. http://dx.doi.org/10.1109/roma.2014.7295887.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mardones, Jose, Rodrigo Acuna, and Emil Osorio. "Smart Greenhouse for economic reactivation." In 2021 IEEE International Conference on Automation/XXIV Congress of the Chilean Association of Automatic Control (ICA-ACCA). IEEE, 2021. http://dx.doi.org/10.1109/icaacca51523.2021.9465255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Qun, Yin, and Zhang Jianbo. "Greenhouse data monitoring system." In 2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). IEEE, 2021. http://dx.doi.org/10.1109/imcec51613.2021.9482208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ödük, Mehmet Nuri, and Novruz Allahverdi. "Application of fuzzy control approach in greenhouse automation." In the 11th International Conference on Computer Systems and Technologies and Workshop for PhD Students in Computing. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1839379.1839413.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Thirukkuralkani, K. N., S. Kaushik, and Christy John Ninan. "LabVIEW based greenhouse automation system through wireless protocol." In 2018 2nd International Conference on Inventive Systems and Control (ICISC). IEEE, 2018. http://dx.doi.org/10.1109/icisc.2018.8399082.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Harikrishna, R. B., Suraj R, Paramasiva Pandi N, Austin Anand Kumar A, and Shanthini Pandiaraj. "Greenhouse Automation Using Internet of Things in Hydroponics." In 2021 3rd International Conference on Signal Processing and Communication (ICPSC). IEEE, 2021. http://dx.doi.org/10.1109/icspc51351.2021.9451668.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Salgado, Paulo, and Paulo Afonso. "Decomposition of a Greenhouse Fuzzy Model." In 2006 IEEE Conference on Emerging Technologies and Factory Automation. IEEE, 2006. http://dx.doi.org/10.1109/etfa.2006.355191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rajaoarisoa, Lala H., Nacer K. M'Sirdi, and Jean-Francois Balmat. "Micro-climate optimal control for an experimental greenhouse automation." In 2012 2nd International Conference on Communications, Computing and Control Applications (CCCA). IEEE, 2012. http://dx.doi.org/10.1109/ccca.2012.6417903.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography